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Abstract: Soil Organic Carbon (SOC) is a crucial indicator of ecosystem health and soil quality. Ma-
chine learning (ML) models that predict soil quality based on environmental parameters are becoming
more prevalent. However, studies have yet to examine how well each ML technique performs when
predicting and mapping SOC, particularly at high spatial resolutions. Model predictors include
topographic variables generated from SRTM DEM; vegetation and soil indices derived from Landsat
satellite images predict SOC for the Lakhimpur district of the upper Brahmaputra Valley of Assam,
India. Four ML models, Random Forest (RF), Cubist, Extreme Gradient Boosting (XGBoost), and
Support Vector Machine (SVM), were utilized to predict SOC for the top layer of soil (0–15 cm) at a
30 m resolution. The results showed that the descriptive statistics of the calibration and validation
sets were close enough to the total set data and calibration dataset, representing the complete samples.
The measured SOC content varied from 0.10 to 1.85%. The RF model’s performance was optimal
in the calibration and validation sets (R2c = 0.966, RMSEc = 0.159%, R2v = 0.418, RMSEv = 0.377%).
The SVM model, on the other hand, had the next-lowest accuracy, explaining 47% of the variation
(R2c = 0.471, RMSEc = 0.293, R2v = 0.081, RMSEv = 0.452), while the Cubist model fared the poorest
in both the calibration and validation sets. The most-critical variable in the RF model for predicting
SOC was elevation, followed by MAT and MRVBF. The essential variables for the Cubist model
were slope, TRI, MAT, and Band4. AP and LS were the most-essential factors in the XGBoost and
SVM models. The predicted OC ranged from 0.44 to 1.35%, 0.031 to 1.61%, 0.035 to 1.71%, and 0.47
to 1.36% in the RF, Cubist, XGBoost, and SVM models, respectively. Compared with different ML
models, RF was optimal (high accuracy and low uncertainty) for predicting SOC in the investigated
region. According to the present modeling results, SOC may be determined simply and accurately. In
general, the high-resolution maps might be helpful for decision-makers, stakeholders, and applicants
in sericultural management practices towards precision sericulture.

Keywords: environmental covariates; predictive mapping; random forest; sericulture soil; digital
SOC map
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1. Introduction

Soil Organic Carbon (SOC) imparts a significant role in greenhouse gas dynamics by
acting as a sink and source based on the prevailing conditions and soil management. Soil
is the most-extensive carbon storage system in the terrestrial ecosystem. Thus, the global
scientific community requires an understanding of the dynamics of soil organic carbon.
As a result, there is a growing demand for SOC information worldwide [1,2]. The best
depiction of SOC information is high-resolution soil maps, which are difficult to prepare at
the global level simultaneously, and SOC information needs to be continuously upgraded
as and when the region-specific information is available. Recently, soil mapping has been
achieved through ground-based surveys; the spatial distribution of the soil properties of
a landscape is difficult to specify at an appropriate resolution through these traditional
mapping methods. Thus, developing a more-accurate and -reliable methodology and
process is highly required to forecast the soil properties of specific soil types or locations.

In line with this, Digital Soil Mapping (DSM) is a highly promising methodology
combining two advanced technologies, i.e., machine learning and remote sensing, such
as Hyper spectral, multispectral, and radar [3,4]. DSM is in high demand globally to
map region-specific soil qualities and is influential in achieving various sustainability
goals, including land-use management. DSM’s vital machine learning (ML) techniques are
artificial neural networks, decision trees, linear models, multivariate adaptive regression
splines, regression trees, and support vector machines [5,6]. The statistical relation among
the soil, environmental variables, satellite information, topographic characteristics such
as digital elevation models, etc., is the merit of these methodologies, which have many
advantages over the traditional methods of soil mapping. Due to these advantages, there
has been a surge in DSM investigations, especially regarding the spatial variation in soil
properties observed in recent decades [7,8]. Hengl et al. [9] used DSM at a resolution
of 1 km in Africa to forecast soil parameters such as organic carbon, pH, sand, silt, and
clay fractions. Hengl et al. [10] used DSM at a resolution of 250 m to estimate SOC, pH,
texture, and bulk density on a global scale. The GlobalSoilMap consortium is one of the
best platforms to utilize the historical, as well as the recent information of the different
regions and convert it into synchronized global information for further utilization in
policy formulation, infrastructural development, biodiversity conservation, disaster risk
assessment, etc. [11,12].

