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Abstract: The studies of spatial-temporal land use and land cover (LULC) change patterns, supported
by future scenarios and simulation methods based on the assumption of natural socio-economic
and territorial driving forces, allow us to go beyond an accurate diagnosis of the dynamics that
have occurred so far, providing a picture of possible alternative futures, and are fundamental in
assisting with the planning and policy-making in the territory. In this paper, we use LULC maps
and explanatory variables aggregated in five dimensions (physical/natural, economic, sociocultural,
technological, and demographic) to identify which are the main drinving forces in the evolution
process and the simulation of LULC dynamics for 2036, using as a case study the Chapecó River
ecological corridor (Chapecó EC) area. The Chapecó EC was created by the state government in
2010 with the goal of combining nature conservation with local and regional development. In this
region, in the last two decades, the loss of areas of natural grassland and forest was on average
five times higher than the average recorded in the state. Based on scenario-building methods using
artificial neural networks, six predictive scenarios were elaborated, based on three socioeconomic
scenarios (current conditions, growth, and socioeconomic recession) and two territorial intervention
options (actions). This includes an action based on maintaining the current LULC, and another
action of a conservationist nature with the recovery of forest and natural grassland areas to the
proportions of areas found in 1990. The results indicate that if the current LULC is maintained, forest,
pasture and agriculture areas tend to increase, while silviculture and natural grassland areas decrease,
driven by economic and physical/natural driving forces. If there is a conservationist action, natural
grassland and pasture areas tend to increase and silviculture and agriculture tend to lose area due
to economic, technological, and physical/natural driving forces. These trends have revealed that
the natural grassland preservation/restoration, the encouragement of conservationist agricultural
practices combined with economic strategies, and the technological development of the rural sector
seem to form the basis of economic development combined with biodiversity conservation.

Keywords: spatial modelling; predictive scenarios; artificial neural networks; good farming practices;
agricultural technological development; spatial planning

1. Introduction

The term land use and land cover (LULC) refers to the different categories of land
use and land cover. Land use relates to human manipulation to meet certain needs, while
land cover refers to the physical condition of the surface [1–3]. Land use impacts the
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environment mainly through its coverage, which may change as a result of a change in
its use [4].

Historically, human populations have been modifying the landscape, and currently this
process is occurring in a more accelerated way due to the extraction and appropriation of
natural resources as well as the expansion of territories. Negative effects on the environment
and social disturbances associated with the intensification of land use are documented in a
number of studies that point to agriculture as the main force of land cover transformation
on the planet [5–8]. It is estimated that one third of the surface of the earth is used for crops
or livestock, and such lands are converted from natural forests, grasslands, and swamps [8].

The study of land use and land-cover (LULC) dynamics stands out as a fundamental
topic in the context of the challenges that humanity is facing—e.g., global urbanisation,
climate change, food security, global health, and pandemics—since they influence and are
influenced by various systems, namely environmental, social, and economic. Therefore,
knowledge about these processes and their impacts is crucial in various fields, namely
environmental monitoring, land use development and planning, and political and economic
evolution trends [9].

Studies on LULC dynamics involve two key steps: identifying changes in the land-
scape and assigning to those changes a set of causal factors [10] or driving forces. The
driving forces are forces that provoke changes and create dynamics in the territory [8,11–13].
They are usually represented by a set of variables [14] classified in different dimensions of
analysis, i.e., physical/natural, demographic, economic, technological, social, cultural, and
political [15].

In Brazil, the expansion of urban areas (including roads/highways) and areas dedi-
cated to agriculture, cattle raising, and forestry (silviculture) are important driving forces of
natural vegetation suppression [7,16–20]. As with urban population growth, the expansion
of urban areas and the export of agricultural products are cited as the leading causes of
rainforest loss in 41 countries [7].

In that context, it becomes relevant to analyse these processes of change and to explain
that LULC dynamics analysis models are tools to support planning and policy decisions
in the territory [18–20]. They can include the dynamic simulation of natural and socioeco-
nomic processes and the identification of indicators and predictors [21]. The integration
of environmental and human sciences, geographic information systems, and remote sens-
ing has enabled the improvement of techniques for measuring LULC changes and the
development of predictive models [22].

The literature presents a set of models that have been widely used in simulation studies
of LULC dynamics relating it with their driving forces. There are a variety of models based
on different empirical techniques. One of the most used approaches is CA, ANN and
ABM [23]. Examples include MOLAND, SLEUTH, FLUS, SECOA, Dynamic EGO, CLUE-S,
and the Desakota models [24–30]. Since the decisions and choices made in the scope of
land use development and planning processes always address issues related to the future,
the construction of scenarios represents an essential tool. Uncertainties about that future
increase [31,32], and scenarios provide alternative visions of possible futures, providing
insights into the creation of risk management plans, and anticipate action measures that
can avoid the potential problem and/or mitigate it, within a cost-effectiveness rationale.

The term ‘scenario’ adopted in this paper denotes a coherent story or narrative of
what might happen in the future [31]. The scenarios resulting from the models illustrate
potential and plausible descriptions of the future based on ‘if/then’ assumptions [33].
The independent variables in the model are altered to compose the desired scenario. The
scenarios allow us to measure and evaluate what is more likely to occur, allow for the
identification of the driving forces that can influence the results, and offer support to the
formulation of public policies [11,32,34–37].

From the model’s point of view, the driving forces are the main uncertainties and
trends that will influence changes in the baseline scenarios (i.e., business as usual) and
allow us to explore plausible futures (scenarios) under a ‘what if’ approach by changing the
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values of the main uncertainties. This type of scenario is called a probabilistic predictive
scenario and addresses the question, ‘What will happen?’ [33].

Predictive scenarios are composed of scenarios that represent plausible futures—where
the values of one or more independent variables are deliberately changed to compose the
future narrative to be considered—and actions, i.e., any policies, projects and territorial
restrictions considered to be implemented in the study area. To this end, the actions are
carried out in the dependent variable [11,31,33].

The literature highlights some scenario-building methods, e.g., cellular automata
(CA), CA and fuzzy analysis, artificial neural networks (ANN), and multicriteria decision
analysis (MCDA) [11,32–34,38–40]. In this research, we adopted an artificial neural network
modelling approach for its flexibility, which permits the inclusion of express rules that
incorporate specialised knowledge, operator experience, and the participation of different
interests in addressing ‘what if’ questions [11,17,32,35,41–43].

