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Abstract: In this paper, we examine a particular case of land use pattern: forest management activities
facing an uncertainty related to spatial information signals received. We investigate the combination
of two well-known theoretical approaches, the Blackwell theorem and entropy analysis, in providing
a decision support framework for decision makers. We examine the uncertainty related to the
information signals received within a decision support context and compute the optimal actions.
Drawing on satellite imagery as an additional source of information provided by French spatial
data infrastructure (SDI), we illustrate our approach through a clear-cutting control case study. The
control of clear-cutting is a central issue in forest management. In order to perform an efficient
control operation, uncertainty regarding the decisions to be taken needs to be minimized. Reducing
uncertainty in a decision-making context related to forest management provides greater opportunities
for improving productivity and for saving time and money. The results show that the information
structure through the SDI signals has the most significant information power. Moreover, a maximum
of two information structures can be compared when applying the Blackwell theorem. However,
while using the entropy approach, a comparison of several information structures can be performed.

Keywords: Blackwell; decision-making; entropy; forest clear-cut; geospatial information; land use;
spatial data infrastructure; sustainable development; value of information

1. Introduction

The control of clear-cutting occupies a center place in land use, and particularly,
forest management activities. Designing sustainable management plans in forest activity
needs to be coupled with precise inspection control, to be sure that the clear-cuts meet the
standards. The purpose of this paper is to examine the combination of two well-known
theoretic concepts, Blackwell’s theorem and entropy analysis, in providing a decision
support framework for decision makers in forest management activities. We outline
their association in a unified framework. We present an original approach to study the
uncertainty related to information signals received and examine the optimal actions in a
decision support context related to clear-cut controls.

1.1. Literature Overview
1.1.1. Standard Decision-Making Methods

There exist several approaches addressing the decision-making processes in the field
of forest management. From the initial models developed [1] to more recent techniques [2],
the research works in this area are numerous. The authors in [3] present in their well-known
paper, a review of some of the most used decision-making methods and their contribution
to the field of forest management. As an example, the multi-objective programming
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(MOP) method describes how decision makers address the multiple objectives optimization
issue linked to a predefined set of constraints. Through the multi-attribute utility theory
(MAUT), a cardinal utility function is defined and optimized with respect to each respective
constraint. Other methods such as the analytic hierarchy process (AHP) illustrate the
decision-maker preferences based on linguistic and hierarchical scales. Other approaches
using discrete multi-criteria methods, i.e., ELECTRE and PROMETHEE, were also largely
deployed to better select afforestation alternatives when it comes to practices, locations and
length of the afforestation period. While most of these methods are based on multi-criteria
decision making (MCDM) [4], group decision making (GDM) and goal programming
(GP) [5], new approaches are needed in order to respond to the emerging forest management
problems, such as risk allocation efficiency, uncertainty under complex environments,
multiple-purpose forestry decisions, etc. [6].

1.1.2. Blackwell Contribution to Decision Making

In this context, the robustness of Blackwell’s theorem responds to the efficiency issue
of risk allocation. Ref. [7] demonstrates that Blackwell equivalence, unlike analytic network
processes (ANP) methods, holds for all convex and strongly monotone preferences. In a
recent study, Ref. [8] showed that Blackwell’s theorem could also be extended to overpass
some optimization problems present in the multiple criteria decision support (MCDS) meth-
ods, in order to better estimate the maximum expected utility preferences. Unlike the simple
multi-attribute rating technique (SMART) focusing on individual preferences, Blackwell’s
theorem properties can also target the decision-making classes, extending the equivalence
results to variational preferences. Moreover, the usefulness of Blackwell’s method needs
to be highlighted for overcoming the eigenvalue techniques that may be found in some
convex preference functions of the data envelopment analysis (DEA). Although decision
making under uncertainty is closely related to information and its availability over time,
the decision makers facing uncertainty are positioned in a situation without any initial
information available, except for prior probabilities of states of nature [9,10]. These latter
are characterized by subjective probabilistic distributions, founded by the economic agents
and the decision makers [11].

In his seminal contribution, Ref. [12] showed more precise information results in
higher welfare. This was called the Blackwell effect, where more information has positive
impact on the economic welfare. Later on, Ref. [13] demonstrated that the more accurate
the information revealed by the signals, the more limited the risk sharing opportunities
in the economy. Intuitively, the more informative the signals are, the less risks that can
be shared and the lower the welfare attained by risk-averse agents. On the other hand,
many research studies have pointed out that more information could be harmful and the
value of information may be negative [14]. In an economy with risk-sharing mechanisms,
the release of more information may eliminate opportunities to reallocate risk through
trade [15]. While several works highlight Blackwell’s comparison of experiments, Ref. [16]
investigates the expected value of information using a Bayesian learning link between
periods. He underlines the fact that actions taken today under uncertainty determine
not only the reward today but also the information available tomorrow In his work [17],
he states that the negative relationship between more public information in the sense
of Blackwell and the economic welfare is somehow a general case. He considers that
Blackwell’s ordering is necessary and sufficient, but under certain conditions, and provides
equivalent characterization of this ordering. However, Ref. [18] suggests that many pairs
of information structures that cannot be ranked by the Blackwell’s criterion may still be
ranked in investment problems independently of their prior distributions. Following the
work of [19], who extends the Blackwell’s partial order through restricting the attention to
a certain class of decision-making problems, Ref. [20] considers different classes of decision
problems and derived a complete order represented by the expected decrease in entropy
from the prior to posteriors periods.



