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Abstract: Lacustrine blue spaces provide benefits to the urbanites and wildlife habitat. Their availabil-
ity varies depending on the city in which they are established and intra-urban social interactions. We
analyzed the presence, distribution, and size of lentic water bodies in Mexico’s 145 most populated
cities. We searched for patterns in their distribution concerning demographic, socioeconomic, and
geographic data, aiming to understand their socio-ecological interactions in cities. We digitized
lacustrine spaces to obtain their number per city, total surface, area of blue space per inhabitant, and
surface as a percentage of the city’s total area. We tested for relationships between their number
and surface and city population, hydrological regions, and urban marginalization index through
linear and generalized linear models. We delimited 1834 lacustrine blue spaces, finding almost
two-thirds of them artificial. Their presence and surface in Mexican cities were generally low, except
for hydrological regions close to the Gulf of Mexico. Their number and surface decreased as the urban
marginalization index increased. The lack of equitable provision of lacustrine space at the national
level has implications for urban planning and land management. Blue spaces should maximize their
ecosystem services’ provision for the whole society to promote cities’ sustainability and resilience.

Keywords: aquatic ecosystems; inequitable distribution; urban lakes; urban ecology; urban water
bodies; Mexican cities

1. Introduction

Lacustrine blue spaces are currently inherent elements of cities since human popula-
tions have settled near, along, around, and even above lakes, lagoons, and other lentic and
lotic water bodies to fulfill their basic needs of water, feeding, and waste disposal [1,2]. In
growing cities, these blue spaces are modified and engulfed by settlements. In the absence
of natural spaces, artificial lacustrine blue spaces are built for the benefit of the popula-
tion [1,3,4]. Like urban green spaces, and often in synergy with them, blue spaces provide
habitat for urban wildlife species [5,6], and several ecosystem services for urbanites [7,8],
among which are urban heat island effect mitigation [9–11], rainwater retention [7], tourism
and recreation linked to aesthetical and landscape values [7,12], and the favoring of overall
wellbeing [7,13–16].

In the current times of Global Climate Change, blue spaces and green spaces can
be regarded as part of nature-based solutions aiming to mitigate its adverse effects on
cities [7,17,18]. Blue spaces have gained importance in recent years in the face of the
increasing droughts affecting the water supply in urban areas. At the same time, cities face
flooding with risks to people’s safety [19]. Therefore, blue spaces within cities are managed
or created to provide critical ecosystem services to the population [9]. Nonetheless, the
demand for these services from blue spaces is usually high and immediate due to cities’
characteristic high concentration of population [20]. Additionally, blue spaces were, and
still are, used for residential and industrial wastewater disposal [21,22]. Consequently,
many of them are currently neglected, eutrophicated, and polluted [23–25].
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The ecological condition of blue spaces can be a source of disservices and risks to health
and safety for people interacting with them, such as bad seasonal smell or the presence of
mosquitoes; vectors of diseases such as dengue, zika, and chikungunya [6]. In rainy seasons,
poorly managed blue spaces can contribute to flooding with damage to infrastructure and
people, mainly in low-income areas [26–28]. Furthermore, while initially, blue spaces
were a source of drinking water and food, as they became waste dumps, their capacity
to offer provision services was limited or lost [29,30]. Perceived often as wastelands [31],
blue spaces are highly vulnerable since they have been, and are, systematically desiccated
for their conversion to other urban land uses [1,2,21]. Nevertheless, their vulnerability
level and the services and disservices they provide are closely linked to their seasonality,
condition, planning, and management [1,13,26,32]. Lacustrine blue spaces’ vulnerability
and disturbance are due to the high demographic concentration in cities, the incorporation
of rural spaces into irregular settlements, garbage dumping, wastewater discharge, and the
intermittency of the water bodies themselves [1,4,33], favoring hence their invasion and
allowing construction to take place in their beds, or even causing its utter disappearance.