In the last two decades, the state of Santa Catarina registered a loss of 15% of grassland
and approximately 2% of forest [44]. While our study area, located in the Western region
of the state, the Chapecó EC, registered for the same period, includes losses of these areas
considerably higher than the state average. Natural grassland lost 55% of its cover to the
expansion of agriculture, and forest lost 13% of its area to forestry (silviculture) [17].

The region is seen as an economic influence area and a tug of war between family
farming and the agro-industrial complex. This territory is a bone of contention since
the situation has not been defined either in terms of a hegemonised production pattern
favoured by the agro-industrial complex or the capacity of family farmers to resist or adapt
to new scenarios [45].

In 2010, the government of the state of Santa Catarina enacted by State Decree No.
2957 of 20 January [46] the creation of the Chapecó River EC (Chapecó EC), whose principal
objective is: ‘Developing and implementing a model for the promotion, marketing and leveraging of
native forests (and other natural environments) as environmental assets, promoting the maintenance
and improvement of the permeability of the landscape’ [47].

Currently, another important territorial policy operates in the region. The Develop-
ment Plan of the State of Santa Catarina 2018–2030, called the SC2030 Plan, aims to reduce
inequalities and promote social equity, seek sustainable regional development, and boost
innovative development and the entrepreneurial capacity of Santa Catarina [48].

Furthermore, we identified a lack of information about the LULC change, its drivers
and possible future implications in the region of the Chapecó CE, in a way that can subsidize,
guide and support territorial and environmental policies.

Thus, this study was aimed at counterposing different predictive scenarios of changes
in LULC, taking into account the guidelines of both public policies. Specifically we sought
to: (i) build six predictive scenarios of LULC for 2036 from the guidelines of two public
policies; (ii) identify the main LULC change between the predictive scenarios and the
reference year (2018); (iii) discuss the influence of the main driving forces in each predictive
scenario; and (iv) understand the importance of adopting these policies in the region.

This paper is organized as follows: Section 2 describes the study area, data, and
methods used for this purpose. Section 3 introduces the main results of LULC changes
expected for 2036 and the main driving forces. Section 4 approaches the discussion on the
main LULC changes related to the driving forces and the effects of public policies on LULC
dynamics. Finally, Section 5 introduces the main conclusions, implications, and limitations
of the research.

2. Materials and Methods
2.1. Study Area

The study area is 7242.33 km2 and is located between the geographical coordinates
27◦5′0” and 26◦20′0” South latitude and 53◦0′0” and 51◦10′0” West longitude. It is located
Northwest of the state of Santa Catarina in the Southern region of Brazil (Figure 1). It
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shelters a preservation area called Chapecó EC, created in 2010 by the Government of the
State of Santa Catarina/Brazil [46].
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Figure 1. Location of the study area.

This area has different social arrangements with four main segments: indigenous
populations, family farmers (plus settlers), employing farmers (grain and cattle ranchers),
and foresters. It stands out with the economic activities of soybean cultivation, beef and
dairy cattle raising, and wood production [47]. This complex social arrangement, together
with land use and land cover changes [16] and territorial conflicts [45], makes this region of
great environmental, social, and economic appeal for the state of Santa Catarina.

The Chapecó EC is formed by 23 municipalities, occupying approximately 7.6%
of the total area of the state of Santa Catarina. It had an estimated population of
185,000 inhabitants in 2018, in addition to a demographic density and urbanization rate
lower than the state average. The municipalities are small, with agricultural and cattle
raising traditions. The area dedicated to agriculture and cattle-raising in the region, as
well as the Gross value added of agriculture and cattle-raising (GVA) are expressive,
which reveals the agricultural aptitude of the region. It exhibits twice as much area
dedicated to agriculture and cattle-raising compared to Brazil and participates with
2.2% of the Gross Domestic Product (GDP) of the state (Table 1).
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Table 1. Socioeconomic indicators.

Indicators Chapecó EC Santa Catarina Brazil

Area (km2) 7242 * 95,346 8,516,000
Estimated population (2018) 185,300 * 7,075,500 211,755,692
Demographic density (2018) (inhab./km2) 25.6 74.2 24.9
Urban population (2010) % 64.6 * 84.0 84.3
Agricultural area (2018) % 67.6 * 48.9 30.6
GVA of agriculture and cattle-raising (2018) % 31.3 ** 5.51 5.15
GDP (2018) BRL 1000 6,603,755 * 298,227,090 7,004,141,000

Source: IBGE/SIDRA [49]. Values referring to the sum (*) and average (**) of the 23 municipalities that are part of
the Chapecó EC.

The Chapecó EC area is located in the Atlantic Forest biome composed of mixed
ombrophilous forest (Araucaria forest), deciduous seasonal forest, and gramineous steppe
(natural grassland) [47,50]. Figure 2 shows the phytogeographic composition of the region.

Land 2023, 10, x FOR PEER REVIEW 5 of 24 
 

Urban population 
(2010) %  

64.6 * 84.0 84.3 

Agricultural area 
(2018) % 

67.6 * 48.9 30.6 

GVA of agriculture 
and cattle-raising 31.3 ** 5.51 5.15 

GDP (2018) BRL 1,000 6,603,755 * 298,227,090 7,004,141,000 

Source: IBGE/SIDRA [49]. Values referring to the sum (*) and average (**) of the 23 municipalities 
that are part of the Chapecó EC 

The Chapecó EC area is located in the Atlantic Forest biome composed of mixed 
ombrophilous forest (Araucaria forest), deciduous seasonal forest, and gramineous steppe 
(natural grassland) [47,50]. Figure 2 shows the phytogeographic composition of the 
region. 

 
Figure 2. Forest tipology (Atlantic Forest biome) in CHapecó CE. 

Geomorphologically, it is formed by the Campos Gerais Plateau and the Dissected 
Plateau. In the Campos Gerais Plateau, the altitude varies between 800 m and 1200 m, and 
the area is higher than the surrounding areas, which belong to the Dissected Plateau. The 
latter has a great topographic contrast with the Campos Gerais Plateau area, with a 
strongly dissected relief of deep valleys and terraced hillsides. The main types of soil 
found in the Chapecó EC are latosoil, nitosoil, cambisoil, and litholic soil, where cambisoil 
is the predominant soil type [45,51,52]. 