Land 2023, 12, 15 3 of 17

1.1.3. Entropy Analysis under Uncertainty

Entropy analysis, initially developed by [21], occupied a central place in studying
the uncertainty problems linked to information processing. While its related applications
reached a large amount of scholarly literature (physics, chemistry, computer science, infor-
mation theory, etc.), increasing attention has been given on its use within forest management
activities. The allocation of resources, the planning activities and the policy development
are therefore present in forestry entropy decisions, through questions of values, uncertainty
and efficiency measures. While compared to standard multiple criteria decision support
methods, entropy provides simple tools for in-depth uncertainty data analysis. In paral-
lel with other methods requiring ratio or interval scale, such as the AHP and its diverse
extensions, entropy is a useful tool for complementing the uncertainty analysis, covering
both probabilistic and fuzzy cases. It meets the needs for studying ordinal and cardinal
information, often present in decision-making case studies. Hence, by better structuring a
decision-making context and achieving an optimal inter-temporal allocation of resources,
entropy method pushes toward better balancing between present and future welfare [22].

Additional research studies assumed the relevance of entropy in creating interactions
between the economy and the environment models, through analyzing various sustainabil-
ity indicators [2]. As stated in [23], entropy could provide a theoretical basis, unifying the
ecological and economics sciences. Consequently, information measures such as conditional
entropy and mutual information have been largely applied to the analysis of ecological
networks [24]. In such contexts, by taking the difference between the prior and the poste-
rior entropy, the use of entropy does not only highlight the most informative power of an
information structure. It also becomes possible to compare the informative power of several
information structures in order to classify them according to their informative input. Hence,
compared to a group decision-making model (GDM), entropy can establish comprehensive
use of various kinds of information coming from diverse sources. Moreover, entropy
can be applicable by solely knowing the prior and posterior probabilities, compared to
other probabilistic methods (SWOT) and discrete models (DM), where complex numeric
simulation and long-term memory models are required, somehow decreasing the accuracy
of the results obtained. A recent review of entropy methods used in diverse research works
can be found in [25].

1.2. Article Objective

Although the academic literature extensively explores the use of Blackwell’s theorem
in studying the value of information (VoI), little attention has been put on its combination
with entropy analysis. Both theories, whether deployed in disparate context or associated
with other concepts, were largely used in analyzing situations under uncertainty. The
interest of our research is in understanding to which extent the combination of the two
theories, the Blackwell’s theorem and entropy analysis, affects the decision-making process.
Reducing uncertainty through improving information quality makes it possible to make
better decisions, in the sense of increasing social or individual welfare. While the decision
making under uncertainty was largely examined under the option or quasi-option theo-
ries [9,26,27], the link between the decision analysis and the value of information concepts
was explicitly addressed. Refs. [9,26] used a stochastic dynamic programming approach,
which takes into consideration the inter-period information gain, in order to characterize
the effect of irreversibility. The result fits the classical definition of the value of information
(VoI), which is as follows [28]:

VoI = E (Maximum pay-offs) −Max (Initial expectations),
= Optimal expected profit under additional information − Optimal initial expected profit

(1)

Through their work, they illustrated a hypothetical situation in which delaying some
decisions in the hope of receiving more precise information on actual returns in the near
future could be considered a way to make better choices. Later on, Ref. [29] integrated
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the uncertainty factor in determining the value of information about returns of uncertain
future environmental damages. Ref. [30] brought additional development to the option
value concept, highlighting the uncertainty linked to irreversible investments and the value
of options when postponing the investment decision. This concept was extended later
to situations where decision makers face hard uncertainty, represented by a non-additive
measure over events.

While the decision makers are faced with information signals linked to the state of
nature prior to their choice of action, the probability distribution may change before the op-
timal action is chosen. These changes in the information structures could not be captured by
classical methods, hence the importance of going beyond the bounds of perfect information
contexts. Despite the large attention devoted to studying informational decision making,
the existing literature still lacks in responses concerning the role of additional information
continuously available over time [31], the way it may influence the prior probabilities in
a Bayesian way, and consequently, the decisions related. Our study concerns environ-
ments where information arrives over time, as examined previously by [32], similar to the
concept of garbling, i.e., (the transformation between information structures) examined
by [33]. Through the integration of a common information structure within both theories,
we provide a decision support framework which integrates the multiple constraints of a
decision-making exercise in terms of investment and expected return elements. This allows
one to better understand the complex choices the decision makers may face, and therefore
interprets their consequences. To the authors’ best knowledge, integrating a common
“information structure” to both entropy and Blackwell analysis into a unified framework
has not been studied yet. Note that in our research, these concepts are applied for the first
time with a particular focus on the satellite imagery as an additional source of information.