Northeastern India is rich in flora and fauna, has specific climates, high endemism,
and is one of the most-vulnerable ecoregions of the globe [13]. The Brahmaputra Valley
region has a unique status among the different ecosystems of Northeastern India. For
example, the world’s most-expensive golden silk, muga, is endemic to this region and has
high traditional and ethical values among tribal and non-tribal inhabitants [14]. Muga
silkworm rearing is an entirely outdoor activity, i.e., rearing is carried out on the host
plant. Som is the primary host plant for muga silk production. Assam contributes > 90%
of the muga silk production [14]. Lakhimpur is the highest muga-silk-producing district
among all the producing districts in the world. The Brahmaputra Valley, especially the
upper part, loses Soil Organic Carbon (SOC) due to enhanced land-use land-cover changes,
deforesttion, flooding, leftover fallow land, etc. SOC is highly required to understand the
carbon pool dynamic under various agricultural and forest ecosystems. Machine learning
can serve as an essential tool to investigate and estimate the SOC at the landscape level
by using lower physical inputs than grid-based physical mapping. It also reduces the
uncertainty level, which is higher in grid-based physical mapping. Keeping this view,
the current investigation was planned using 160 endemic silk (muga and eri)-specific soil
organic datasets of the Lakhimpur district of Assam, which bears the first rank in Muga silk
production globally. The aims of the investigation were (i) to prepare a digital SOC map
with different ML algorithms, (ii) to evaluate the model efficiency, and (iii) to identify the
most-influencing environmental covariates in SOC distribution under silk-producing soils.
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2. Materials and Methods
2.1. Study Area

Lakhimpur is located in the northeast corner of Assam State and between 26◦48′ and
27◦53′ northern latitude and 93◦42′ and 94◦20′ east longitude (Figure 1). Papump and Siang
(Arunachal Pradesh), Dhemji and Majuli (Assam), and Bishwanath (Assam) are situated on
north, east, south, and west, respectively. The Brahmaputra and Subansiri Rivers flow east
and south of Lakhimpur. Lakhimpur’s total geographical area is about 2277 km2. The rural
and urban areas are 2257 and 20 km2, respectively. Lakhimpur’s climate is subtropical and
has hot, humid summers and cold winters. The mean annual and soil temperatures are
24.5 ◦C and 22 ◦C, respectively. The mean annual precipitation ranges from 2000–4000 mm.
The dominant soil of Lakhimpur is alluvial. Lakhimpur contributes to all major types of
silk and is the highest in muga silk production among all the districts in India.
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Figure 1. Spatial distribution of soil sampling points in the study area of the Upper Brahmaputra
Valley in northeast India.

2.2. Soil Sampling and Analysis

The topsoil samples (0–15 cm) were collected through a v-notch following systematic
randomized sampling from the study region. The initial cleaning was opted to be performed
at each sampling point to ensure a debris-free soil sample. The composite samples were
prepared in the field through the proportionate method (200 g from each sample) to
represent the complete field condition. There were a total of 10 samples that contributed
to each composite sample. The minimum quantity of the replicate was restricted to 500 g.
One-hundred sixty composite samples were collected from the muga and eri sericulture
farms. All the composite replicates were transported to the laboratory. Each replicate was
air-dried in the shade and sieved with a 2 mm sieve. The wet oxidation method was used
to estimate the SOC in the soil [15] as the OC recovery range was reported to be 60–86%
with an average recovery of 76% [15].

2.3. Digital Soil Mapping Technique

The SCORPAN model deduces soil class/properties at a specific place indirectly from
environmental factors such as age (a), climate (c), geographical position (n), organisms
(o), parent material (p), and relief (r) [16]. The SCORPAN model provides the quantitative
(empirical) relationship among the soil characteristics and variables that control spatial
variability. The SCORPAN model follows Dokuchaev’s [17] and Jenny’s [18] theories.

S = f(s, c, o, r, p, a, n) (1)
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Soil can be used as the input data for the SCORPAN model in point data format,
existing soil maps, or spectral characteristics (remotely sensed). Environmental covariates
are raster data processed by a Geographic Information System (GIS) and are digital and
geo-graphically explicit. The SCORPAN model makes quantifying the connections between
spatially explicit digital environmental variables and the predicted soil properties easier.
Uncertainty estimation under the SCORPAN model is more straightforward than other
traditional methods.

2.4. Selection of Environmental Covariates

Forty-nine pedogenesis-related environmental covariates (ECs) were collected from
multiple sources, i.e., indexes and data products determined from the satellites. These ECs
were categorized as climate, organism, parent material, position, relief, remote sensing,
and soil. The 30 m spatial resolution and 16 d revisit duration of the Landsat 8 Operational
Land Imager have been extensively used in DSM [8]. The Landsat 8 Surface Reflectance
Level 1 Tier 1 was used to calculate related indices using land surface reflectance data
(https://www.usgs.gov, accessed on 25 May 2023). The spectral indices such as the
Normalized Difference Vegetation Index (NDVI) and Landsat data (1–11 bands) were used
to predict the SOC and used as variables in the model. A digital elevation model (30 m
spatial resolution) was produced by SRTM and used to derive relief covariates. By using
SagaGIS Version 6.3.0, the terrain indices such as the Aspect (Asp), Elevation (Elev), Slope
(Slp), Relative Slope Position (RSP), Topographic Wetness Index (TWI), Multi-Resolution
index of Valley Bottom Flatness (MRVBF), Valley Depth (VD), Convergence Index (CI),
Channel Network Base Level (CNBL), Channel Network Distance (CND), LS-factor, Plan
Curvature (PlaC), Profile Curvature (PrC), Total Catchment Area (TCA), Topographic
Positioning Index (TPI), and Topographic Roughness Index (TRI) were generated. All
19 bioclimatic variables were retrieved from WorldClim products (http://www.worldclim.
com/version2, accessed on 25 May 2023) for each sampling point to use in the model. All
collected covariates were aggregated/disaggregated through average resampling/bilinear
resampling into a 30 × 30 m grid. Quantitative spatial models were developed using these
aggregated ECs. All the data used in the prediction modelling were in raster format. The
sampling coordinates were converted into UTM WGS84 Zone 46 N before use.