Regarding the climate, in areas below 800 m, the climate is of the humid mesothermal 
type with hot summers (Cfa), and in areas above that altitude, the climate is of the humid 
mesothermal type with cool summers (Cfb). The average annual temperature ranges from 
15 °C to 18 °C [53], with well-distributed rainfall throughout the year, varying between 
1640 and 2035 mm [52,53]. 

2.2. Methodological Framework 
Figure 3 illustrates the methodological framework used to simulate future LULC 

changes and identify the main driving forces acting under different predictive scenarios 
[11,32]. The development of the work can be divided into four steps.  

Figure 2. Forest tipology (Atlantic Forest biome) in CHapecó CE.

Geomorphologically, it is formed by the Campos Gerais Plateau and the Dissected
Plateau. In the Campos Gerais Plateau, the altitude varies between 800 m and 1200 m,
and the area is higher than the surrounding areas, which belong to the Dissected Plateau.
The latter has a great topographic contrast with the Campos Gerais Plateau area, with a
strongly dissected relief of deep valleys and terraced hillsides. The main types of soil found
in the Chapecó EC are latosoil, nitosoil, cambisoil, and litholic soil, where cambisoil is the
predominant soil type [45,51,52].

Regarding the climate, in areas below 800 m, the climate is of the humid mesothermal
type with hot summers (Cfa), and in areas above that altitude, the climate is of the humid
mesothermal type with cool summers (Cfb). The average annual temperature ranges from
15 ◦C to 18 ◦C [53], with well-distributed rainfall throughout the year, varying between
1640 and 2035 mm [52,53].
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2.2. Methodological Framework

Figure 3 illustrates the methodological framework used to simulate future LULC changes
and identify the main driving forces acting under different predictive scenarios [11,32]. The
development of the work can be divided into four steps.
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In the first step, the representative variables of the scenarios and actions were selected,
and the database used in the model was structured. In the second step, the predictive
scenarios were conceptually defined based on the combinations between scenarios and
possible actions. In the third step, scenarios and actions were implemented, and the model
was run. The fourth and fifth steps introduce the results of the predictive model and the
analysis and discussion on the trends of LULC dynamics, the main driving forces identified,
and the effects of the selected public policies [11,32,41].

2.3. Database

The data used in this work include land use and land cover, physical, social, and
economic data; they were selected from available online databases [44,49,53–57].

The whole database was organised in a GIS (Geographic Information System) environ-
ment, stored in raster format with 100 m of spatial resolution, and referenced to the SIRGAS
UTM 22S system. For the simulation of LULC changes and the sensitivity analysis based
on artificial neural networks, the software SPSS 24 [58] was used, and the software ArcGis
10.7 [59] was used for specialisation and LULC change analysis in the different scenarios.

2.3.1. Land Use and Land-Cover Data

The LULC data used in this research comprise maps from 2000 and 2018 from the
MapBiomas Project, collection 4.1 [44]. The LULC classes are: forest, silviculture, grassland,
pasture, agriculture, mosaic, artificial area, and water bodies. The description of the LULC
classes can be seen in Table 1, in the classification key adopted in the Mapbiomas Project [44]
and in the phytogeographic typologies of Santa Catarina [50] (Table 2).
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Table 2. Land use and land cover description.

LULC Class Description

Forest (forest formation)
Dense, open and mixed ombrophilous forest,
semi-deciduous and deciduous seasonal forest,
and pioneer formation.

Silviculture (forest plantation) Planted tree species for commercial use (e.g.,
Eucalyptus, Pinus and Araucaria).

Natural grassland Savannas, park and grassland steppe savannas,
steppe and shrub and herbaceous pioneers.

Pasture Pasture areas, natural or planted, related with
farming activity.

Agriculture (annual and perennial crop)

Areas predominantly occupied with annual
crop (short to medium-term crops, usually
with a vegetative cycle of less than one year,
which after harvest needs to be re-planted) and
in some regions with perennial crops (Areas
occupied with crops with a long cycle (more
than one year), which allow successive
harvests without the need for new crop).

Mosaic (mosaic of agriculture and pasture) Farming areas where it was not possible to
distinguish between pasture and agriculture.

Artificial Area (urban infrastructure + other
non vegeteded area)

Urban infrastructure: urban areas with
predominance of non-vegetated surfaces,
including roads, highways and constructions
and other non vegetated areas Non-permeable
surface areas (infrastructure, urban expansion
or mining) not mapped into their classes and
regions of exposed soil in natural or crop areas.

Water bodies (river, lake and ocean) Rivers, lakes, dams, reservoir and other
water bodies.

2.3.2. Variable Selection

In this paper, the selection of variables was based on the literature review, the historical
context of territorial, demographic, socioeconomic, and environmental dynamics in the
region [45], as well as the availability of information, both concerning the period of analysis
(2000–2018) and its spatial representativeness [16,17,39].

The physical/natural (biophysical) dimension consists of the biotic and abiotic vari-
ables which define the natural capacity and/or environmental conditions for land use
changes. The economic and technological dimensions can be represented by variables that
directly affect the land managers’s decision-making process [12,60].

The Chapecó EC region is part of the economic influence zone and region of family
farming and agro industrial complex [45]. Therefore, the variables of the economic and
technological dimension were selected in order to measure the evolution of the main
productive sectors in the region, the participation of family agriculture in the state economy,
the rural agro-industries and the technological development in the rural sector.

The analysis of the region’s economic structure shows a tendency towards the growth
of agribusiness, aimed at the external market. The rate of employment in the industrial
sector shows growth in the sector and retraction in the agriculture and cattle raising and
forestry production activities. Formal employment in the transformation industry grew
35%, almost twice as much as the state average (19%). Employment in the farming, livestock,
and forestry sectors fell 24% in the period [57].

Among the industrial sectors, the slaughtering and meat products sector stands out,
measured by the herd size variables. The region presented an increase in the chicken herd
(4%) [49]. Chicken meat participates with 36% of the total export of agribusiness in Santa
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Catarina, ranking first, followed by wood, swine, soybeans, and tobacco (2019) [61]. The
increase in the use of pesticides, the production yield of the main crops in the region and
mechanization point to an intensification of agricultural activity, supported by technlogical
development. The use of pesticides in the study area (17%) was almost twice the increase
in the state (10%). The increase in the average yield of soy and corn production was 105%,
while the state registered an increase of 90%, and high mechanization in the region, an
increase of 165% in relation to the state, reinforcing the importance of the region in the state
and national economic and agricultural context.