Despite their importance and vulnerability, knowledge of the presence, water quality,
and social appraisal of blue spaces, albeit in continuous growth in the last few years, is
still limited; many of their ecological, biological, and sociocultural aspects (e.g., use, biodi-
versity) are unknown for most cities [29,32], a situation that for Mexico is no exception [1].
Even so, the few studies about Mexican lacustrine urban blue spaces highlight the need for
research, actions, and good practices, from different approaches, leading to their restoration.
These actions should be aimed at the conservation of the biological groups that live in these
habitats and for the benefit of the citizens [1,5,21,34]. There is a feedback loop between
human activities and blue spaces; humans affect the ecological functions of blue spaces, and
in turn, blue spaces influence the urban environment, sociocultural interactions, and public
health [1]. Consequently, these spaces’ study, management, restoration, and conservation
need to be addressed with disciplines and approaches from natural and social sciences and
available biotechnological advances [35–37]. These loop interactions are relevant to the
sustainability and resilience of cities [1,13,26,32].

Aiming to understand the socioecological role of lacustrine blue spaces in cities, we
pose the following questions: (1) what is the availability of lacustrine blue spaces in
cities settled in contrasting ecosystems; (2) how artificial are these spaces in cities, and
what are their main uses; (3) what is their distribution pattern within cities throughout
a country with similar urban development; and (4) is the distribution of lacustrine blue
spaces associated with geography and geomorphology or with socioeconomic variables
such as urban marginalization? To answer these questions, in this study, we analyzed the
presence, distribution, and size of natural and artificial lacustrine blue spaces (lakes and
ponds, mainly; [38]), together with demographic, socioeconomic, and geographic data to
identify the relevance of such factors on the blue spaces in the most populated cities of
Mexico. Mexico as a study system can help to answer such questions since it is a country
with contrasting environmental conditions (hydrological, climatological, geomorphological,
eco-systemic; [39–41]), and a high percentage of urban population with profound socio-
economical differences [42–44]. Yet, on a national scale, it shares a political regime and a
normative framework under which cities are planned and managed [45,46].

Given the dynamics of loss and gain of lacustrine blue spaces [2,4,17], we expected
most of them in Mexican cities to be artificial with predominantly recreational use [3]. It is
widely reported that green and blue-green spaces are distributed heterogeneously through
the urban territory associated with higher-income urban areas [47–51], so we expected
lacustrine blue spaces to be negatively associated with the population in most marginalized
zones similarly. If this is the case, it would indicate an inequitable distribution [52,53]
regarding lacustrine blue spaces and the services they provide in the most populated cities
in Mexico.
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2. Materials and Methods

To fulfill the study aims, we followed a spatially explicit approach and GIS mapping
at the national scale of the current state and dynamics of the lacustrine blue spaces as
biophysical elements of the urban environment [54]. The study was performed in 145 urban
localities with more than 100,000 inhabitants in Mexico, according to the 2020 Population
and House Census [55] (Table S1; Figure 1). For the limits of cities, we used the polygons
from the National Geostatistical Mark for the same Census [56]. We identified and manually
delimited lacustrine blue spaces within the cities’ polygons in Google Earth Pro version
7.3 for pc (https://www.google.es/earth/, accessed on 29 October 2021) on the imagery
mosaics available from dates January 2017 to October 2021 (spanning five years of both
dry and rainy seasons). In some cases, 2017 images were the most recent images available.
No space was digitized on older imagery. We identified lacustrine blue spaces visually
with the help of the time bar and the zoom tools. We digitized the blue space polygons
using the polygon tool following the visible margins of water. The lacustrine blue spaces
we considered and delimited here were mainly ponds, lakes, lagoons, wetlands, dams,
and other water reservoirs, including some water treatment plants. We did not consider
swimming pools, sediment ponds, most fountains, rivers, or streams. We neither include
blue spaces located outside the borders of cities. All digitized lacustrine blue spaces were
saved in a Keyhole Markup Language Zipped (.kmz) file, which we transformed into a
shape file (.shp) to compute the attributes of blue spaces on each city in QGIS v.3.16 [57].
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Figure 1. Distribution of the 145 cities with more than 100,000 inhabitants in Mexico according to the
Census of Population and Housing for 2020.