Feature selection was carried out by a multicollinearity test. Based on the SCORPAN
conceptual model of soil development, it was possible to generate 49 environmental co-
variates as predictors from three data sources, i.e., geomorphometric/Digital Elevation
Model (DEM), remote sensing, and climatic variables, where the spatial variability of the
soil organic carbon was explained. Since the number of covariates was initially 49, there
could be a high correlation among them. Therefore, multicollinearity (a common limita-
tion of modeling) might have existed. Consequently, the Variance Inflation Factor (VIF),
implemented by using the SPSS software (IBM SPSS Statistics 20.0), was used to evaluate
the distributions and relationships between all environmental covariates. In brief, the VIF
assesses how much the variance of an estimated regression coefficient increases when the
predictors are correlated. This approach tries to remove some irrelevant covariates step by
step from the dataset. The covariates were selected based on the VIF values, ranging from 1
to less than 5. The final feature selection step was performed to considerably reduce the
number of covariates without significantly decreasing model prediction accuracy. Based on
the VIF value, 28 environmental covariates were selected from multiple sources (Table 1).

2.5. Machine Learning Techniques

Four ensemble models (Random Forest (RF), regression tree (Cubist), Extreme Gradient
Boosting (XGBoost), and Support Vector Machine (SVM)) were used for the prediction
mapping of the SOC in the present investigation. These ensemble models are constructed
by integrating multiple learners/algorithms. The ensemble model was constructed by the
ensemble learning/method, which integrates multiple algorithms. The respective trend

https://www.usgs.gov
http://www.worldclim.com/version2
http://www.worldclim.com/version2
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analysis was conducted in the R 4.1.2 software [19], and maps were reproduced in ArcGIS
10.3 software.

Table 1. Different environmental covariates used in the models.

Groups Predictor Abbreviation Resolution Description

Terrain indices Elevation (m) Elev 30 m Vertical distance above sea level

Slope Slp 30 m Inclination of the land surface
from the horizontal

Relative Slope Position RSP Relative slope position

Topographic Wetness Index TWI 30 m Ratio of local catchment area to
slope

Multi-Resolution index of Valley
Bottom Flatness MRVBF 30 m Measure of flatness and lowness

Valley Depth VD 30 m Relative position of the valley

Channel Network Base Level CNBL 30 m Calculates the distance to a
channel network base level

Channel Network Distance CND 30 m Calculates the distance to a
channel network

Spectral indices Normalized Difference
Vegetation Index NDVI 30 m Amount of vegetation

Landsat data (11 bands) Band1–11 30 m Landsat OLI spectral band
Climate Annual Precipitation AP 1 km Bioclimatic variables (BIO1)

Mean Annual Temperature MAT 1 km Bioclimatic variables (BIO12)

2.5.1. Random Forest

Random forest consists of multiple decisions (Classification and Regression Trees
(CARTs)) based on the binary rule. Each input is considered a tree algorithm to define a
relationship between dependent and independent variables. The essential parameters of
random forest, i.e., the number of variables (Mtry) and the Number of trees (Ntree), can be
selected and adjusted each time during the decision process to obtain the optimum result.
The Ntree and Mtry were kept in the range of 1–30 and 100–3000, respectively, as defined
parameters (Table 2). The final prediction of RF is the accumulation of the results of all the
individual trees (algorithms). Out-Of-Bag (OOB) estimates the error by bootstrapping the
original datasets. The Mean-Squared Error (MSEOOB) is determined by combining the OOB
predictions from all trees [20]:

MSEOOB =
1
n∑n

i=1

(
zi − ẑOOB

i

)2
(2)

where ẐOOB
i is the average of all OOB predictions. The percentage of explained variance

(Varex) is determined after the MSEOOB is normalized because it depends on the unit of the
response variable:

Varex = 1− MSEOOB
Varz

(3)

where Varz denotes the answer variable’s overall variance; thus, RF is handy for predicting
the output of ecological variables under a composite environmental system. The “ranger”
function in the “caret” package is called in R 4.1.2 for random forest prediction.

2.5.2. Cubist

Cubist is based on the linear regression model [6]. Furthermore, it recently gained
importance in DSM investigations in various ecological and geological regions [21,22].
These models (linear regression) have a highly classified relationship with the end value [23].
This linear regression model is used as the leaf nodes of the other regression tree algorithms
in the Cubist machine learning techniques. Cubist produces multivariate models, which
are composed of various rules. Thus, the prediction model under the Cubist environment
is a selection of the rules. In the regression tree (Cubist), the number of model trees
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(committees) and the number of nearest neighbors (neighbors) were defined as 1–100 and
0–9, respectively (Table 2). This study used the “Cubist” package in the R 4.1.2 software.