The demographic and sociocultural variables, rural population and age of the rural
producer sought to portray the dynamics of rural exodus and the aging of the rural
population and family succession, seen with concern in the public policies used [47,48].
The rural population in Santa Catarina, between 2000 and 2010, decreased by 24% and in
the study area by 15%. In Santa Catarina, 33% of the rural producers in charge are 55 years
old or older, and in the study area this problem is even greater than in the state, with 48%
at retirement age [49].

Table 3 shows the relation of the variables, both dependent and independent, represent-
ing the set of driving forces inputted in the ANN1 model, organised into five dimensions
of analysis. The full description of the variables is available in the Supplementary Material
Repost S1: Variable description.

Table 3. ANN model variables.

Dimension Dependent Variables Unit Format Scala/
Spatial Resolution

Physical/natural Land use and land cover (do nothing) class raster 30 m
Physical/natural Land use and land cover (AreaNat) class raster 30 m

Dimension Independent Variables—Year Unit Format Scala/
Spatial Resolution

Physical/natural

Land use and land cover—2000 class raster 30 m
Temperature—2002 ◦C vector 1:500,000
Accumulated precipitation—2002 mm vector 1:500,000
Type of soil—2004 class vector 1:250,000
Type of relief—2000 class raster 30 m
Altitude—2000
Road network—2018

m raster 30 m
km/km2 vector municipality

Economic

Rural agribusiness—2006 and 2017 % table municipality
Cattle herd—2000 and 2018 % table municipality
Swine herd—2000 and 2018 % table municipality
Chicken herd—2000 and 2018 % table municipality
Formal employment (commerce/service)—2006 and 2018 nº table municipality
Formal employment (industry)—2006 and 2018 nº table municipality
Formal employment (agriculture)—2006 and 2018 nº table municipality
Financing (Pronaf)—2006 and 2017 % table municipality
Processing industries—2006 and 2018 nº table municipality
Gross Domestic Product (GDP)—2002 and 2017 R$ table municipality
Agricultural land price—2000 and 2018 R$/ha table municipality
Per capita income—2000 and 2010 R$ table municipality
Log Production—2000 and 2018 m3 table municipality
Gross value added of agriculture and cattle-raising—2000 and 2017 % table municipality
Milk production value—2002 and 2017 % table municipality

Sociocultural

Family agriculture—2006 and 2017 % table municipality
Schooling of the head farmer—2006 and 2017 nº table municipality
Age of the head farmer—2006 and 2017 nº table municipality
Municipal Human Development Index (HDI)—2000 and 2010 index table municipality
Rural workers—2006 and 2017
Land structure—2006 and 2017

nº table municipality
ha table municipality

Technological

Use of agrochemicals—2006 and 2017 % table municipality
Mechanization in the rural property—2006 and 2017 tractors/km2 table municipality
Technical orientation—2006 and 2017 % table municipality
Maize yield—2002 and 2017 kg/ha table municipality
Soybean yield—2002 and 2017 kg/ha table municipality
Bean yield—2002 and 2017 kg/ha table municipality
Tobacco yield—2002 and 2017 kg/ha table municipality

Demographic Population density—2000 and 2018 inhab/km2 table municipality
Rural population—2000 and 2010 % table municipality
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2.4. Scenario Building

The construction of the predictive scenarios for the year 2036 for the Chapecó EC
region was based on the method presented by the European Environment Agency (EEA)
report [31] and applied by Morgado et al. [11,33].

Table 4 summarises how the six predictive scenarios proposed in this paper were
constructed to assess LULC change trends and their main driving forces. The full
table of scenario construction is available in the Supplementary Material Repost S2:
Scenario building.

Table 4. Scenario building schema.

Scenarios

BAU Optimistic Pessimistic

A
ct

io
n Do Nothing A1 A2 A3

AreaNat B1 B2 B3

A1—‘do nothing and business as usual’—this is the predictive status quo scenario
to which the others refer. It considers no action in the territory in the current social and
economic condition.

A2—‘do nothing and optimistic scenario’—this predictive scenario represents the
socioeconomic expansion over the last analysis period (2018) and no action in the territory.

A3—‘do nothing and pessimistic scenario’—this predictive scenario represents socioe-
conomic recession and climate change over the last analysis period (2018) and no action in
the territory.

B1—‘AreaNat and business as usual’—this scenario describes the counterfactual case
of forest and grassland restoration. It considers the recovery of natural areas in the territory
in the current social and economic conditions.

B2—‘AreaNat and optimistic scenario’—this scenario reports socioeconomic expansion
over the last analysis period (2018) and the recovery of natural areas in the territory.

B3—AreaNat and pessimistic scenario’—this scenario assumes socioeconomic reces-
sion, social crisis in the countryside and climate change in the last period of analysis (2018)
and the recovery of natural areas in the territory.

To define the scenarios and actions, some of the agricultural and environmental
guidelines were considered, according to the problematic of the study area, of two public
policies, the Development Plan of Santa Catarina State 2030—SC 2030 Plan and the Management
Plan of the Ecological Corridor of Chapecó [47,48], as well as state climate projections [62–65]
and socio-economic indicators [49].

Table 5 presents the list of guidelines and target defined in the policies, related to the
variables for the construction of the predictive scenarios.



Land 2023, 12, 181 10 of 24

Table 5. Summary of public policy guides used to build scenarios.

Public Policy General Objective

SC2030 Plan To reduce inequalities and promote social equity, seek sustainable regional development, boost innovative development and the entrepreneurial capacity of the
Santa Catarina society

Guidelines Indicators Targets Variables

Protect, restore, and promote the sustainable
use of terrestrial ecosystems Percentage of territory with native vegetation cover +1% AreaNat

action

Combat climate change and its effects Projections of increased temperature and precipitation [62–65] +4 ◦C Temperature
+84 mm Accumulated precipitation

Add value to family farming Number of family farming agroindustry enterprises +55% Family agriculture
Municipal GDP growth [49] +54 GDP

Revitalize the rural world Rural credit—participation of Pronaf in the total number of contracts +0.3% Financing (Pronaf)

Ensure sustainable production Maize yield (kg/ha) +45% Maize yield
Soybean yield (kg/ha) +53% Soybean yield

Social problems in rural areas: rural exodus,
aging of head farmers and family succession

Age of the head farmer [49] +70% Age of the head farmer
Rural population [49] −20% Rural population

Public Policy General Objective

Management Plan of the Chapecó EC Developing and implementing a model for the promotion, marketing and leveraging of native forests (and other natural environments) as environmental assets,
promoting the maintenance and improvement of the permeability of the landscape’

Guideliness Indicators Targets Variables

Combat the expansion of productive areas
(pasture, agriculture and silviculture) over

areas of natural vegetation
Combat the loss of natural vegetation

Conservation of natural grasslands

LULC map
Natural areas recovered to the

conservation status of
the year 1990

AreaNat
action
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2.4.1. Scenarios

The business as usual (BAU) scenario represents a narrative of current conditions in
the study area. This scenario assumes, for the period of the analysis, that political, economic,
demographic, environmental, and social conditions remain as they have been. These are
represented by the independent variables observed between 2000 and 2018 and analyzed
in Section 2.3.2.