For each lacustrine blue space, we calculated its surface based on delimited polygons
(including in the accounting, in many cases, the islands within the lakes) and recorded, if
possible, its use, the land use where it was emplaced (e.g., parks, residential areas), and
if the space was natural (pre-existent water body, generally modified and engulfed by
the settlements) or artificial (built for the benefit of the population). In the case of multi-
spaces, each part was considered as one entity. We also recorded in which of the following
Hydrological Regions the lacustrine blue spaces were located: Baja California Peninsula,
North, Pacific, Center, Gulf, and Yucatan Peninsula. These six major regions correspond
to the simplified recategorization of the 37 Hydrological Regions from the National Water
Commission [58].

https://www.google.es/earth/
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2.1. Blue Spaces Indicators per City

For each city, we obtained and analyzed the distribution of (1) the number of blue
spaces, (2) the total surface of blue spaces, (3) the area (m2) of blue spaces per inhabitant,
and (4) the percentage surface that blue spaces represent of the city extension, as basic
indicators to evaluate urban blue infrastructure, following the subjacent rationale than that
for urban green spaces [59,60]. We elaborated the corresponding maps for each indicator
to show their nationwide distribution in Mexico in QGIS v.3.16 [57]. Information layers
and maps had a Lambert Conformal Conic Projection and Ellipsoid GRS80, the same as the
National Geostatistical Mark from INEGI [56] we used for delimitations of cities.

2.2. Blue Space’s Relationship with City Population and Hydrological Regions

To test the relevance of population and hydrological regions on the number of lacus-
trine blue spaces, we carried out a generalized linear model (GLM) with the quasi-Poisson
family due to the overdispersion of our data [61]. To evaluate the relevance of those same
variables on the lacustrine blue spaces surface, we performed a GLM with the Gamma
family (identity link). For this latter case, we specify the dependent variable as lacustrine
blue spaces surface plus one (i.e., hectares +1). For both cases, we specify the cities’ popu-
lation per ten thousand inhabitants and sorted hydrological regions in descending order
according to their accounted total surface of blue spaces (i.e., Gulf, Center, North, Pacific,
Yucatan Peninsula, and Baja California Peninsula).

2.3. Blue Spaces by Urban Marginalization Index

We further evaluated the relationship between the number and surface of lacustrine
blue spaces and the urban marginalization index (UMI) of the National Council of Popula-
tion (CONAPO by its acronym in Spanish) for 2020 [62]. The UMI is calculated, based on
population and housing census data, to evaluate “the shortages suffered by the population
as a result of lack of access to education and health, residence in inadequate housing, and
lack of assets.” [63] (p. 1). It consists of five marginalization levels: ‘very low’, ‘low’,
‘medium’, ‘high’, and ‘very high’. This index is estimated at the spatial unit of urban basic
geostatistical area (AGEB by its acronym in Spanish); each urban AGEB is a group of 25 to
50 blocks delimited by streets, avenues, and trails, with residential, industrial, services, or
commercial land use [64]. Since the analysis must only be calculated for AGEBs with at
least 20 private inhabited dwellings with information on their occupants [63], there were
AGEBs for which UMI was unavailable. For such AGEBs, we used the label ‘no data’. We
also evaluated the differences in the average number of blue spaces by the level of UMI
via a GLM using the quasi-Poisson family. For the relationship between the surface of
lacustrine blue spaces and the UMI, we used a linear model (LM) specifying the dependent
variable (hectares) in a logarithmic scale to adjust for non-normality and heterogeneity of
variance [65]. As an alternative to the pairwise comparison, and given the ordinal nature of
the UMI, instead of the default dummy coding contrasts in R, which compares the mean of
each level to the reference mean level; we carried out backward difference coding contrasts,
to compare adjacent levels of the UMI (each level minus the previous level [66]). For these
analyses involving the UMI, we excluded the ‘no data’ AGEBs. For the models, we obtained
the explained variance D2 and adjusted R2 for GLMs and LM, respectively [65,67]. For mod-
els using the log of the variable or link = log (LM and quasi-Poisson GLMs, respectively),
we present the coefficients of the models as well as the percent change ([exp(coefficient) −
1 × 100]; [68]) for such coefficients. Additionally, we carried out a Chi-squared test and a
mosaic plot [65] to test for associations between the type of space where blue spaces were
emplaced and the UMI. We performed all of the statistical analyses in R [69] and considered
the results significant at p values ≤ 0.05. We depict the general flux of methods for blue
spaces analysis in Figure 2.
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Figure 2. Procedure for lacustrine blue spaces delimitation and indices estimation.