Table 2. Hyperparameters of machine learning algorithms used in this study.

ML
Algorithms

Random
Forest (RF)

Cubist (Regression
Tree) Extreme Gradient Boosting (XGBoost) Support Vector

Machine (SVM)

Hyperparameters Mtry Ntree Committees Neighbors Booster Max_Depth Min_Child
_Weight

Colsample
_Bytree Subsample eta Kernel

Type C σ
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2.5.3. Extreme Gradient Boosting

The Extreme Gradient Boosting (XGBoost) algorithm is generally used to enhance the
performance of the regression tree and K classification. XGBoost improves the calculation
speed and reduces the chance of overestimation by simplifying the objective functions.
Automatic simultaneous computation during the training step is another merit of XGBoost.
Supplemental training strategies were used to extend “strong” learners from the “weak”
learners by “boosting”. Under XGBoost’s training steps, simultaneous computations for
the functions are performed automatically [24]. The XGBoost algorithm’s parameters, i.e.,
the algorithm type, the depth of the tree, the sum of the weights of all observations, the
sample number provided to a tree, the variables used in tree construction, and the learning
rate used in this investigation, are given in Table 2.

2.5.4. Support Vector Machines

Support Vector Machines (SVMs) are considered as common predictors for any multi-
variate function up to a specified accuracy. SVMs are used to solve regression problems
through linear and nonlinear models. The linear model detects the noise in the datasets, and
the nonlinear model converts the input space into a larger dimension [25]. Under the SVM
classification and regression process, a set of connected supervised learning algorithms was
used. These algorithms are the universal predictors of multivariate functions with high
accuracy. In the present investigation, the range of components, input data, kernel type
function, parameter for penalty, bandwidth parameters, etc., were used (Table 2).

2.6. Model Evaluation

In this study, four evaluation metrics were calculated to analyze the model perfor-
mance: the coefficient of determination (R2), Mean Error (ME), Lin’s Concordance Corre-
lation Coefficient (CCC), and Root-Mean-Squared Error (RMSE). The RMSE and R2 were
used to measure the accuracy and stability, respectively. A smaller RMSE and higher R2
value depict the accuracy and stability of the model, respectively. The sample set in an
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80:20 ratio was used for calibration and validation. The RMSEc and RMSEv were used
to express the fitting accuracy of the models’ calibration validation, respectively. These
validation metrics are calculated as follows:

R2 = 1− ∑n
i=1(pi − oi)

2

∑n
i=1( p̂i − ôi)

2 (4)

ME =
1
n∑n

i=1(pi − oi) (5)

RMSE =

√
1
n∑n

i=1(pi − oi)
2 (6)

where pi and oi are the predicted and observed values and p̂i and ôi are the means of the
predicted and observed values.

CCC =
2ρσ0σp

σ02 + σp2 +
(
µ0 − µp

)2 (7)

µ0 and µp are the means of the observed and predicted values, and σ0
2 and σp

2 are
corresponding variances. ρ is the Pearson correlation coefficient between the observed and
predicted values.

2.7. Uncertainty Assessment

The current study used non-parametric bootstrap methods to analyze the spatially
detailed quantification of the best model’s SOC prediction uncertainty. It ensured that
the sample size and probability distribution of the old and new bootstrap datasets were
the same. Fifty bootstrapped datasets were created for the calibration. Through the
final evaluation indication and predicted outcome, respectively, it was presumed that
the validation dataset’s average accuracy was good. Maps of the 0.05 and 0.95 quantiles
were created by the estimate. In other words, there were uncertainty levels for the SOC
predictions for each pixel position in the research region. The 90% confidence interval’s
upper and lower bounds were mapped. Using the 5th and 95th percentiles of prediction,
the mean of the SOC contents in each pixel and the 90% CI were determined. For the
top-performing model, three maps of the SOC were created: the mean forecast, lower
confidence interval (5%), and higher confidence interval (95%).

The Prediction Interval Coverage Probability (PICP) criteria were used to assess the
uncertainties of the prediction [26,27]. The following confidence intervals were utilized in
this study: 99, 97.5, 95, 90, 80, 60, 40, 20, 10, and 5%. One should expect the PICP value
or proportion to be close to the corresponding confidence level to determine whether the
indicated uncertainties have been effectively computed [28,29]. The uncertainty is at its
lowest at the PICP, which is approximately 100(1 − a) %, like a 90% confidence interval.
The accuracy of the PICP was established by an estimate of 90% for a 90% prediction
interval. The standard deviations of the accuracy metrics (R2, RMSE, and ME) made
from the 50 bootstrapped datasets were also employed to indicate, to a certain degree, the
stability and uncertainty of the predictions.