To build the optimistic and pessimistic scenarios, the targets of the rural development
policy indicators, historical data from official sources, and climate projections were consid-
ered. For the pessimistic scenario, the authors considered it reasonable to adopt only 1/3 of
the increase applied to the optimistic scenario.

The optimistic scenario represents social and economic growth, guided by some
goals and objectives of the Economic Development axis: Agriculture and Fishing, the
Development Plan of the state of Santa Catarina 2030, and the SC2030 Plan [48]. The
optimistic scenario foresees an increase in productivity in the agricultural sector (soybean
and maize crops), the support for family agriculture with an increase in the participation of
Pronaf in the total number of contracts (rural credit), and increased participation of family
agriculture in the rural agribusiness. For this scenario, a GDP per capita increase was also
considered, since this is a synthetic indicator of the local economy. For this scenario, five
independent variables were altered.

For maize and soy yields, the increase applied was 45% and 53%, respectively, an
increase of 0.3% in the number of agricultural sites with Pronaf financing and by 55% in
the participation of family farming in rural agribusiness according to the SC2030 Plan [48].
The average GDP growth rate in Santa Catarina for the years 2002 to 2017 was 2.5%
per annum [49]. Thus, an increase of 54% in the GDP per capita was considered, refer-
ring to an increase of 3% per annum multiplied by the number of years of the scenario
period (18 years).

The pessimistic scenario, as opposed to the optimistic scenario, reflects conditions of
economic recession, social crisis in the rural sector, and climate change. A total of eight
independent variables were altered: maize and soybean yields, participation of family
farming in the rural agribusiness, GDP, rural population, producer age, temperature, and
accumulated precipitation.

The variables ‘maize and soybean yields’ and ‘participation of family farming in rural
agribusiness’ were considered to grow by only one-third of the target projected in the
SC2030 Plan. An increase of only 0.75% per annum was considered for the GDP. Thus, the
correction was increased by 15%, 17.5%, 18%, and 13.5%, respectively.

Additionally, in this scenario, we considered a climate of social crisis in the rural sector,
where according to the latest censuses and the Management Plan of the Ecological Corridor
of the Chapecó River [47,49,66], there is a tendency for the rural population to decrease and
age. Thus, a negative variation of 20% was considered for the rural population variable,
based on the trend calculated by the variation rate for the 2000 to 2010 period [49]. To
characterise the problem regarding the lack of succession in the command of rural property
and the ageing of the leading producers [47,48,67] a 70% increase in the number of farmers
over 55 was projected.

In the pessimistic scenario, we introduced changes to the variables temperature and
precipitation based on different global and regional climate change studies [62–65,68]. To
this end, we considered an increase in the average air temperature of 4 ◦C and an increase in
the accumulated precipitation of 84 mm in the study region and the period under analysis.

Table 6 shows the increased values of the independent variables used to prepare
optimistic and pessimistic scenarios.
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Table 6. Increase in the independent variables used for the construction of optimistic and
pessimistic scenarios.

Scenarios

Optimistic Pessimistic

Independent Variable Increase Independent Variable Increase

Family agriculture—2017 +55% Family agriculture—2017 +18%
Financing (Pronaf)—2017 +0.3% GDP—2017 +13.5%
GDP—2017 +54% Maize yield—2017 +15%
Maize yield—2017 +45% Soybean yield—2017 +17.5%
Soybean yield +53% Temperature—2002 +4 ◦C

Accumulated precipitation—2002 +84 mm
Age of the head farmer—2017 +70%
Rural population—2010 −20%

2.4.2. Actions

For the case study of this research, two actions were considered of relevance since they
are pervasive in the discussions of territorial changes due to the implementation of the
Chapecó EC, namely, (i) the lack of any forecast action in the territory (do nothing); and
(ii) the action of recovery of natural areas (AreaNat).

As the ‘do nothing’ action does not provide for intervention in the territory, the 2018
land use and land-cover map was used as the dependent variable in the model.

The AreaNat action was elaborated based on the guidelines of the Ecological Corridor
Zoning, which defined priority areas for the recovery of permanent preservation areas
according to their vocation for conservation and/or direct or indirect use [47]. In addition,
another management instrument used as a reference was the SC2030 Plan, which stipulated
an increase by 1% of the area with native vegetation cover in the state of Santa Catarina
as a goal for 2030 [48]. The details of the guidelines for this action in the territory can be
seen in Table 5 (synthesis of public policies). The AreaNat action was considered in the
predictive scenarios in order to evaluate the likely effects on future LULC dynamics when
a public conservation policy is adopted.

However, due to a spatial scale limitation of the LULC maps, the action was generalised
by cross-referencing the 1990 and 2018 LULC maps, restoring the natural areas (forest and
natural grassland) that existed in 1990, and conserving those that existed in 2018.

In the study area between the years 2000 and 2018 there was a growth of 190% in areas
dedicated to silviculture (forestry) [17] and 79% for soybean [69]. Thus, we adopted as
a reference the year 1990, because it represents a reality of LULC dynamics prior to this
growth. Government incentives and policies, due to market demands, boosted silviculture
activity in the region [70] and the expansion of agricultural commodities [71].

2.5. Simulation Model Based on Artificial Neural Networks

For the simulation of predictive LULC change scenarios for 2036, the type of machine
learning adopted was artificial neural networks (ANN), the multilayer perceptron (MLP)
method, and the backpropagation algorithm. This is the type of model most widely used
in works of this nature [11,17,32,35,41–43].

The simulation is done for the year 2036, because the literature recommends that the
predictive scenarios should follow the same time interval as the model input data [11]. In
this case, it was from 2000 to 2018, totaling 18 years.