1.3. Why Choosing a Forest Clear-Cut Control

In order to give a more explicit view and develop concrete arguments, we will consider
the forest management case study, and more particularly, the clear-cutting control. The
control of clear-cutting lies at the heart of forest management activities, due to the large
economic and environmental consequences it may have [34]. Clear-cutting is a forestry
management practice in which most or all trees in a certain area are cut down [35]. It
is used by foresters to create certain types of forest ecosystems and to promote selected
species [36,37]. It responds to the environmental regulations initiatives elaborated by the
FAO in 2016 [38] on promoting sustainable practices in the exploitation and preservation of
the forests. Designing sustainable management plans in forest activity needs to be coupled
with precise inspection control, to be sure that the clear-cuts meet the standards [39,40].
In general, a forest clear-cut control entity responsible for the control operations decides
whether the control units should perform parcel inspections or not, based on received
information. Decisions are made based on several “information signals” provided by
different sources. Therefore, based on an entire “information structure”, an action has to
be taken with regard to the situation of clear-cut that emerges. Hence, in order to perform
an efficient control operation, uncertainty regarding the decisions to be taken needs to be
minimized [41]. As a consequence, the problem to be solved can be summarized as follows:

i. Find the most powerful information structures.
ii. Determine the optimal action in terms of payoffs.

The information structure specifies the distribution of signals that the control entity
receives about the different states of nature. While the application of entropy evaluates
the rate of decrease in uncertainty following a reception of additional information, the
Blackwell approach determines the optimal action to be taken. Decomposing the decision-
making process into many steps, more consistent with one another, provides a basis
for bringing multiple decision elements together. The process is defined through the
comparison of information structures based on the informative power and the optimal
actions they induce. The contribution comes in presenting an original framework that
articulates the two theories, in order to lead decision makers to model their decision in
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light of received information. Based on the empirical facts and on the existing theory, this
paper seeks to fill a gap between the previous research in the field of value of information
and the decision-making problems in land use under uncertainty.

1.4. Article Outline

The remainder of the paper is organized as follows: Section 2 presents the model,
followed by a comparison of the informative power of the information structures using
the Blackwell and entropy approaches. We then present the empirical context of a forest’s
clear-cutting decision-making problem. Section 3 lays out the findings from each of the two
approaches. Section 4 offers a discussion based on the empirical analysis coupled with the
existent literature. Finally, Section 5 closes the paper.

2. Materials and Methods
2.1. Theoretical Model

We consider an economy that extends over two periods. Let A = {a1, a2, . . . , an} be the
set of available initial actions (at the beginning of the first period) and B = {b1, b2, . . . , bm}
be the set of available actions at the beginning of the second period after receiving the
additional information. S = {s1, s2, . . . , sL} is the set of possible states of nature and
Y = {y1, y2, . . . , yK} is the set of messages/signals (additional information) received at the
end of period one.

L and K respectively denote the number of possible states of nature and the num-
ber of available signals. The vectors π = (π1, π2, . . . , πL) and q = (q1, q2, . . . , qK)
are defined as the prior probability distributions respectively associated with S and Y
(i.e., πi = P[S = si]; 1 ≤ i ≤ L and qj = P

[
Y = yj

]
; 1 ≤ j ≤ K) with ∑L

i=1 πi = ∑K
j=1 qj = 1.

The matrix P =
(

pij
)

1 ≤ i ≤ L
1 ≤ j ≤ K

represents the set of conditional probabilities of si given yj

(
pij = P

[
S = si

∣∣Y = yj
])

. Each column of the matrix P represents the posterior probability
distribution of S for a given received signal from the set Y, e.g., the jth column of P will
be denoted by π

(
yj
)
=
(

p1j, p2j, . . . , pLj
)
. In the sequel, the couple (P, q) will be denoted

by “information structure”. In addition, (P, q) will be used later to rank the information
structures according to their informative power. In order to rank the initial actions, the
payoff and cost functions for switching from one action in the first period to another one in
the second period should be well defined.

Let
F
(
ai, bj; sl

)
= R(ai; sl) + U

(
bj; sl

)
− C

(
ai, bj; sl

)
, (2)

represent the total payoff produced by switching from ai to bj under state sl . R(ai; sl)
and U

(
bj; sl

)
stand for the returns generated during the first and second period actions

respectively under the state sl , while C
(
ai, bj; sl

)
denotes the switching cost from ai to bj

under the state sl .
In our context consisting of a decision-making problem, we will try to compare, on

one hand, the informative power of two or more information structures, i.e., the amount to
be learned from future information. On the other hand, we will seek to find the optimal
actions to undertake. In order to perform this, two approaches will be used: the Blackwell
theorem and the probabilistic entropy principle.

2.1.1. Blackwell Approach

We consider an information structure (P, q). Let ∆ =
(
δij
)

1 ≤ i ≤ L
1 ≤ j ≤ K

a Markov matrix

of conditional probabilities, such that δij = P
[
Y = yj

∣∣S = si
]
. (P′, q′) represents another

information structure, built on the same sets Y and S with ∆′ =
(

δ′ij

)
1 ≤ i ≤ L
1 ≤ j ≤ K

being the

corresponding Markov matrix. Using Blackwell’s terminology [42], the structure (P, q) is
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said to be more informative than (P′, q′), and we denote (P, q) & (P′, q′), in the sense that it
offers a greater amount of information at the end of the first period, which takes an optimal
choice of actions at the beginning of period two. It is applicable if and only if there exists a
Markov matrix M with appropriate dimensions such that ∆M = ∆′. This result is known
in the literature as Blackwell’s Theorem.