3. Results
3.1. Descriptive Statistics

Eighty percent of the calibration set and twenty percent of the validation set, each
comprising 128 and 32 sample points, were divided from the 160-sample dataset. The
calibration set’s coefficient of variation, skewness, and kurtosis values were proximal to
the total set data and represented a complete sample, according to the descriptive statistics
(Table 3), performed for the calibration and validation sets. The measured SOC content
was found in the 0.10–1.85% range. The considerable variation between the minimum
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and maximum SOC envisaged that the surface soil of the upper Brahmaputra Valley is
susceptible to the environment, management practices, and soil disturbance as flooding is a
yearly event in the studied region. The higher cumulative variation (47.36%) indicates that
the SOC had high spatial variation and a semi-homogenous geographical distribution in the
investigated region. This might be due to the topographical variation, crop management
practices, and land-use and land-cover changes. A similar argument was devised by Jena
et al. [30] and Moharana et al. [4,8] in their respective studies in the northeastern regions.
Based on the investigation, contemporary statistical procedures must be prioritized to
capture the geographical variability in the SOC as it is a stochastic variable highly influenced
by the soil formation and the regional climate.

Table 3. Descriptive statistics of soil organic carbon in the study area of Upper Brahmaputra Valley
in northeast India.

Dataset n Min Max Mean SE Median SD CV Skewness Kurtosis

Total 160 0.10 1.85 0.81 0.03 0.75 0.38 47.36 0.28 −0.66
Calibration 128 0.10 1.54 0.81 0.03 0.81 0.37 45.78 0.04 −0.88
Validation 32 0.29 1.85 0.78 0.07 0.63 0.42 54.37 1.05 0.27

SD, Standard Deviation; SE, Standard Error; CV, Coefficient of Variation.

The frequency distribution of the calibration and validation dataset of the SOC content
is depicted in Figure 2. The rug plot on the X-axis represents the locations and SOC contents
of the particular sample-collection point. The bell-shaped curve of the SOC contents shows
the normal distribution. Further, normalization has yet to be opted for as machine learning
models do not require normalization of the data points [31]. The prediction models were fit
using the original SOC concentration in the studied location. The probability densities and
histograms are depicted by curves and bars, respectively. The uncertainties of the spatial
autocorrelation were checked through the Global Moran’s I. It was ensured that there was
no spatial autocorrelation in the geographic patterns before fitting the machine learning
techniques (prediction models).
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The descriptive statistics of the environmental covariates are presented in Table 4.
Terrain attributes such as the Asp, CI, CND, LS-factor, MRRTF, MRVBF, RSP, Slp, TCA, and
TPI were highly variable (CV > 35%). Landsat bands had a CV < 15%, indicating high data
homogeneity. Our findings from the CV analysis suggest that the environmental covariates
had a semi-homogeneous geographical distribution, which may be related to variations
in the research area’s soil-forming factors. As demonstrated by Falahatkar et al. [32] and
Dharumarajan et al. [27], a soil attribute such as SOC is a stochastic variable supported
by the continuation of the soil-formation processes and the change in the climate. As a
result, it is essential to use contemporary statistical procedures to survey the geographical
variability in the SOC.

Table 4. Descriptive statistics of environmental covariates used in the models.

Covariates Min Max Mean Median SD CV Skewness Kurtosis

Asp 0.00 6.28 3.18 3.14 1.86 58.32 −0.02 −1.09
CI −47.18 51.21 5.39 3.84 14.96 277.65 0.33 1.46

CNBL 70.75 109.97 82.43 79.61 8.59 10.42 1.18 0.67
CND 0.00 22.51 7.03 5.98 5.37 76.44 0.75 0.02
Elev 59.67 116.40 88.53 86.13 11.17 12.62 0.34 −0.46

LS-Factor 0.02 9.90 2.67 2.56 1.62 60.83 1.31 3.54
MRRTF 0.00 4.42 0.65 0.33 0.83 128.10 2.06 4.23
MRVBF 0.00 5.80 0.73 0.30 1.10 150.04 2.51 6.26
NDVI 0.08 0.46 0.37 0.37 0.05 14.19 −1.15 4.44
RSP 0.00 0.43 0.11 0.10 0.09 83.05 1.17 1.26
Slp 0.00 0.26 0.10 0.10 0.05 50.57 0.31 0.11

TCA 959 4,892,340 78,638 2317 522,500 664 8 71
TPI −11.19 10.49 0.85 1.26 2.98 352.22 −0.39 1.59
TRI 1.08 8.40 3.23 3.08 1.22 37.73 1.07 2.27
VD 18.95 100.15 59.45 59.20 17.64 29.68 0.09 −0.63

Band1 10,693.90 14,115.70 11,112.31 11,038.65 355.06 3.20 4.01 31.11
Band2 9613.74 13,974.50 10,121.27 10,015.80 448.33 4.43 4.22 33.29
Band3 8952.72 14,430.60 9615.18 9455.46 554.81 5.77 4.38 34.80
Band4 7539.60 15,172.70 8488.40 8311.01 796.62 9.38 4.02 30.28
Band5 14,978.70 21,984.60 18,392.15 18,427.75 1178.43 6.41 0.10 0.37
Band6 11,266.50 20,536.80 13,582.21 13,334.00 1183.53 8.71 1.79 7.28
Band7 7657.73 18,707.30 9506.82 9174.76 1252.43 13.17 2.90 17.33
Band8 8331.01 14,683.00 9091.32 8789.09 739.24 8.13 3.19 19.53
Band9 5024.32 5068.92 5048.36 5048.27 7.03 0.14 0.00 0.93
Band10 27,930.40 30,232.70 28,404.28 2343.90 268.27 0.94 2.56 13.60
Band11 24,840.80 26,183.80 25,195.66 25,178.80 178.82 0.71 1.66 6.24

AP 2554.71 3253.06 3019.87 3126.40 222.67 7.37 −0.59 −1.18
MAT 23.65 24.15 23.98 23.95 0.10 0.43 −0.24 −0.41

SD, Standard Deviation; CV, Coefficient of Variation.