3. Results
3.1. Blue Spaces from the Most Populated Mexican Cities

We delimited 1834 lacustrine blue spaces, whose surfaces sum up to 2836.1 ha, varying
from 0.001 to 319.2 ha, showing an average surface of 1.5 (±11.7 SD) ha. However, the
median value was 0.2 ha. 75.5% of lacustrine blue spaces had a surface < 0.5 ha, and only
ten (0.5%) blue spaces measured more than 50 ha. We identified 1257 (68.5%) blue spaces as
artificial systems, 51 (2.8%) as natural systems, and for the rest, 526 (28.7%), we could not
determine if they were artificial or natural. Almost one-third of lacustrine blue spaces were
in golf courses, followed by green spaces (e.g., parks, zoos, botanical gardens, institutional
green spaces), residential areas, and dams. For half of the spaces, we could not precisely
define the type of space in which they were located (Figure 3a). Regarding their use, we
identified most blue spaces as recreational (including for landscaping purposes), and for
water storage for a later purpose, a minimum of spaces showed other use (e.g., ornamental
fish production; boat sheltering). For a high proportion of spaces, we could not identify
their use (Figure 3b).
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3.2. Blue Spaces per City

The 1834 blue spaces were from 137 urban areas; in eight of the 145 cities, we did not
record the presence of visible lacustrine urban blue spaces. The range of the number of
blue spaces in cities was 0–68, with an average of 12.6 (±14.6 SD; median = 8) blue spaces
per city. Blue spaces surface varied among cities, from 0 to 392.3 ha and the average was
19.6 (±54.9 SD; median = 3 ha) ha. For the index of m2 of blue spaces per inhabitant in
cities, values varied from 0 to 13.2 m2/inhabitant, with an average of 0.5 (±1.6 SD; median
= 0.1) m2/inhabitant. The percentage that surfaces of blue spaces represent of the cities’
extension ranged from 0 up to 7.1%, showing an average of 0.3 (±0.9 SD; median = 0.1) %.
Distributions of these indicators showed a heavy positive skewness (with median values
much lower than average values). This distribution indicates that most Mexican cities had
low values of blue spaces attributes, and very few cities had high values (Figure 4). Only
ten cities had more than 40 lacustrine blue spaces within their territories, and eight cities
had blue spaces surfaces that summed up ≥1 km2. Twelve were the cities with ≥1 m2 of
blue spaces per inhabitant, and nine were the cities whose surface of blue spaces represents
more than 1% of the city’s extension (Figure 5). We show each city’s estimated blue spaces
indicators in the Supplementary Material (Table S1).
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Figure 5. Lacustrine blue spaces indicators distribution in Mexico. (a) Number of blue spaces,
(b) surface of blue spaces in hectares, (c) surface of blue spaces per inhabitant in m2, and (d) percentage
that blue spaces cover of the city area. 1. Juárez, Chihuahua; 2. Reynosa, Tamaulipas; 3. Mazatlán,
Sinaloa; 4. Miramar, Tamaulipas; 5. Ciudad Madero, Tamaulipas; 6. Zapopan, Jalisco; 7. León,
Guanajuato; 8. Querétaro, Querétaro; 9. Jiutepec, Morelos; 10. Acapulco, Guerrero; 11. Tampico,
Tamaulipas; 12. Veracruz, Veracruz; 13. Villahermosa, Tabasco; 14. Xochimilco, Mexico City; 15.
Minatitlán, Veracruz; 16. Heroica Matamoros, Tamaulipas; 17. Cuautitlán Izcalli, Mexico City; 18.
Ciudad López Mateos, Mexico City.

3.3. Blue Spaces’ Relationship with Hydrological Regions and City Population

Regarding hydrological regions, there were few blue spaces on both Mexican Penin-
sulas, with an increase in number from the Pacific, North, Center, and Gulf (Figure 6a).
Despite the Gulf region showing the highest total number of blue spaces, it had the second
lowest average, after the Baja California Peninsula. The region with the highest average
number of blue spaces was the Center, followed by the Yucatan Peninsula, the North, and
the Pacific regions, respectively (Table 1). The quasi-Poisson model results indicated a
positive and significant relationship between the number of blue spaces and population in
cities, albeit with a very low coefficient, and pointed out that, except for the Baja California
region, the rest of the regions had non-significant higher numbers of blue spaces than
the Gulf region. The explained variance for the model was 18.92% (Table 2). As for blue
spaces’ surface, almost 60% was in the Gulf region, and the remaining percentage was
distributed in the other hydrological regions (Figure 6b). Mean surface values of blue
spaces by region varied from 53.59 and 54.02 ha for the Peninsulas up to 1632.09 ha for
the Gulf region (Table 1). The GLM (Gamma family, identity link) showed a positive and
significant relationship between the population and lacustrine blue spaces surface with a
coefficient of 0.346 per 10,000 inhabitants. On the other hand, the Center, North, Pacific, and
the Peninsulas of Yucatan and Baja California showed negative and significant coefficients,
indicating that blue spaces in the cities of the Gulf hydrological region are undeniably
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higher than in the rest of the regions. The percent of variance explained by the model for
the surface of lacustrine blue spaces was 29.91% (Figure 6b, Table 3).
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Figure 6. Distribution of (a) number and (b) surface of lacustrine blue spaces by hydrological region.

