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Simple Summary: Earthquakes are a common occurrence at The Geysers geothermal field in California
which, over the years, have led to general land sinking in the area. In our study, we explore the
correlation of geothermal data and seismicity and find that the injection rate exhibits a high correlation
with the number of earthquakes. Additionally, we rely on satellite imagery which measures the extent
of the land subsidence and develop a machine learning model that predicts future land subsidence,
finding that it has a relatively low error rate. Moreover, we incorporate geothermal data into this model
and find that it performs even better. All in all, this encourages the use of machine learning models in
hazard mitigation in order to minimize the potential impacts that land subsidence might bring.

Abstract: The Geysers geothermal field in California is experiencing land subsidence due to the
seismic and geothermal activities taking place. This poses a risk not only to the underlying infras-
tructure but also to the groundwater level which would reduce the water availability for the local
community. Because of this, it is crucial to monitor and assess the surface deformation occurring
and adjust geothermal operations accordingly. In this study, we examine the correlation between the
geothermal injection and production rates as well as the seismic activity in the area, and we show
the high correlation between the injection rate and the number of earthquakes. This motivates the
use of this data in a machine learning model that would predict future deformation maps. First,
we build a model that uses interferometric synthetic aperture radar (InSAR) images that have been
processed and turned into a deformation time series using LiCSBAS, an open-source InSAR time
series package, and evaluate the performance against a linear baseline model. The model includes
both convolutional neural network (CNN) layers as well as long short-term memory (LSTM) layers
and is able to improve upon the baseline model based on a mean squared error metric. Then, after
getting preprocessed, we incorporate the geothermal data by adding them as additional inputs to
the model. This new model was able to outperform both the baseline and the previous version of
the model that uses only InSAR data, motivating the use of machine learning models as well as
geothermal data in assessing and predicting future deformation at The Geysers as part of hazard
mitigation models which would then be used as fundamental tools for informed decision making
when it comes to adjusting geothermal operations.

Keywords: hazard mitigation; machine learning; geothermal reservoirs; neural networks; InSAR

1. Introduction

Induced seismicity typically refers to the seismic activity arising from anthropogenic
activities [1]. These activities induce various stress changes within the subsurface, directly
leading to an earthquake’s occurrence [2]. Fluid injection, fluid extraction, mining, and hy-
draulic fracturing are a few of the many activities that can lead to induced seismicity [3–5].
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In many cases, this additionally leads to land subsidence in the area where these anthro-
pogenic activities are taking place [6–9]. For example, Hejmanowski et al. [10] found that
over half of the total subsidence resulting from mining-induced seismicity in the copper
mining area of the Lower Silesia region of Poland happens within a few days after an
earthquake’s occurrence. Additionally, Deng et al. [11] found significant subsidence in the
vicinity of the city of Pecos in western Texas, which they attributed to the extraction of oil
and gas as well as groundwater.

In fact, land subsidence is one of the most damaging effects that accompanies these
anthropogenic activities. Not only does it damage buildings and the underlying infrastruc-
ture, but it also causes deep fractures in the surface layer and alters the surface drainage
pattern [12]. Moreover, land subsidence reduces the capacity of the aquifers to hold water
and increases the risk of flooding [13]. Given the fact that the compaction is irreversible
and permanent [14], it is crucial to monitor this phenomenon and be able to accurately
measure it [15].

The Geysers geothermal field is one of the most seismically active regions in northern
California [16], and it is heavily monitored by a large permanent seismic network that
comprises many stations in order to record the seismic events occurring in the area [17].
Tens of micro-earthquakes typically occur each day, with the overwhelming majority of
the associated hypocenters coinciding with the steam production field [18]. In fact, it is
believed that the compounding and cumulative effects of these small earthquakes, which
are attributed to the commercial extraction of steam and injection of condensate into the
geothermal reservoir [19,20], can lead to serious infrastructural damage potentially similar
to that caused by large earthquakes [21].