In order to avoid a high level of complexity resulting from the direct application of
Blackwell’s theorem, equivalent results obtained in [12] (which simplify the procedure of
ordering the information structures) will be introduced. First, some mathematical objects
need to be defined. Recall that, for a given information structure (P, q) defined on the
sets A, B, Y and S, an optimal decision consists of a precising first period action ai then
a second period bj depending on the observed message/signal yk at the end of the first
period in order to maximize the total expected payoff. This maximization procedure can be
represented by the following expression:

Φ(P, q) = max
ai∈A

∑
yk∈Y

qkmax
bj∈B

∑
sl∈S

plk F
(
ai, bj; sl

)
. (3)

Additionally, the prior probability distribution of the states of nature (i.e., probabilities
before observing any signal) defined previously by the vector π will be fixed in a way
to verify:

πi =
K

∑
j=1

qj pij with 1 ≤ i ≤ L, (4)

and will be noted as the mean of the structure (P, q). Thus, the main results of [12] are
represented as follows:

Theorem 1. Let (P, q) and (P′, q′) be two information structures defined on the same sets A, B, Y
and S. Then, (P, q) & (P′, q′) if and only if for all convex function ψ : [0, 1]L → R ,

K

∑
j=1

qjψ
(
π
(
yj
))
≥

K

∑
j=1

q′jψ
(
π′
(
yj
))

.

Remark 1. In order to compare two information structures (P, q) and (P′, q′) in the sense of
Blackwell, they must have the same prior probability distribution related to the states of nature, i.e.,

K

∑
j=1

qj pij =
K

∑
j=1

q′j p
′
ij ∀i,

Remember the effect of the additional information on the posterior probabilities, i.e.,
the states of nature’s probabilities at the beginning of period two.

The complexity of Theorem 1 relies on the universal quantifier that manages the choice
of the convex function. A more practical and simpler method to be used in comparing
information structures was introduced by [43].

Let B be a finite set of second period actions and U(., .) be the second period payoff
function defined on B× S. Ref. [43] showed that if (P, q) and (P′, q′) are two information
structures defined on the same sets A, B, Y and S, then (P, q) & (P′, q′) if and only if

∑
yk∈Y

qkmax
bj∈B

∑
sl∈S

plk U
(
bj, sl

)
≥ ∑

yk∈Y
q′kmax

bj∈B
∑

sl∈S
p′lk U

(
bj, sl

)
(5)

Hence, by applying Equation (5) under the constraint of Remark 1, it is possible
to detect which information structure is more informative about the states of nature’s
posterior distribution.
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2.1.2. Entropy Approach

Shannon’s probabilistic entropy is used in the field of information theory, to measure
the reduction of uncertainty in a decision-making context caused by an additional amount
of information. This approach is defined as follows:

Definition 1. The Shannon entropy, denoted by H, of a probability distributionP = (P[X = x1], . . . ,
P[X = xn]) on a finite random variable X = {x1, . . . , xn} is defined as a degree of uncertainty of
a system composed of n outcomes.

The mathematical expression of entropy is:

H(X) = −
n

∑
i=1

P[X = xi]logP[X = xi],

where log represents the binary logarithm function and entropy is expressed in bits [25].
By convention, we consider 0log0 = 0. Note that when H(X) is close to zero, the random
variable X represents a very slight uncertainty. Consequently, the level of uncertainty
increases with the increase in the value of entropy to reach a maximum of logn in the case
of a uniform discrete probability distribution (i.e., P[X = xi] =

1
n ∀i). In general, entropy is

useful to compute the level of uncertainty before (based on the prior probabilities) and after
(based on the posterior probabilities) receiving additional information about the states of
nature. Therefore, by using these measures in our context, it becomes feasible to evaluate
the quality of an information structure at the level of the power of information received
and compare it to other information structures. We start by computing the prior entropy:

H(S) = −
L

∑
i=1

πilogπi, (6)

where πi; 1 ≤ i ≤ L denotes the prior probabilities of the states of nature and L the number
of these states. Using Equation (6), we can measure the uncertainty at the beginning of
period one.

By supposing that at the end of period one, additional information is being received in the
form of signal/message yk about the states of nature, we can compute the posterior entropy:

H(S|yk) = −
L

∑
i=1

piklogpik, (7)

where pik = P[S = si|Y = yk]. Using Equation (7), defined as the conditional entropy, the
effect of the signal yk on reducing the initial uncertainty can be measured. By considering
all the possible signals with their probability distribution, the expected posterior entropy
given below will be evaluated:

H(S|Y) =
K

∑
k=1

qk H(S|yk), (8)

where qk; 1 ≤ k ≤ K denotes the probability distribution of the received signals and K
the number of available signals. Based on (8), the global expected effect of additional
information on reducing uncertainty can be computed. In order to combine and compare
the prior situation (Equation (6)) and the posterior ones (Equations (7) and (8)), the mutual
information is defined as follows:

Definition 2. The mutual information of two random variables X and Y, denoted as I(X, Y) is
defined as the change in information after observing Y, given the prior information on X. It is given
by the following expression:
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I(X, Y) = H(X)− H(X|Y).