Table 1. Descriptive statistics for lacustrine blue spaces’ number and surface by hydrological region.

Hydrological Region Cities Blue Spaces Average Number of
Blue Spaces ± SD

Total Blue Spaces
Surface (ha)

Average Blue Spaces
Surface ± SD (ha)

Gulf 57 535 9.39 ± 11.79 1632.09 28.63 ± 17.23
Center 27 499 18.48 ± 18.43 528.12 19.56 ± 11.67
North 30 434 14.47 ± 14.89 426.41 14.21 ± 7.38
Pacific 17 225 13.24 ± 15.16 141.84 8.34 ± 1.70

Yucatan Peninsula 6 90 15.00 ± 10.46 54.02 9.00 ± 0.94
Baja California Peninsula 8 51 6.38 ± 5.59 53.59 6.70 ± 1.58

Table 2. Results from the model for the number of blue spaces, the city population, and the hydrolog-
ical region where they are located.

Number of Blue Spaces 1 Coefficient Standard Error t Value p-Value Percent Change Variance
Explained (D2)

Intercept 1.868 0.196 9.516 <0.000 547.53

18.92%

Population (10,000) 8.06 × 10−7 1.94 × 10−7 4.164 <0.000 8.06 × 10−5

Center 0.585 0.242 2.421 0.017 79.50
North 0.416 0.249 1.671 0.097 51.59
Pacific 0.417 0.307 1.357 0.177 51.74

Yucatan Peninsula 0.445 0.439 1.012 0.313 56.05
Baja California Peninsula −0.527 0.567 −0.929 0.354 −40.96

1 GLM: BS number~Population (per 10,000) + Hydrological regions (quasi-Poisson family).

Table 3. Results from the model for the surface of blue spaces, the city population, and the hydrologi-
cal region where they are located.

Surface of Blue Spaces 1 Coefficient Standard Error t Value p-Value Variance Explained (D2)

Intercept 18.775 7.691 2.441 0.016

29.91%

Population (10,000) 0.346 0.103 3.356 0.001
Center −20.868 7.400 −2.820 0.006
North −20.420 7.433 −2.747 0.007
Pacific −21.161 7.455 −2.838 0.005

Yucatan Peninsula −20.352 8.425 −2.416 0.017
Baja California Peninsula −19.038 8.270 −2.302 0.023

1 GLM: BS surface (ha + 1)~Population (per 10,000) + Hydrological regions (Gamma family, identity link).
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3.4. Blue Spaces by Urban Marginalization Index

Of the total recorded number of lacustrine blue spaces in the 145 most populated Mexi-
can cities, 35% were on ‘very low’ marginalization AGEBs, and the percentage decreased to
only 2.7% of these spaces in the ‘’very high’ marginalization areas (Figure 7a). According to
the quasi-Poisson GLM results, not all levels of the UMI had the same mean number of blue
spaces. A change in the UMI level led to a change in the number of lacustrine blue spaces.
Results from the backward contrast indicated that all contrasts were negative, nonetheless
only the ‘low’–‘very low’ contrast was significant (Figure 7b, Table 4). This means that the
relation between the number of blue spaces in AGEBs and the urban marginalization index
was negative. It is less likely to find blue spaces in the more marginalized zones than in
those of less marginalization.
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Table 4. Results from models for the number of blue spaces and the UMI for backward contrasts.