No major fault line directly exists at The Geysers geothermal field [22], which means
that a major earthquake (M ≥ 7.0) is unlikely to occur in the immediate area. However,
the Maacama Fault, which is located about 10 km west of the field, is certainly capable of
producing such an earthquake based on the measured slip rates and the actual length of
the fault itself [23,24]. Hence, fluid injection at The Geysers poses a serious concern in the
potential triggering of such an earthquake [25].

Another major concern is the continuous subsidence occurring at The Geysers geother-
mal field [26]. As stated previously, land subsidence can have a detrimental effect on the
geothermal operations as well as the surrounding environment. Efforts to monitor this
deformation began as early as 1972, when the United States Geological Survey (USGS) and
the National Geodetic Survey set up a network of precise vertical and horizontal controls
in order to monitor the effects of the geothermal production [27]. In the following 5 years,
a series of first-order leveling surveys found that the field was indeed subsiding, with the
greatest subsidence centered on the area with the most steam extraction at that time [27].
Further monitoring was performed by Mossop et al. [28], who used GPS receivers and
found that the subsidence continued from 1977 to 1996 at a steady rate of about 5 cm/year,
with peak rates of about 90 cm/year.

Damage as a result of subsidence related to geothermal operations specifically is
not uncommon. To start with, geothermal operations at Cerro Prieto, which is the oldest
and largest Mexican geothermal field, have caused considerable damage in the form of
ground fissuring as well as severe damage to infrastructures such as irrigation canals and
roads [29]. Furthermore, subsidence at the Wairakei–Tauhara geothermal system has caused
casing damage to some of the eastern borefield wells as a result of the ground strains [30].
Within the Wairakei subsidence bowl, the damage also included pipelines, wells, and drains
as well as roads, electric lines, and the local hotel [31]. Finally, in an attempt to stimulate
an enhanced geothermal system (EGS), water was injected at high pressures into a deep
well in Basel [32]. The injection, which covered a period of 6 days, resulted in more than
10,500 recorded seismic events [33]. This culminated in a magnitude 3.2 earthquake which
caused an estimated CHF 7 million worth of damage to the urban area of Basel [34].

EGS efforts have taken place at The Geysers geothermal field. Traditionally, the concept
of EGS is to extract heat from hot rocks that have not fractured naturally, which would
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increase the number of areas where it can be applied by a great deal compared with
naturally formed geothermal reservoirs [35]. After a suitable site is found, wells would be
drilled into the hot rock, which becomes stimulated to produce stable fractures through
which water can be injected and cycled [36]. The permeable pathways would allow the
water to absorb heat, which would then be collected at the production wells [36]. However,
at The Geysers, EGS projects are used to extract recoverable geothermal energy that has
not been used [37]. Specifically, the Northwest Geysers EGS demonstration project aimed
to stimulate a deep high-temperature reservoir by injecting water in order to increase
permeability, increase reservoir pressure, mitigate corrosion, and reduce non-condensable
gas concentrations [38]. Two previously abandoned wells in the northwest region of the
field, Prati 32 (P-32) and Prati State 31 (PS-31), were reopened and prepared for stimulation
in 2011 as an injection and production well, respectively [39]. A third well, Prati 25
(P-25), was also reopened in order to monitor the steam production [40]. The stimulation
phase was able to open up new pathways for fluid flow, as evidenced by the progression
of induced seismicity hypocenters [40]. Despite encountering corrosion issues in 2013,
the project was largely successful in its goals [40].