I(X, Y) represents the difference between the prior and posterior entropies. Note that
I(X, Y) ≥ 0, because additional information can never increase the level of uncertainty
of a random variable (i.e., H(X) ≥ H(X|Y)). In the worst case, when Y is with no added
information value, the level of uncertainty remains unchanged. Accordingly, a high I(X, Y)
implies that the amount of information about the variable X obtained from the variable Y
is significant. Otherwise, Y is not helpful in obtaining information about X. If I(X, Y) = 0,
then X and Y are independent.

In the context of a decision-making problem, the mutual information of the states of
nature and the received signals are defined as follows:

I(S, Y) = H(S)− H(S|Y)

= −
L
∑

i=1
πilogπi +

K
∑

k=1
qk

L
∑

i=1
piklogpik.

(9)

Based on Equation (9), the utility of a set of signals on the reduction of the level of
posterior uncertainty can be evaluated. In other words, the mutual information can also be
used to classify different information structures in terms of their informative power.

2.2. Case Study

Our analysis will be applied to a specific case study: the clear-cutting in France,
where forests occupy 30% of the territory, i.e., 16.5 million hectares [44]. Forest clear-cut
control is carried out by the regional and local technical authorities of the French ministry of
agriculture. By performing land visits, the authorities are not able to carry out an exhaustive
control. Additional information should be required. To achieve this process, the satellite
images with their related applications are considered a very useful tool for the mapping
and the detection of changes in the forests. The GEOSUD spatial data infrastructure
(SDI) was selected to undergo the study, because of its significant positive effect on the
availability of the geospatial data in France, more particularly, with its developed method
for systematic mapping of the clear-cuts through high resolution (HR) satellite imagery. The
operational applications of remote sensing in the field of forest management have remained
limited for a long time. Several reasons are of influence: the high cost of available data,
the insufficient image resolution and the difficult access to geo-spatial information [45].
Recently, several methods for the detection and mapping of clear-cuts have emerged [46].
Upon the request of the French ministry of agriculture and in order to face operational
difficulties, the GEOSUD SDI has developed an algorithm for the systematic mapping of
the clear-cuts, based on HR satellite imagery. The satellite images are available free of
charge for the state services already registered on the GEOSUD SDI platform.

2.2.1. Data Collection and Analysis

Data were collected during a seven-month period, from May until November 2019.
We conducted interviews with 116 respondents, representing a total of 23 control entities
(Table 1). Representativeness of the control entities was found to be relevant to the whole
French territory:

In addition, we referred to technical documents and on-site mission reports, in order to
enrich our observations. As our interviews progressed, we tried to collect information from
different sources, which we fully integrated into our methodological application as follows.



Land 2023, 12, 15 9 of 17

Table 1. Data collection.

Date (2019) Region (France) Number of People Interviewed

May Occitanie/Nouvelle Aquitaine 26
June Île de France/Centre Val de Loire 17
July Pays de la Loire/Bretagne–Normandie 25

September Hauts de France/Grand Est 22
October Bourgogne–Franche–Compté 12

November Auvergne–Rhône–Alpes/Provence–Alpes Côte d’Azur 14

2.2.2. Case Description

In order to apply Blackwell’s theorem and entropy principle in a practical way, we con-
sidered the French administrative entities “DDT” and “DRAAF” (direction départementale
des Térritoires, direction régionale de l’alimentation, de l’agriculture et de la forêt) respon-
sible of the clear-cutting operations in France. The aim of these entities is to detect cheat
cases, using the information provided by different sources. Based on an entire “information
structure”, a control entity has to take action with regard to the situation of the clear-cut
that emerges. The representation of our case, as a two period’s decision-making problem,
is as follows:

Suppose that, without any information at the beginning of period one, the entity must
choose between two actions: a1 = control and a2 = no control, with A = {a1, a2}. At the
end of period one, further information would have been received. Based on these signals,
another action should be taken at the beginning of period two. We considered four possible
states of nature: s1 = absence of cheating, s2 = partially cheating inside management
plan, s3 = partially cheating outside management plan and s4 = strong cheating (clearing).
S = {s1, s2, s3, s4} with L = 4.

In the first place, the state of nature denoted by s1 represents an absence of cheating in
the land plots. This is the case where the clear-cuts meet the standards. Secondly, within
the management plans “plans simples de gestion (PSG)”, there exist forest areas in which
a number of forest practices are achieved. Cheating in such a context may take place in
the sense of non-compliance with the intended area to be cut. This situation represents
the second state of nature s2. On the other hand, there are areas that are not subject to
management plans, essentially unexploited forests where the cuts are still applied. Despite
the fact that these areas regenerate into forests, it is considered as a superior level of cheating
with respect to the preceding case and presents the third state of nature denoted by s3.
Finally, the highest cheating level that totally changes the plot assignment will be denoted
by s4. Due to this situation, the forests are permanently removed. Unlike clearing, which
has an effect of destroying the wooded state and leading to a change in the use of the soil,
the clear-cuts are accompanied by an obligation for a natural reconstitution or replanting
of the cut surfaces [47]. It is the responsibility of the owner or the operator to ensure the
renewal of the stands within a period after cutting, either through natural regeneration
or replanting. Infringements of these obligations are sanctioned with fines, either for
non-reconstitution of cuts or for unauthorized cuts considered as illegal and abusive.