The pairwise correlation coefficient (r) was computed to determine the relationship
between the topographic and remote sensing covariates and the SOC (Figure 3). The
correlation matrix showed that the SOC had a positive correlation with the elevation
(r = −0.108, p < 0.05), NDVI (r = 0.07, p < 0.01), and CNBL (r = 0.178, p < 0.05). In contrast,
a significant negative correlation was observed for the AP (r = −0.091, p < 0.05) and TPI
(r = −0.16, p < 0.05). The remaining topographic attributes (Asp, MRVBF, and LS-factor)
were not significantly correlated with the SOC in the upper Brahmaputra Valley regions.
Among the Landsat 8 remote sensing data, Band1, 2, 6, and 7 were positively correlated
with the SOC. In the upper Brahmaputra Valley, soil formed on the top of the slope and,
then, moved outward or downward under the influence of gravity and deposited in the
valley. Therefore, the elevation and slope always negatively correlated with the SOC. The
present study’s correlation coefficient was low, although a similar trend was observed.
Anthropogenic activity in the valley may be the reason for the low SOC in that region.
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This observation is in agreement with the work carried out by previous researchers [3] in
similar landscapes.

Land 2023, 12, x FOR PEER REVIEW 11 of 18 
 

 

Figure 3. Correlation analysis between covariates and SOC in the study area of Upper Brahmaputra 

Valley in northeast India. Abbreviations for the variables are listed in Table 1. ** Correlation is 

significant at the 0.01 level. * Correlation is significant at the 0.05 level. 

3.2. Evaluation of Prediction Models 

The R2, CCC, RMSE, and ME were computed, and the results are depicted in Table 5. 

The performance (goodness of fit and errors employed) of the RF, Cubist, SVM, and 

XGBoost models for the prediction of the SOC in the upper Brahmaputra Valley in the 

northeast state of India was evaluated. The XGBoost model had the highest accuracy and 

the lowest error on the calibration set (R2c = 0.998, RMSEc = 0.022%) and had slightly lower 

accuracy on the test set (R2v = 0.152, RMSEv = 0.424%). In contrast, the RF model 

performed well on both the calibration and validation sets (R2c = 0.966, RMSEc = 0.159%, 

R2v = 0.418, RMSEv = 0.377%). However, the SVM model had the next-lowest accuracy, 

accounting for just around 47% of the variance, and the Cubist model fared the poorest 

on both the calibration and validation sets (R2c = 0.471, RMSEc = 0.293, R2v = 0.081, RMSEv 

= 0.452). The RF model provided the lowest RMSE, i.e., 0.159 and 0.377, for the calibration 

and validation datasets. However, the lowest ME was observed for XGBoost, which was 

0 on the calibration dataset and 0.054 on the validation dataset. The ME for the RF model 

was 0.001 and 0.136 for the calibration and validation datasets. The CCC values of 0.863 

and 0.549 on the calibration and validation datasets were found for the RF model, 

suggesting good agreement between the predicted and observed values. Based on the 

highest R2 for the validation value of the RF model, it showed the best ability to predict 

the SOC in the sericultural soil of this northeast region of India. 

  

Figure 3. Correlation analysis between covariates and SOC in the study area of Upper Brahmaputra
Valley in northeast India. Abbreviations for the variables are listed in Table 1. ** Correlation is
significant at the 0.01 level. * Correlation is significant at the 0.05 level.

3.2. Evaluation of Prediction Models

The R2, CCC, RMSE, and ME were computed, and the results are depicted in Table 5.
The performance (goodness of fit and errors employed) of the RF, Cubist, SVM, and
XGBoost models for the prediction of the SOC in the upper Brahmaputra Valley in the
northeast state of India was evaluated. The XGBoost model had the highest accuracy and
the lowest error on the calibration set (R2c = 0.998, RMSEc = 0.022%) and had slightly lower
accuracy on the test set (R2v = 0.152, RMSEv = 0.424%). In contrast, the RF model performed
well on both the calibration and validation sets (R2c = 0.966, RMSEc = 0.159%, R2v = 0.418,
RMSEv = 0.377%). However, the SVM model had the next-lowest accuracy, accounting
for just around 47% of the variance, and the Cubist model fared the poorest on both the
calibration and validation sets (R2

c = 0.471, RMSEc = 0.293, R2
v = 0.081, RMSEv = 0.452).