Given the large areal nature of the deformation at the geothermal field, we rely on
remote sensing techniques, since traditional geodetic techniques that use point-based
measurements do not fully capture the entire picture [41]. Specifically, our study uses
interferometric synthetic aperture radar (InSAR) to monitor and predict deformation at
The Geysers. InSAR is a technique that takes two synthetic aperture radar (SAR) images
over the same region taken at different times and combines them to form a map show-
ing the displacement in the satellite’s line of sight (LOS) [42]. InSAR functionality has
been discussed rigorously in many studies and articles [43–45]. This geodetic technique
has proven to be an essential tool in monitoring subsidence all over the world due to
Sentinel-1’s global coverage and abundant data supply [46,47]. For example, subsidence
at the geothermal fields of the Taupo volcanic zone in New Zealand was measured using
InSAR, and the measurements were found to compare well to leveling data at several
fields across different time periods [48]. Furthermore, InSAR was used to study surface
deformation at the Los Humeros Geothermal Field in Mexico, and the results were able
to reveal a fault mechanism in the reservoir which was further corroborated by relating
surface movements to volume changes within the reservoir [49].

Machine learning (ML) has become increasingly prevalent in several sectors that boast
a large amount of data [50–52]. This is due to the efficiency of ML algorithms at handling
such amounts of data as well as their ability to make accurate predictions and classifica-
tions [53]. Recently, ML algorithms have started being implemented using InSAR data,
given the fact that there is now a large dataset of images that is publicly available as well as
the fact that InSAR benefits from both spatial and temporal components [54–57]. To start
with, Roberts et al. [58] developed a convolutional neural network (CNN) model that would
characterize the stress field at geothermal reservoirs from InSAR surface displacements
and applied it successfully at the Coso geothermal field in California, showing promise
for generalization to all geothermal fields. Moreover, a K-means clustering algorithm was
applied on InSAR data in order to differentiate areas of uplift and subsidence at the Brady
geothermal field, and the results were validated with previous studies [59].

At The Geysers geothermal field, machine learning has been primarily used to under-
stand changes in faulting processes using seismic signals [60]. Machine learning has also
been used to optimize the parameters in ground motion models applied to The Geysers
geothermal field that predict the ground acceleration and velocity [61]. However, to the
authors’ best knowledge, applying machine learning models to InSAR deformation time
series with the aim of predicting future ground deformation has not been performed yet.

In this paper, we aim to predict land subsidence deformation that is occurring at The
Geysers geothermal field due to fluid extraction. First, we perform a correlation study to
look at the relationship between the seismicity in the region and the geothermal injection
and production amounts. This motivates the incorporation of these geothermal data into a
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machine learning model that uses InSAR to predict future deformation. We build a couple
machine learning models that use long short-term memory (LSTM) and convolutional
neural network (CNN) layers to make use of InSAR’s spatial and temporal components.
Finally, the model results are compared to a linear baseline model based on a mean squared
error metric.

2. Materials and Methods
2.1. Area of Study

The Geysers geothermal field is the largest geothermal field in the world, and it is lo-
cated in the Coast ranges of Northern California about 100 km north of San Francisco [28,62].
The yellow star in Figure 1 pinpoints its location on the map. The field is in a mountainous
area with elevations ranging from 195 m at the bottom of Big Sulphur Creek to 1440 m at
the top of Cobb Mountain, where it occasionally snows [63]. It is bounded by the Collayomi
Fault to the east and the Mercuryville Fault to the west, with additional faults such as the
Maacama and Healdsburg fault zones extending to the west of The Geysers [64].
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Figure 1. Map of The Geysers showing seismic activity in the region spanning from 1 January 1975 to
1 January 2023. The yellow star pinpoints the location of The Geysers geothermal field. The black
cross indicates the location of the strongest earthquake recorded during that time period (MW = 5.01
on 14 December 2016). The blue box shows the area of study for the correlation and InSAR analysis.
The red lines indicate the major faults and fault zones nearby.