On the other hand, the information signals that can be received by the control entity
are as follows: y1 = individual denunciation, y2 = report from the « Centre national de
la propriété forestière » (CRPF (the public institution in charge of developing the sustain-
able management of private forests in France. https://www.cnpf.fr/)), y3 =“DDT” and
“DRAAF” report, y4 = GEOSUD SDI image demonstrating a cheat and y5 = GEOSUD SDI
image demonstrating a conformity with the law. Y = {y1, y2, y3, y4, y5} with K = 5.

Concerning the information signals that a control entity could receive, the first signal
comes out in the form of an individual denunciation and will be denoted by y1. The
second case, y2, is a report from the forest professionals, people who are used to the forest
management activities and are legitimate to send information reports to the control entities.
The third case, y3, is represented by the state services who, through their various missions

https://www.cnpf.fr/
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on the grounds, discover illegal cuts; this will enable a control procedure to be initiated
later. Finally, the signals y4 and y5 represent the HR satellite images coming from the
GEOSUD SDI. These images are additional elements for respectively demonstrating a cheat
or a compliance with the law. Previously, the denouncement was considered a primary
factor for executing a control operation. Actually, before starting a regularization phase
and even after receiving a control signal, the authorities check out this information through
the GEOSUD satellite imagery support.

We assume that the available actions at the beginning of period two, after receiving
the information signals, are the same as those actions available initially, i.e., b1 = a1 and
b2 = a2 with B = {b1, b2}. Note that the initial action a1 is considered irreversible. Once a1
is applied, no other actions can be taken in the second period.

Let the information structure (P, q) be described by the following:

P =
(

pij
)
1 ≤ i ≤ 4
1 ≤ j ≤ 5

=


0.05 0
0.05 0.20
0.70 0.70
0.20 0.10

0 0.20
0.20 0.05
0.70 0.75
0.10 0

0.80
0.10
0.05
0.05


and q = (0.066, 0.066, 0.066, 0.04, 0.76).

The Matrix P results from the interviews and discussions with the experts, already
mentioned above. Then, using this information structure, we can compute the prior
distribution of the states of nature by applying Equation (4):

π = (0.619, 0.108, 0.208, 0.065).

As shown in matrix P, we respectively define four states of nature in rows and five
signals in columns. We assume that the probability of a state of nature conditioned by
receiving a signal will vary in each scenario in order to establish an information structure
called P. A more explicit presentation of the matrix can clarify the logic behind some
probabilities. As an example, announcing an individual denunciation, while having a
state of nature indicating an absence of cheating is affected by a probability of 5% (row 1,
column 1). The control entities reveal that similar cases exist with a low frequency. This
is mainly due to the fact that some people prefer denouncing clear-cuts activities, even
without being well informed of the whole situation. These denunciations are often related
to environmental concerns that people have and their preference of being assured that the
control services are aware of similar situations. Moreover, the zero probabilities (row 1,
columns 2 and 3), represent a report case from the forest professionals or the state services
announcing a cheating, without this being true in reality—an almost impossible situation.

Apparently, what was interesting to look at and unexpected before conducting our in-
terviews, is that even though satellite imagery is supposed to give a high level of confidence
about the state of the forests, some factors can lead to a misinterpretation of the images.
Various entities noted that during particular seasons, by analyzing the satellite images from
the GEOSUD SDI, some images provided facts that can be interpreted as cases of cheating;
by performing field checks, these results appear to be wrong. This is due to factors such as
drought, season change, etc. After discussing with the professionals, a probability of 20%
was assigned for such situations (row 1, column 4). It is noted that in 80% of the cases, a
satellite image showing compliance with the law sticks with the case of absence of cheating
(row 1, column 5). Usually, the control entities hold the forest management plans in each
department. In parallel, the GEOSUD SDI carries out detection work of the land plots via
the satellite images coupled with the necessary applications. In general, if these plots are
located within the PSGs, they will not be inspected by the control entities, because this was
planned for in the PSGs. Thus, the attention will be mainly turned toward the lands located
outside the PSGs. A report provided by the CRPF indicating a partial cheating outside
PSG is represented in our matrix by a probability of 70% (column 2, row 3), compared to
20% when cheating is located inside the PSGs (column 2, row 2). Likewise, announcing
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an individual cheat denunciation in a management plan with the fact to be true remains a
rare case, given the lack of ability in measuring the precise changes. Thus, a probability of
5% was affected (row 2, column 1). On the other hand, making an individual denunciation
with a cheat out of the management plans represents a probability much higher than that
of a clearing. This is due to the absence of very frequent cases of clearing and what it
represents as illegal situations with very serious consequences. As a result, a probability
of 70% (row 3, column 1) was assigned, compared to 20% for the state of nature s4 (row 4,
column 1).

3. Results
3.1. Entropy Results

Based solely on the probability distributions, we can apply an entropy approach
to assess the effectiveness of the information structure in terms of reducing uncertainty.
Starting with prior entropy, we obtain:

H(S) = 1.5 bits.

After receiving the additional information, we can compute the posterior entropy:

H(S|Y) = 1.054 bits.

Hence, the mutual information generated by the structure (P, q) is:

I(S, Y) = H(S)− H(S|Y) = 0.446 bits.