The RF model provided the lowest RMSE, i.e., 0.159 and 0.377, for the calibration and
validation datasets. However, the lowest ME was observed for XGBoost, which was 0 on
the calibration dataset and 0.054 on the validation dataset. The ME for the RF model was
0.001 and 0.136 for the calibration and validation datasets. The CCC values of 0.863 and
0.549 on the calibration and validation datasets were found for the RF model, suggesting
good agreement between the predicted and observed values. Based on the highest R2 for
the validation value of the RF model, it showed the best ability to predict the SOC in the
sericultural soil of this northeast region of India.
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Table 5. Performance of various models for predicting soil carbon in the study area of Upper
Brahmaputra Valley in northeast India.

Model Calibration Validation

R2
c CCCc RMSEc MEc R2

v CCCv RMSEv MEv

RF 0.966 0.863 0.159 0.001 0.418 0.549 0.377 0.136
Cubist 0.396 0.571 0.291 0.039 0.230 0.314 0.485 0.062
SVM 0.471 0.453 0.293 0.015 0.081 0.175 0.452 0.049

XGBoost 0.998 0.990 0.022 0.000 0.152 0.190 0.424 0.054

R2: coefficient of determination, ME: Mean Error, RMSE: Root-Mean-Squared Error, CCC: Lin’s Concordance
Correlation Coefficient.

The RF model’s R2 was not the highest. Still, its RMSE was the lowest when compared
to the other models since its predictions were closer to the actual values than those of
other models (the predicted–observed fit line was almost 1:1) (Figure 4). Additionally,
the slope of the predicted–observed fit curve for the RF and Cubist models dramatically
improved, demonstrating a considerable improvement in prediction accuracy, primarily
due to the concentration of the scatter distribution. The scatter spots are nearer to the curve
of the fitting.
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3.3. Importance of Environmental Variables

Figure 5’s comparative relative variable importance plots show that RF chose more
variables than the Cubist, SVM, and XGBoost models. The order of the most-crucial factors
in the RF model for predicting the SOC was Elev > MAT > Band 3 > Band1 > MRVBF.
The most-crucial variables for utilizing a Cubist model to predict the variance of the SOC
were Slp, TRI, MAT, and Band4. The AP and LS were the most-important factors in the
XGBoost and SVM models. One of the primary benefits of RF models over other ML
models is that the former assess the relative relevance of the covariates in the model, in
contrast to Cubist, which maintains the model through stepwise selection only with highly
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correlated predictive variables [33]. Even though there may be relationships between the
predictive variables and soil, RF avoids removing those [34]. In a study conducted in
the Zahak County of Iran, Pahlavan-Rad and Akbarimoghadam [35] discovered that the
CNBL and elevation were the most-crucial covariates for predicting soil qualities. The
elevation and slope were the most-significant factors for the SOC prediction for both the
RF and Cubist models, followed by the other topography and vegetation factors. In the
upper Brahmaputra Valley in the northeast state of India, flooding causes soil sediments to
flow and gather in lower-elevation regions. These topography-driven erosional processes
transport the SOC from higher elevations, where the SOC concentrations are often lower,
to lower elevations, where the SOC concentrations are typically higher [30].
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of Upper Brahmaputra Valley in northeast India.

3.4. Spatial Prediction of SOC

Significant discrepancies between the predictions are shown in Figure 6, which depicts
the spatial predictions of the SOC made by the various models. Although the four models’
cross-validation accuracy metrics were comparable, RF’s predictions more closely matched
the spatial pattern of the OC we anticipated in the research area. The SOC in the research
area appeared to be underestimated by the SVM prediction. All of the maps for the
prediction models displayed abrupt and gradual shifts throughout the research region. In
the RF, Cubist, XGBoost, and SVM models, the predicted OC ranged from 0.44 to 1.35%,
0.031 to 1.61%, 0.035 to 1.71%, and 0.47 to 1.36%, respectively. It is impossible to say which
model is the most-accurate without independently confirming these predictions; however,
we selected the RF model as the “best” because the cross-validation accuracy metrics were
similar, and the spatial predictions visually matched our perception of the terrain. The
spatial patterns of the SOC in all models were reasonable, with large values in the study
area’s western region, which is dominated by forest and covered in dense vegetation,
and minor values in its eastern regions, which have soils subject to significant erosion
and crop cultivation. Low-elevation cultivable fields appear more uncertain in the upper
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Brahmaputra Valley than in high-elevation cultivable lands. This can be explained by the
variation in the management techniques used in the more-intensively farmed regions [30].
The covariates utilized in these predictive models may have needed to adequately account
for the management aspects contributing to the spatial heterogeneity in the SOC content
levels in these downstream-farmed regions. The high-elevation areas are less actively
farmed, which may have less impact due to management and because the terrain features
have a stronger hold over them. SOC concentrations are the outcome of the balance between
carbon imports and outputs in soils; several variables, including local characteristics such
as vegetation and topography and environmental conditions, affect this equilibrium [36].
According to Pahlavan-Rad et al. [37], topography was the most-significant covariate
influencing the distribution of the SOC in our study.