Number of Blue Spaces 1 Coefficient Standard Error t Value p-Value Percent Change Variance
Explained (D2)

Intercept 1.435 0.110 13.063 <0.000 319.96

8.18%
‘Low’–‘Very low’ −0.394 0.180 −2.196 0.029 −32.56
‘Medium’–‘Low’ −0.219 0.236 −0.926 0.355 −19.67
‘High’–‘Medium’ −0.102 0.308 −0.333 0.740 −9.70
‘Very high’–‘High’ −0.363 0.482 −0.754 0.452 −30.44

1 GLM: BS number~UMI (quasi-Poisson family).

Almost 60% of lacustrine blue spaces’ total surface (ha) was in AGEBs of ‘medium’ to
‘very low’ marginalization. Near 20% was in AGEBs of ‘high’ and ‘very high’ marginal-
ization; the remaining percent was in AGEBs where no UMI was computed because they
do not meet the minimum population and housing criteria for performing the analysis
(Figure 8a). Results of LM showed a significant negative relationship between the log
hectares of lacustrine blue spaces and the five levels of UMI (F4, 298 = 2.479, p = 0.044).
According to backward contrast, the surface of the blue spaces of levels (log form) was
lower than that of their previous adjacent levels, except for the ‘medium’-‘low’ contrast.
However, the only significant (p < 0.05) result was between ‘high’ and ‘medium’ (Table 5;
Figure 8b). This indicates that AGEBs of ‘high’ and ‘very high’ marginalization have lower
surfaces than those of ‘medium’ to ‘very low’ marginalization. The explained variances
of models for the number and surface of lacustrine blue spaces concerning UMI were low,
albeit lower for the surface model than that for the number of blue spaces (Tables 4 and 5).
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Table 5. Results from models for the surface of blue spaces and the UMI for backward contrasts.

Surface of Blue Spaces 1 Coefficient Standard Error t Value p-Value Percent Change Variance Explained
(Adjusted R2)

Intercept −0.179 0.137 −1.301 0.194 −16.39

1.92%
‘Low’-‘Very low’ −0.268 0.303 −0.882 0.379 −23.51
‘Medium’-‘Low’ 0.141 0.340 0.416 0.678 15.14
‘High’-‘Medium’ −0.825 0.413 −1.999 0.047 −56.18
‘Very high’-‘High’ −0.182 0.556 −0.328 0.743 −16.64

1 LM: BS surface (log(ha + 1))~UMI.

Finally, the Chi-squared test showed a significant relationship between UMI and the
type of space where blue spaces were located (Chi220 = 437, p < 0.0001). Larger proportions
of golf courses than expected were associated with the ‘very low’ marginalization areas
and lower proportions than expected with the rest of the UMI levels; green spaces were
associated with ‘low’ marginalization AGEBs, dams to ‘medium’ marginalization, and
undefined blue spaces to ‘medium’ to ‘very high’ marginalization zones (Figure 9).
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4. Discussion

Blue spaces are part of the identities of cities worldwide and are significant for popula-
tion and wildlife [7,70,71]. Lacustrine blue spaces are integral components of Mexican cities,
yet their overall availability was low in number and extension for most cities, being their
distribution associated with the country’s contrasting geographic and socioeconomic traits.
Furthermore, most recorded Mexican lacustrine blue spaces were artificial, with only a
small fraction of them being natural yet having a larger surface. The low number of natural
urban blue spaces suggests that just a few cities have incorporated lakes, lagoons, and other
lentic water bodies as they have settled and grown, and most have built these spaces. At a
national level, these tendencies are consistent with previous findings on the assessment of
natural and artificial blue spaces since Iojă et al. [59] reported low availability of blue spaces
in Romania, and Darrah et al. [3] documented the decline of natural spaces and the increase
in artificial ones from 1970 to 2015 on a global scale and in Latin America. These signifi-
cant differences between the proportions of artificial and natural lacustrine blue spaces
are associated with the existence of this contradictory practice of desiccation of natural
spaces and, at the same time, the generation of artificial ones. In Mexico, this practice can
be traced back to the foundation and establishment of the current Mexico City on Lake
Texcoco and others from the same lacustrine system [2]. Lacustrine blue spaces in Mexican
cities are modified and mainly constructed to fulfill recreational and leisure activities and
provide other cultural ecosystem services for the population [12,72–75]. The ecological
and environmental services provided by lacustrine urban spaces [7,74,76] are becoming
recognized as they can be considered nature-based solutions to address environmental and
social challenges in the current times [13,18,77].