In this study, we used the ANN1 model [17] to simulate the six predictive scenarios
(Table 7). Predictive scenario A1 represents the baseline scenario, which is based on extrap-
olating the trends in LULC dynamics and the current socio-economic scenario between the
years 2000 and 2018. The others consider different predictive scenario assumptions (A2,
A3, B1, B2 and B3).
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Table 7. ANN1 model parameters used to simulate the predictive scenarios.

Parameter Parameterisation Object Parameterisation Adopted

Input layer Independent variables 67
Rescaling method Normalised

Sample

Training 70%
Testing 20%

Holdout 10%
Iterations 500

Hidden layer
Number of hidden layers 1

Number of units (neurons) 56
Activation function Hyperbolic tangent

Output layer
Dependent variable LULC map*
Activation function Softmax

Error function Cross-entropy
LULC map*: LULC 2018 for scenarios A and AreaNat for scenarios B.

According to the ANN1 model, the classification matrix showed approximately 70%
overall accuracy. Individually, the forest class represented 89.5% of the validation sample
correctly classified, silviculture represented 38.0%, natural grassland represented 9.5%, pas-
ture represented 57.0%, agriculture represented 79.6%, mosaic represented 20.0%, articicial
area represented 56.1%, and water bodies represented 42.6% [17].

Model validation was supported by the area under the curve (AUC) measure derived
from the relative operating characteristic (ROC) [72]. The AUC value informs how well the
model can distinguish between the classes [42,73–75].

Based on the classification of AUC, the model has excellent accuracy capacity in the
following classes: forest, natural grassland, agriculture, artificial area, and water bodies
(>90%). The classes silviculture and pasture, with values between 80 and 90%, are classified
as having ‘very good’ quality, and the mosaic class was classified as ‘acceptable’ (79.4%) [17].

2.6. LULC Dynamics and Sensitivity Analysis

From the transition matrix between the LULC maps of the year 2018 and the LULC
maps of the predictive scenarios for 2036 (A1, A2 A3, B1, B2, and B3), the LULC dynamics
were verified [76–78].

The transition matrix presents, diagonally, the persistence of each LULC class from
the beginning to the end of the period. The column total denotes the proportion of the
landscape occupied by each LULC class at the end of the period, and the row total is the
proportion occupied by each LULC class at the beginning of the period. The values outside
the diagonal represent the transitions between classes from the beginning of the period to
its end [76].

The sensitivity analysis presented the relationship between the input variables of the
model in a rank format [79]. It allowed us to observe which variables (driving forces) are
relatively more influential in the changes seen in the territory [32].

To this effect, first, the contribution of each dimension to the composition of scenarios
was verified by considering the sum of the importance of each driving force inputted into
the model. Subsequently, the driving forces’ influence was analysed based on the average
of the normalised importance of the first ten driving forces.

3. Results

In this section we present the six predictive scenarios, considering first the ‘no ac-
tion’ in the territory (do nothing—A) and following the conservation action (AreaNat—B),
associated with three socioeconomic scenarios (BAU—1, optimistic—2, pessimistic—3).
The six predictive scenarios (A1, A2, A3, B1, B2, B3) provide the main LULC changes
predicted for 2036, compared to the LULC reference year 2018. For each scenario, ac-
cording to the sensitivity analysis, we present the list of the ten most important driving
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forces with an average of the normalized importance of these 10 driving forces organized
by dimension.

3.1. Predictive Scenario A (‘Do Nothing’)—LULC Changes and Key Driving Forces

LULC trends for the different predictive scenarios A1, A2, and A3 for the year 2036
obtained by the ANN1 model can be seen in Figure 4 and Table 8.
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Table 8. LULC evolution trends of the predictive scenarios A.

LULC Area (km2) Predictive Scenarios (2036)

Base Year (LULC2018)
(Do Nothing) A1 A2 A3

Forest 2097.6 2418.2 2418.4 2418.6
Silviculture 914.0 422.9 418.8 409.1
Natural grassland 149.0 34,2 36.5 18.3
Pasture 886.3 1306.1 1322.2 1324.3
Agriculture 2416.3 2637,9 2661.8 2670.0
Mosaic 677.7 363.7 327.2 340.7
Artificial Area 50.1 31.6 31.9 31.9
Water bodies 51.2 27.7 25.4 28.7

Total 7242.3 7242.3 7242.3 7242.3
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Table 9 presents, for each scenario, the top ten driving forces responsible for the LULC
changes presented in Table 8. The arrows indicate whether the driving force represents a
positive (↑) or negative (↓) variation over the period. In Supplementary Material Repost
S3: Sensitivity Analysis, one can observe the complete ranking of the driving forces for
each scenario.

Table 9. The ten most important driving forces in predictive scenarios A.

Predictive Scenarios Driving Force Normalized
Importance (%)

A1

Land use and land cover—2000 100.0
Type of soil—2004 44.8
Road network—2018 31.6
Type of relief—2000 30.1
Per capita income—2010 ↑ 21.9
Agricultural land price—2000 ↓ 20.8
Cattle herd—2018 ↑ 20.3
Processing industries—2006 ↓ 19.8
Rural population—2000 ↑ 19.0
Chicken herd—2000 ↑ 18.7

A2

Land use and land cover—2000 100.0
Type of soil—2004 38.5
Road network—2018 38.2
Type of relief—2000 26.1
Processing industries—2006 ↓ 19.3
Use of agrochemicals—2017 ↑ 18.7
Agricultural land price—2000 ↓ 18.7
Cattle herd—2018 ↑ 16.3
Per capita income—2010 ↑ 15.5
Maize yield—2017 ↑ 15.3

A3

Land use and land cover—2000 100.0
Type of soil—2004 44.8
Road network—2018 43.5
Type of relief—2000 24.9
Financing (Pronaf)—2017 ↓ 21.3
Gross value added of agriculture and
cattle-raising—2002 ↑ 21.2

Gross Domestic Product (GDP)
–(pessimistic) ↑ 20.2

Agricultural land price—2018 ↑ 19.2
Land structure—2017↑ 18.0
Swine herd—2018 ↓ 17.9

Table 10 introduces the normalized importance average per analysis dimension of the
ten first driving forces for each scenario.

Table 10. Statistics per analysis dimension of normalized importance of the ten first driving forces in
LULC dynamics for the predictive scenarios A.

Predictive Scenario Dimension Average Normalized
Importance (%) Nº of Driving Forces

A1

Physical/natural 51.6 4
Economic 20.3 5
Demographic 19.0 1
Total 10



Land 2023, 12, 181 16 of 24

Table 10. Cont.