Thus, the information structure has an information power of 0.446 bits. Therefore,
without any assumptions about the payoffs of the first and second period actions, the
reduction of uncertainty can be measured. Due to the additional signals received at the end
of the first period, this reduction is equal to: 1.5−1.054

1.5 × 100 = 29.73%. On the other hand,
in order to compute the reduction of uncertainty made possible just through the additional
information due to the GEOSUD SDI satellite images (i.e., signals 4 and 5), it is necessary
to compute the posterior entropy that is given by:

H
(

S
∣∣∣y{4.5}

)
= 1.020 bits.

with a reduction of uncertainty equal to: 1.5−1.020
1.5 × 100 = 32%.

In addition, after receiving the additional information provided by signals 1, 2 and 3,
the posterior entropy is as follows:

H
(

S
∣∣∣y{1,2,3}

)
= 1.190 bits.

with a reduction of uncertainty equal to: 1.5−1.190
1.5 × 100 = 20.67%.

According to our data, the additional information received through GEOSUD SDI
signals appears more valuable in terms of reduction of uncertainty than the signals 1, 2 and
3; H

(
S
∣∣∣y{4.5}

)
> H

(
S
∣∣∣y{1,2,3}

)
. Thus, the GEOSUD SDI information structure has more

significant information power.

3.2. Blackwell Results

In order to apply Blackwell’s theorem, the payoffs of different actions under different
states of nature should be defined. The necessary factors used to compute these payoffs are
summarized in Tables 2 and 3.
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Table 2. Unit amounts of different factors of payoffs.

Factors Amount per Unit

Fuel 0.17 EUR/km
Technician salary 2700 EUR/month i.e., 150 EUR/day
Engineer salary 4750 EUR/month i.e., 250 EUR/day

Average number of working days 19 days/month
Fine due to s3 4000 EUR
Fine due to s4 160,000 EUR

Table 3. Elements constituting the payoffs of each action.

Number of Days/Engineer Number of Days/Technician Average Distance
(km)

Fine
(€)

(a1, s1) 0.5 0 150 0
(a1, s2) 1 0 150 0
(a1, s3) 15 15 300 4000
(a1, s4) 15 15 300 160,000

As shown in Table 3, we present the elements that constitute the returns of the first action
(a1) with respect to the four states of nature; the returns in EUR generated during the first and
second period actions, under different states of nature, are summarized in Tables 4 and 5.

Table 4. Payoffs of the first period actions (R(ai; sl)) .

s1 s2 s3 s4

a1 −150.5 −275.5 2051 153,949
a2 0 0 0 0

Table 5. Payoffs of the second period actions
(

U
(

bj; sl

))
.

s1 s2 s3 s4

b1 = a1 −150.5 −275.5 2051 153,949
b2 = a2 0 0 −4000 −160,000

In addition, the cost in EUR of switching from an action to another under different
states of nature is considered to be zero because all these costs are financed by state services
other than the “DDT” and “DRAAF”. Recall that switching from a1 to any other action in
the second period in impossible.

To assess the informative power of the considered information structure in the sense
of Blackwell, we apply Equation (5):

∑yk∈Y qkmax
bj∈B

∑sl∈S plk U
(
bj, sl

)
= 7669.62.

The optimal action to be taken at the beginning of period one can be specified by
maximizing the expected payoff (Equation (3)).

Based on all the previous cost and information assumptions, the best action to be
initially taken is a2 because it generates a maximum expected payoff of EUR 24,125.48,
higher than the a1 expected payoff equal to EUR −314.72.

Remark 2. In this application, the comparative aspect of the two approaches (Blackwell and entropy)
was not applied due to a unique information structure represented by (P, q). The availability of
another source of information, allows one to build another information structure in order to perform
a comparison between the two.
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4. Discussion

First, in a situation where the decision maker is faced with several information struc-
tures, the application of entropy approach highlights the structure with the most informa-
tive power by taking the difference between the prior and the posterior entropy. The mutual
information represents the level of uncertainty diminished by the received signals. Hence,
it becomes possible to compare the informative power of several information structures
with respect to their prior probability distribution, and compute the reduction in the uncer-
tainty level through each of these structures. Thus, without any additional information,
these structures can be classified according to their informative input. However, only two
information structures can be compared at once in order to elaborate the informative power
of each, through the Blackwell theorem. Herein, we can highlight the first advantage of
entropy mutual information approach compared to the principle of Blackwell. Second,
in order to apply the Blackwell comparison theorem, many assumptions should be taken
about the payoff of the first and second period actions, under different states of nature.
Additional considerations regarding the transition costs in response to a period change
could also be present and may lower the accuracy of the decisions. However, the mutual
information approach is applicable by solely knowing the prior and posterior probabilities.
Thus, level one could be helpful in discriminating the information structures in order to
pass to the second level concerning the action optimization.

Herein, several steps should be applied. We enumerate these steps as follows, present-
ing a decision policy form:

Step 1. The choice of the two most powerful information structures, based on level one
results. Once the information structure is ranked according to their informative
input, the decision maker may eliminate the other possible alternatives, hence
making the decision process easier.

Step 2. The assessment of the information power: the two structures should be assigned
with their informative power in the sense of Blackwell.

Step 3. The computation of the optimal action: the action with the maximum expected
payoff.

Applying the Blackwell method right after entropy theory and not as a first step, avoids
integrating many factors to all the initial information structures available. Computing
the information power of all the information structures while integrating the economic
factors (such as the cost, the revenues, etc.) is a hard exercise. Once step 1 is complete,
the Blackwell method applied to two structures simplifies the variables assignment and
increases the precision and accuracy of the decision-making process.