Land 2023, 12, x FOR PEER REVIEW 14 of 18 
 

This can be explained by the variation in the management techniques used in the more-

intensively farmed regions [30]. The covariates utilized in these predictive models may 

have needed to adequately account for the management aspects contributing to the spatial 

heterogeneity in the SOC content levels in these downstream-farmed regions. The high-

elevation areas are less actively farmed, which may have less impact due to management 

and because the terrain features have a stronger hold over them. SOC concentrations are 

the outcome of the balance between carbon imports and outputs in soils; several variables, 

including local characteristics such as vegetation and topography and environmental 

conditions, affect this equilibrium [36]. According to Pahlavan-Rad et al. [37], topography 

was the most-significant covariate influencing the distribution of the SOC in our study. 

 

Figure 6. Distribution of soil organic carbon predicted by various model in the study area of Upper 

Brahmaputra Valley in northeast India. 

3.5. Uncertainty Prediction 

To quantify the spatial distribution of prediction uncertainty, bootstrapping was 

used. Figure 7 displays the level of uncertainty in the best model’s (RF) predictions. The 

uncertainty analysis partially confirmed the trend of the ML algorithms’ ability to predict 

the SOC. With a 90% confidence interval, uncertainty was found in the lower and upper 

predicted bounds. The effectiveness of the predicted uncertainties during testing was 

evaluated using the PICP technique. The uncertainty analysis exhibited the same trends 

as the ML algorithms’ capacity to predict the SOC. 

Figure 6. Distribution of soil organic carbon predicted by various model in the study area of Upper
Brahmaputra Valley in northeast India.

3.5. Uncertainty Prediction

To quantify the spatial distribution of prediction uncertainty, bootstrapping was
used. Figure 7 displays the level of uncertainty in the best model’s (RF) predictions. The
uncertainty analysis partially confirmed the trend of the ML algorithms’ ability to predict
the SOC. With a 90% confidence interval, uncertainty was found in the lower and upper
predicted bounds. The effectiveness of the predicted uncertainties during testing was
evaluated using the PICP technique. The uncertainty analysis exhibited the same trends as
the ML algorithms’ capacity to predict the SOC.
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predicted by the best model (RF) in the study area of Upper Brahmaputra Valley in northeast India.

The 90% confidence interval with lower and higher prediction bounds showed the
degree of uncertainty. The PICP methodology is a method for assessing how well the
anticipated uncertainties perform throughout testing. The percentage of observations
within the associated prediction interval is the PICP. Simply assessing the coverage of
the prediction intervals around different degrees of observed confidence allows for this.
When the coverage probability and confidence level are closely monitored along the 1:1
line, as shown in Figure 8’s graphs, it is obvious what to expect. According to Jena et al. [3],
the probabilities above the 1:1 line show a slight overprediction of the uncertainty range.
This may be because of the uncertainty approach. First, the sample density is where the
forecast uncertainty comes from. Our study indicated more uncertainty in the region with
a high elevation, few sampling locations, and generally dispersed fields. This resulted
from the need for further knowledge regarding the connections between the soil and
environmental covariates.

While this is happening, capturing the spatial variability of the environmental vari-
ables with more accuracy is possible, significantly reducing the deviation of the sample
sites, particularly in the region of dramatic change for the environment and soil charac-
teristics [38]. Second, the quality and amount of the environmental variables contribute
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to the uncertainty. To predict the SOC, we gathered as many environmental variables as
we could. The sample density should be increased; useful variables should be captured;
spatial modelling techniques should be optimized to reduce uncertainty. The reliability and
accuracy of the data products may be increased by minimizing sampling and modelling
uncertainty using high-quality sample data and environmental variables, particularly in
areas where soils and landscape changes occur quickly.
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4. Conclusions

In this work, four tree-based machine-learning algorithms were examined. It calcu-
lated the SOC’s spatial distribution patterns in northeastern India’s upper Brahmaputra
Valley. This study used optimum models, environmental covariates, and information to
determine the spatial distribution of the SOC. A succinct summary of the conclusions is as
follows:

1. RF had the best accuracy and the lowest uncertainty for predicting the regional SOC
compared to XGBoost, SVM, and Cubist.

2. Compared to XGBoost, SVM, and Cubist, the RF showed higher R2 and RMSE values
for predicting SOC based on the validation data.

3. The order of the most-crucial factors in the RF model for predicting the SOC was
Elev > MAT > Band 3 > Band1 > MRVBF. The most-crucial variables for utilizing a
Cubist model to predict the variance of the SOC were Slp, TRI, MAT, and Band4. The
AP and LS were the most-essential factors in the XGBoost and SVM models.

4. The predicted SOC ranged from 0.44 to 1.35%, 0.031 to 1.61%, 0.035 to 1.71%, and 0.47
to 1.36% with the RF, Cubist, XGBoost, and SVM models.

Based on the combination of DSM methodologies with currently available, high-
resolution soil-formation environmental data, the results updated the accuracy of the
regional variation of the SOC prediction at both the national scale and a detailed level.
The SOC maps highlight probable reasons for the predicted uncertainty, which may be
used to assess changes in soil quality following extensive cropping and direct further
high-resolution DSM research. In general, fine-resolution soil maps are valuable to many
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soil and environmental professionals and land managers in northeast India. As a result, we
advocate employing the comparative technique used in this study area to map the SOC in
other parts of India, given that the agroecological zones differ significantly throughout the
northeast state of India.
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