Predictive Scenario Dimension Average Normalized
Importance (%) Nº of Driving Forces

A2

Physical/natural 50.7 4
Economic 17.4 4
Technological 17.0 2
Total 10

A3

Physical/natural 53.3 4
Economic 19.9 5
Sociocultural 18.0 1
Total 10

3.2. Predictive Scenario B (‘AreaNat’)—LULC Changes and Key Driving Forces

LULC trends for the different predictive scenarios B1, B2, and B3 for the year 2036 can
be seen in Figure 5 and Table 11.
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Table 11. LULC evolution trends of the predictive scenarios B.

LULC Area (km2) Predictive Scenarios (2036)

Base Year (LULC2018) (Do Nothing) B1 B2 B3

Forest 2097.6 3129.2 3151.8 3116.5
Silviculture 914.0 304.8 314.8 338.8
Natural grassland 149.0 624.0 628.3 622.2
Pasture 886.3 944.0 930.8 916.1
Agriculture 2416.3 2052.7 2033.8 2080.6
Mosaic 677.7 135 130.9 113.4
Artificial Area 50.1 31.4 32.9 34.1
Water bodies 51.2 21.2 19.1 20.6

Total 7242.3 7242.3 7242.3 7242.3

Table 12 presents, for each scenario, the top ten driving forces ranked according to
their importance. The arrows indicate whether the driving force represents a positive (↑) or
negative (↓) variation over the period. In Supplementary Material Repost S3: Sensitivity
Analysis, one can observe the complete ranking of the driving forces.

Table 12. The ten most important driving forces in predictive scenarios B.

Predictive Scenarios Driving Force Normalized
Importance (%)

B1

Land use and land cover—2000 100.0
Type of soil—2004 43.8
Road network—2018 30.2
Type of relief—2000 23.6
Use of agrochemicals—2017 ↑ 20.8
Technical orientation—2017 ↓ 20.4
Agricultural land price—2000 ↓ 19.4
Gross Domestic Product (GDP)—2017 ↑ 18.6
Tobacco yield—2002 ↑ 18.3
Formal employment (agriculture)—2006 ↑ 18.1

B2

Land use and land cover—2000 100.0
Road network—2018 51.1
Type of soil—2004 38.6
Type of relief—2000 23.8
Formal employment
(commerce/service)—2006 ↓ 21.4

Altimetry—2000 20.9
Agricultural land price—2000 ↓ 19.9
Swine Herd—2018 ↓ 17.2
Gross value added of agriculture and
cattle-raising—2017 ↓ 17.0

Tobacco yield—2017 ↓ 16.8

B3

Land use and land cover—2000 100.0
Road network—2018 49.5
Type of soil—2004 40.3
Type of relief—2000 26.9
Altimetry—2000 22.6
Agricultural land price—2000 ↓ 21.8
Cattle herd—2018 ↑ 17.4
Use of agrochemicals—2017 ↑ 16.6
Maize yield—2017 ↑ 16.6
Rural population—2010 ↓ 15.4

Table 13 introduces the normalized importance average per analysis dimension of the
ten first driving forces for each scenario.
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Table 13. Statistics per analysis dimension of normalized importance of the ten first driving forces in
LULC dynamics for the predictive scenarios B.

Predictive Scenario Dimension Average Normalized
Importance (%) Nº of Driving Forces

B1

Physical/natural 49.4 4
Technological 19.8 3
Economic 18.7 3
Total 10

B2

Physical/natural 46.9 5
Economic 18.9 4
Technological 16.8 1
Total 10

B3

Physical/natural 47.9 5
Economic 19.6 2
Technological 16.6 2
Demographic 15.4 1
Total 10

4. Discussion

The main guidelines of public policies for rural development and management of
the Chapecó ecological corridor (Table 5) point to objectives that must be achieved in
an integrated manner through actions that favor socioeconomic advances, maintenance
of native vegetation, and rehabilitation of degraded natural areas. An artificial neural
network-based LULC dynamics model was used to simulate different socioeconomic sce-
narios and create predictive scenarios with a desired level of recovery and maintenance of
natural areas.

Three possible socioeconomic scenarios were simulated through the manipulation of
nine independent variables (Table 6). The first scenario considered that the model would
not suffer any interference from the independent variables (BAU). Following some achieve-
ments theorized in public policies (Table 5), the optimistic scenario included potentially
realistic increments to family farming, Pronaf, GDP, and productivity gains for soybean
and maize. In the pessimistic scenario, the values of these variables were changed to
lower gains, and an aging population and a rural exodus were simulated. Also, the cli-
mate scenarios of increase in average temperature and precipitation were simulated in the
pessimistic scenario.

Three predictive scenarios (A1, A2, and A3) (Figure 3, Table 8) were obtained as a
first result. Comparing them to the 2018 LULC map, regardless of the socioeconomic
gains achieved, a recovery trend was observed in relation to forest areas until 2036, mainly
through the reduction of silviculture areas. On the other hand, natural grasslands tend
to continue suffering significant losses of areas due to the expansion of pasture areas for
livestock activities, which presents the higher expansion rate (48%) in the region. Although
at a lower rate (10%), the expansion of agriculture may also be responsible for advances
over native grassland areas (Table 8).

In socioeconomic terms, the first two predictive scenarios (A1 and A2) suggest favoring
rural development as the driving forces that most influence LULC dynamics indicate
economic gains, productivity gains, and the expansion of agricultural activities. On the
other hand, the expressive trend of loss of natural grasslands is even more visible in case of
economic recession, social crisis involving the rural sector, and climate changes (scenario
A3). In this pessimistic scenario, the trend of area loss is twice as high as in the other
scenarios, indicating a trend of loss of 87% of natural grassland areas for 2036 compared
to 2018 (Table 8). The predictive scenario A3 is the least favorable to the recovery and
conservation of natural grasslands, which is one of the main guidelines of the Management
Plan of the Chapecó EC (Table 5).
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The most active forces that cause this even greater loss of natural grasslands are related
to a greater concentration of land, represented by the driving force land structure; the
weakening of public policies to support rural producers, indicated by Financing (Pronaf);
low economic growth, represented by the GDP; and the expansion of agricultural activities,
represented by the driving force gross value added of agriculture and cattle-raising (Table 9).
In addition to reflecting that low socioeconomic development has a negative impact on
the conservation of natural resources, this result corroborates the importance of the social
aspect represented by the mischaracterization of a land structure, represented by small
rural properties. The average size of rural properties in the EC area between 2003 and 2017
presented an increase of 22%, while in the state of Santa Catarina this increase reached
12.5% [61].