As being intertwined with green spaces [6,19], the association of a higher number and
surface of lacustrine blue spaces with less marginalized zones in cities is in line with the
studies showing an inequitable distribution of green, blue-green, and blue spaces across
cities’ territories, often associated with variables that reflect wealthier conditions [50,78–83].
Furthermore, as being mainly artificial, blue spaces in golf courses contribute to an increase
in the total number of blue spaces in Mexican cities, with both positive and negative
ecological and economic outcomes [84,85]. However, their presence was highly associated
with zones of very low marginalization. This implies that while blue spaces in golf courses
are valuable for biodiversity and their ecological services [86,87], the cultural services they
provide are only directly accessible to the segment of the population that can afford their
admission [88,89]. Consequently, their benefits for the rest of the population are indirect,
as, for example, that derived from tourism [90].

The uneven distribution of natural and artificial blue spaces availability in the most
populated cities of Mexico associated with the less marginalized zones could indicate,
at least, a distributive environmental injustice [51,53] regarding urban lacustrine blue
spaces. Distributive environmental injustice is widely reported for public space, albeit
mainly for green spaces, including explanations of its causes and aspects of accessibil-
ity [47,49,51,53,91]. For both natural and artificial lacustrine spaces, it seems that corre-
sponding local authorities and real estate developers have favored and oriented their
interest and efforts, to fulfill the requirements of the wealthier sectors of the population
in Mexican cities nationwide. However, further studies at local and national scales are
needed on distributive environmental justice for urban blue spaces, as well as on the other
dimensions of environmental justice as procedural and interactional [53,92]. In terms of
planning and management of cities and their blue and green spaces, achieving an equi-
table distribution is not only about generating more spaces or providing more surface
area, but about ensuring available and accessible spaces of quality, and the services they
provide, to all people, including vulnerable groups and minorities, also according to their
needs [52,53,83,93–95].

The geographic attributes of the country also drove the distribution of lacustrine blue
spaces. The Gulf Hydrological Regions have the highest total values for the four indicators
by city evaluated. In this region are the six cities with the largest blue spaces of natural
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origin, which account for almost 45% of the total surface of the recorded lacustrine blue
spaces. This region has the highest annual total mean natural surface runoff [96] since
several of the country’s largest rivers flow into the Gulf side of the country. Yet, the total
number and surface of lacustrine blue spaces in cities from the Pacific Region were relatively
low considering that this has the second highest annual total mean natural surface runoff
yet representing only 35% of that from the Gulf Region.

Furthermore, only 17 studied cities were in the Pacific region, contrasting with the 51
in the Gulf. In the North and Center regions are all the dams we recorded, contributing to
a higher surface in cities from those regions in comparison with both Peninsulas, which
have the lowest values of lacustrine blue spaces number and surface, as having the lowest
annual runoff, also. While the presence and surface of lacustrine blue spaces are associated
with the hydrological diversity of Mexico, other geographic variables could contribute
to the variation in their distribution as orography (i.e., plains, plateau, hills, mountain
basins), which has shown to have an influence on blue spaces surface in other countries [59].
Variations in altitude, climate regions, or vegetation regions on blue spaces attributes and
distribution in Mexico remain to be tested.

Regarding city population size, the number and the surface of lacustrine blue spaces
increased as the cities’ population increased. Nonetheless, the quasi-Poison and Gamma
models’ coefficients were very low per 10,000 inhabitants, and the deviances explained
were also low, indicating that the model could be improved by including other explanatory
variables [65]. Beyond the statistical implications of the models, these suggest a low
availability of lacustrine blue spaces for the people in the most populated cities in Mexico,
which was also evident from the values obtained of the indices of m2 of blue spaces per
inhabitant and the percentage that these spaces represent from the cities surface. A similar
tendency for both these indices is reported by Iojă et al. [59] for blue spaces in Romania on
a nationwide scale.

Limitations and Opportunities

We here focused on lacustrine blue spaces in the Mexican cities of more than 100,000 in-
habitants, yet information is necessary about smaller cities or peri-urban blue spaces, which,
given their nearness to the cities’ boundaries, are affected by their growth and metabolism.
We found that most Mexican cities have at least one lacustrine blue space, for most of
which their condition and many aspects about them are unknown (e.g., levels of pollution
and eutrophication, ecosystem services they provide in their current state, who are the
beneficiaries of such services, which spaces are sources of risks or diseases to population),
which need to be studied at local and regional scales. From the 145 studied cities, there are
studies on water quality and biodiversity of lacustrine blue spaces, for only a few of them,
as is the case of Villahermosa and Tampico, located in the Gulf hydrological region with
the larger natural lakes and lagoons [21,25,34,97–99], Mexico City, with large natural blue
spaces and numerous small artificial ones [23,100–103], and Cuernavaca and Puebla in the
Center hydrological region [5,104].