While this study offers an articulation between two widely known theoretical ap-
proaches, it also reveals concrete results. The empirical research helps to better understand
how the information is being used to support forest management activities. Understanding
the impact of spatial data on decision-making processes makes it possible to offer answers
to the evolution of devices carrying these types of data. The detailed description of the
case study and the decision policy process help to better illustrate the choices to which
the controlling entities are confronted with in regard to their actions within a common
framework policy.

The case study analyzed in this paper can advance the general observations on how to
shape the decisions and actions between different parties concerned in forest management
activities. Although we were not able to apply, in our case study, steps 1 and 2, which
represent the comparative aspect for information power, due to the absence of several
information structures, we established a comparison between the signals y1, y2,, y3, on the
one hand, and the spatial information denoted by the signals y4, y5, on the other hand. For
a control entity, it was shown that the additional information received through the GEOSUD
SDI is set to be the best scenario in reducing the uncertainty (32%) compared to a typical
scenario with no spatial information (20.67%). Moreover, by applying step 3 to the unique
information structure, we determined the optimal action (a2 = No control). Not controlling
in period one leaves the choice to perform a control under period two. Hence, the optimal
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action a2 is the more flexible compared to a1. The latter result is not necessarily always true.
Several conditions and hypotheses should be verified, especially [4] considering that at the
end of the first period, perfect information will be available in order to choose the optimal
action. However, in our case, the information at the end of the first period is according to a
probabilistic distribution, hence partial information.

Although not all control activities are similar nor the actions involved, this paper
offers a useful description to put these concepts together and summarize their implications
in a decision-making process. It offers a support tool where some analytical models do
not capture the decision makers’ intuitive preferences [48]. Moreover, it helps to overcome
the complexity of group decision-making models [49,50], the unavailability of sufficient
data or time constraints [51] and the aggregation of subjective and objective judgements in
the evaluation processes [52]. An understanding of the value of information may rely in
some cases on the decision makers themselves, whose actions tend to be too revealing of
the value [53].

Despite the fact that our approach relies on the choice of probabilities in a subjective
way, this procedure has been widely used in decision making because it requires no
historical data [54,55]. Other studies such as binomial probabilities are commonly used
as well in strategic decision fields, making the problem simpler by analyzing the possible
outcomes as either occurring or not occurring [56].

5. Conclusions

This study provides a valuable tool in analyzing how the decision process can accom-
pany the reflections of policy makers in land use patterns. Reducing the uncertainty in a
decision-making context related to forest management can provide greater opportunities
for making better decisions, improving productivity and saving time and money [57]. Our
research shows that combining entropy and Blackwell methods is useful for defining a
decision-making strategy. The main contribution of the paper is in presenting an innovative
approach on how this articulation can influence the decision maker’s strategy in land use.
The usual problem relies on the set of decisions to take that logically determine future
outcomes. By providing concrete elements on how forest control entities can model their
actions in light of received information, this paper offers a framework through which these
concepts are associated. A detailed description of the forest clear-cutting case study con-
tributes to understanding the choices that the control entities face regarding their actions,
as part of a global regulating policy.

The central issue of economics dealing with natural resource problems is the way
to measure and respond to sustainability constraints related to decisional contexts. Our
approach is particularly relevant in determining the way current or future decisions may
impact decision-making processes. It could be easily adapted to several contexts. As in
the multi-criteria approaches, where the decision makers’ preferences are integrated into
multiple analytical frameworks, this methodology could be very useful, especially as it
provides a simple tool for analyzing complex managerial and marketing decision processes.
Additionally, as the public concern for environmental issues is increasing, due to the lack
of public participation in decision making, the results can be used in a more formalized
manner. Environmental assessment, biodiversity issues, and climate change are examples
of where decision makers are faced with long iterative decisions [58]. Thus, incorporating
environmental and sustainability considerations into strategic decision-making processes
could optimize the decision tasks related to project evaluation [59].

Finally, pursuing further research is needed as a next step, through case studies pre-
senting several information structures. Applying this methodology in larger contexts can
enrich the analysis and results of future works and case studies. Moreover, since partici-
patory approaches have gained large acceptance in forest management practices, crossing
this methodology with entropy theory could be of utility in measuring environmental
performance. Despite the flexibility in weight generation for the economic agent or decision
makers, this combination can have positive impacts on reinforcing community-based forest
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management. Another possibility for extending this work consists of combining non-
parametric techniques known for their commonly used classification and ranking methods.
Although Blackwell’s theory allows for the incorporation of the quantitative information
that exists in a two-step decision policy, its combination with other non-parametric tech-
niques may increase its capability to accommodate multiple criteria in decision-making
analyses. While increasing stakeholder engagement is needed in forest management and
planning processes, non-parametric techniques can be useful in capturing behavioral pat-
terns among decision makers, leading to better implementation of forest-management
strategies in the future. Experiences gained from cognitive mapping applied to forest
management can also pave the way into their effective integration into multi-step decision
models such as entropy and Blackwell. Thus, with the awareness that decision support
methods are contributing at various economic, management and organizational levels, it
will be of interest to look closely at the repositioning of the different stakeholders in the
forest sector, in a system tackled by continuous and challenging development.
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