The promotion of agriculture and preservation of natural resources combined with eco-
nomic mechanisms aimed at promoting social equity and sustainable regional development
(SC2030 Plan) is not sufficient to meet the guidelines for the conservation and recovery
of natural areas. The trend towards a growing demand for agricultural and pasture areas
demonstrates the importance of agrobusiness for the economy of the state. It reflects a rural
development policy that is still ineffective in terms of sustainability, tending to favor large
agro-industrial complexes (soybean and animal production complexes), as agrobusiness
accounts for more than 70% of the exports of the state [61].

It is necessary to move forward and guarantee continuity in the materialization of the
different economic mechanisms aimed at the conservation of natural resources proposed in
the ecological corridor management plan, including conservation credits, financial support,
and integration systems for agro-industry and local productive arrangements. In addition,
it is necessary to engage local agents, investors, public and private institutions, and partners
in the implementation of the action mechanisms specified in the plan [47].

Given the environmental inefficiency of the predictive scenarios generated from the
simulations of socioeconomic variables, a simulation of the return to the vegetation cover
similar to that observed in 1990, prior to the period of promotion of silviculture and
agricultural commodities was presented [70,71].

Considering the same socioeconomic conditions of the three first scenarios, with this
action in the territory three predictive scenarios were simulated (B1, B2, and B3), in which
an environmental variable (AreaNat) was incorporated into the model with the aim of
determining the preservation and recovery of natural areas.

As a result, significant gains of natural grassland areas were obtained, as well as a
recovery in forest areas and gains of pasture areas. In predictive scenarios B (1, 2, and 3),
agriculture tends to suffer a loss of approximately 15% of area compared to the 2018 LULC
reality (Table 11). This simulation demonstrated the importance of territorial action policies
for the preservation and recovery of natural areas. The advance of human activities on the
natural environment, especially in areas of natural grasslands, can only be suppressed by
means of actions such as the definition of areas of environmental preservation and legal
reserves, the definition of conservation units or creation of ecological corridors [80,81].

The territorial intervention promotes direct actions in the landscapes, whose elements
are represented in the model by the four first driving forces of greater importance in
the LULC dynamics. These driving forces belong to the physical/natural dimension
(Tables 9 and 12), presenting the greatest influence among the main driving forces in LULC
dynamics. The greatest influence associated with physical-natural driving forces is present
in most articles with similar approaches [13,27,38,82–85].

Thus, the adoption of actions that favor the desired changes in the driving forces of the
physical/natural dimension is essential to achieve preservation and recovery objectives.

The significant influence of the driving forces of the technological dimension was also
observed for predictive scenarios B (1, 2, and 3) (Table 12), indicating the importance of
investing in technology and innovations in order to create a dynamic balance between the
socioeconomic needs of rural areas and environmental preservation. Agricultural research
in Brazil has always been synonymous with technology and innovation [86–88].
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However, precisely due to the search for this dynamic balance between produc-
tion, revenue, and environmental preservation, there is currently a trend towards a
paradigm shift.

This change has been taking place in the state of Santa Catarina. In the 1970s and
1980s, research and technological developments in rural areas were focused on produc-
tivist models that emerged from the “green miracle” (genetic research, development and
massive use of chemical fertilizers and pesticides, and a focus on increasing productivity).
Currently, the new paradigm seeks to maintain the productive capacity of food for a still
growing population, but with greater integration with ecosystems and natural dynamics
(agroecology, agroforestry systems, organic agriculture, and direct sowing) [89].

Thus, the technological innovation necessary to achieve sustainable agriculture must
undergo a process of adaptation and change.

The area of the Chapecó River Ecological Corridor is part of a region pointed out as an
economic influence zone and force field for family farming and the agro-industrial complex.
It is a territory of multiple interests to the extent that things are not defined either in terms
of hegemonization of the productive pattern favored by the agro-industrial complex or in
terms of resistance or adaptability to new scenarios by family farmers [45].

If, on the one hand, there is an area of importance for agroindustry and agrobusiness
of the state of Santa Catarina, on the other hand there is an area of important biological
diversity, with substantial diversity of social agents, such as cattle farmers, soybean produc-
ers, silviculturists, small family farmers descended from immigrants, small resettled family
farmers, and indigenous peoples from the Guarani and Xokleng ethnic groups, defending
different interests related to land ownership and use [47].

The territorial actions established by the ecological corridor management plan,
such as the recovery of permanent preservation areas and the environmental suitability
of rural properties proposed by the Management Plan of the Chapecó EC [47] should
be strengthened.

In addition, new ways of doing agriculture should be encouraged, such as agro-
forestry systems, which are essential to ensuring economic development combined with
environmental sustainability [90,91].

High levels of productivity in a smaller proportion of area and maximum environ-
mental preservation may be achieved through the integration of modern techniques and
knowledge from forestry, agricultural, and environmental sciences, such as agroforestry
systems [91]. In the search for alternatives in response to the technical, globalized agricul-
ture [92], the reconciliation of the development of rural environment (economic and social)
with the conservation of biodiversity requires a broader participation of the government
in the elaboration and implementation of public policies, offering greater prominence to
local agents.

5. Conclusions

The adoption of LULC dynamics modelling through artificial neural networks proved
to be a very useful tool to build predictive scenarios based on public policy guidelines that
integrate rural development and environmental preservation and recovery.

Driving forces of a physical/natural are those with the greatest influence on LULC
dynamics, regardless of the proposed socioeconomic scenarios.

For predictive scenarios generated from actions in the territory, technological driving
forces are identified as the most important following the physical/natural ones.

One of the paths pointed out by these driving forces consists of investing in new
agricultural technologies generated from productive systems integrated to nature.

Depending on the scope of the guidelines adopted in public policies, different pre-
dictive scenarios of land use and land cover may be expected. Public policies for social
and economic development applied in isolation tend to generate future scenarios of low
effectiveness in preserving and restoring natural environments.
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Public policies for territorial intervention are required so that preservationist objectives
are achieved in parallel with social and economic objectives.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/land12010181/s1, Report S1: Variable description. A summary
table of the construction of the predictive scenarios is available online, Report S2: scenario building.
Sensitivity analysis results are available online, Report S3: Sensitivity analysis.
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