In a small fraction of the studied cities, we did not detect the presence of lacustrine
blue spaces. Nonetheless, this does not mean that those cities do not have blue spaces
but that they may not have been detectable, either because they were dry or because
they were surrounded by vegetation or other covers that hid the water mirrors, on which
our study is primarily based, during the period of study. This, in turn, is related to blue
spaces seasonality, a factor for variation in the data since water mirrors change their size
depending on the season [38]. Therefore, the size and presence of lacustrine blue spaces in
cities can vary depending on the date (of satellite images) on which measures were taken.
In this case, available images were from January 2017 to October 2021, spanning dry and
rainy seasons throughout the country. In some cases, images from 2017 were the most
recent images available on Google Earth. In this sense, temporal studies are necessary
to update the status of blue spaces’ presence, surface, and other variables [59], including
their establishment or incorporation history into cities through an intensive compiling of
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complementary sources of suitable information (e.g., older satellite imagery, orthophotos,
older pictures, historical maps and documents).

Through available satellite imagery, we can only infer some of the information on
the lacustrine blue spaces, like land use of their location, their use, and whether they are
natural or artificial, the reason why field work is necessary to establish those variables
as accurately as possible, as well as on physical, chemical, and biological aspects, water
depth, quality, and supply. Once collecting information for the high number of blue spaces
for which we could not identify if they were natural or artificial, nor the land use where
they are located or their predominant use, our results will vary. The polygon used as
city delimitation and the quality of the satellite image (cloud cover, pixel size) also added
variability to the obtained results.

Blue spaces’ indicators need to be considered and complemented with other indicators
as those of green spaces to offer a general view of their availability in cities on a national
scale [59]. Some information on their presence, location, surface, and number per city
can be extracted from the INEGI website, from the section hydrography (https://www.
inegi.org.mx/temas/hidrografia/ accessed on 20 October 2021), and the digital Map of
Mexico at http://gaia.inegi.org.mx/mdm6/ (accessed on 22 October 2021), also from
INEGI, nonetheless, the information for some urban areas appears incomplete, mainly
for artificial spaces. It would be worthwhile to address the magnitude of coherence or
inconsistency between official and satellite image-derived information, considering the
seasonality of blue spaces and dates of the information gathering [59]. While this is, to
our knowledge, one of the first studies with an overview to understand blue spaces on a
national scale, more in-depth studies can and need to be generated. There is still a wide
range of opportunities for the study of the state and both positive and negative aspects
of urban blue spaces from diverse disciplines such as biology, ecology, political sciences,
anthropology, sociology, legislation, planning, management, restoration, hydrology, and
others, considering them as spaces of social and ecological importance for the population
wellbeing and the resilience of cities.

5. Conclusions

Lacustrine blue spaces are inherent elements of Mexican cities; however, even though a
high percentage of them are artificial, their availability in number and surface is low nation-
wide. Such a low availability derives in both low values of m2 per inhabitant and coverage
percentages of the cities. Lacustrine blue spaces appear inextricably intertwined with green
spaces such as parks of several types and golf courses, and to a lesser extent with residential
green spaces. Hence, the main apparent use that such spaces fulfill in cities is recreational
and scenic. In other words, they function mainly as providers of cultural ecosystem ser-
vices. Blue spaces are unevenly distributed across the most populated Mexican cities in
association with geographic and socioeconomic conditions since it is more likely to find
more and larger blue spaces in cities along the Gulf of Mexico hydrological region and areas
of low marginalization. This could be an indication of distributive environmental injustice
for lacustrine blue species among and within the most populated cities in Mexico. Further
studies on urban blue spaces’ physical, chemical, ecological, biological, and sociocultural
aspects are necessary, both temporally and spatially, at local, regional, and national scales,
including aspects of procedural and interactional environmental justice. Along with green
spaces, lacustrine blue spaces should be considered and attended to in cities’ planning and
management agendas to increase their equitable provision of services, the resilience of both
lacustrine blue spaces and the cities, and as a pathway for urban sustainability.

https://www.inegi.org.mx/temas/hidrografia/
https://www.inegi.org.mx/temas/hidrografia/
http://gaia.inegi.org.mx/mdm6/
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