The existing geothermal system forms a part of the bigger Clear Lake Volcanic System
that is located about 40 km north of The Geysers [65], which has been intermittently
active for the last 2 million years [66]. Geothermal energy extraction began over 60 years
ago when the first geothermal power plant was built in 1960 [67]. However, over time,
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steam production and reservoir pressure started decreasing due to the increased use of
the geothermal field [68]. Since fluid injection is known to increase the pore pressure of
the rock matrix [69], water collected from rainfall, local creeks, and aquifers started being
injected back into the wells [70]. Additionally, a 66 km pipeline was built in 2003 that
transports treated effluents from the nearby city of Santa Rosa to supplement the water
injection [71]. This resulted in an increased production rate, and the geothermal field
currently produces around 800 MW of electricity, which powers about 800,000 homes in the
nearby counties [60]. Given the proven effectiveness of using remote sensing techniques to
track and monitor ground subsidence [72–75] as well as the ineffectiveness of point-based
ground measurements at capturing the large areal nature of the problem [76], we utilize
InSAR data in our analysis of the subsidence at The Geysers geothermal field.

2.2. Correlation Study

Our objective was to investigate the relationship between the injection and production
of water and steam, respectively, and the local seismic activity at The Geysers. The seis-
micity data were acquired from the United States Geological Survey (USGS) catalog, while
the geothermal injection and production data were acquired from the Department of Con-
servation of California. We started by plotting the monthly seismicity in addition to the
monthly amounts of injected water and steam produced as shown in Figure 2. Visually, it
appears that the injection amount exhibits some relation to the seismicity for the magnitude
threshold used. In general, it seems that as one increases, the other increases, and vice versa.
Additionally, we plotted the annual version of the same plot in Figure 3, where a similar
relation can be seen for the injection and seismicity.
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Figure 2. A history of the monthly seismicity count (M ≥ 1.5) at The Geysers along with the injection
and production amounts from 1975 to 2023.

In order to quantify the relation between these two variables, we relied on the Pearson
correlation coefficient and the Spearman correlation coefficient, which would indicate to us
how correlated the injection and seismicity are and to what extent. The Pearson correlation
coefficient is given by [77]

rxy =
∑n

i=1(xi − x̄)(yi − ȳ)√
∑n

i=1(xi − x̄)2
√

∑n
i=1(yi − ȳ)2

(1)

where x and y are the injection amount and seismicity count, respectively, with x̄ and ȳ
being the associated means, n is the number of data points, and rxy is the resultant Pearson
correlation coefficient whose value ranges from −1 to 1. This measures the degree of the
linear relationship between the two variables, with positive values indicating a positive
linear relationship and vice versa. The magnitude of the correlation coefficient indicates
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the strength of the linear relationship. However, one must note that the Pearson correlation
coefficient is sensitive to outliers as it uses the exact values of the given data points [78].
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Figure 3. A history of the annual seismicity count (M ≥ 1.5) at The Geysers along with the injection
and production amounts from 1975 to 2023.

The Spearman correlation coefficient is given by [79]

ρ = 1−
6 ∑n

i=1 d2
i

n(n2 − 1)
(2)

where di is the the difference between the ranks of the corresponding values in the two
variables and ρ is the resultant Spearman correlation coefficient that also varies from−1 to 1.
In this case, the coefficient measures the monotonic relationship, with positive values
indicating a positive relationship and vice versa. The magnitude similarly measures the
strength of that relationship. Since the coefficient relies on the ranks of the variables rather
than the values themselves, the Spearman correlation coefficient is much less sensitive
to outliers than the Pearson correlation coefficient [80]. Hence, using both coefficients in
conjunction with each other will give us a clearer picture of the underlying relationship
between the injection and seismicity at The Geysers.

2.3. Data Preprocessing and Baseline Model

We created an InSAR time series using an open-source Python package called LiCS-
BAS [81–83], which utilizes InSAR images that have been processed through an automatic
InSAR processor called LiCSAR. These InSAR images are publicly accessible through
the Centre for the Observation and Modelling of Earthquakes, Volcanoes and Tectonics:
Looking inside the Continents from Space (COMET-LiCS) web portal [84,85]. We used
a frame ID of 115D_05066_252015 to run LiCSBAS and generated an InSAR time series
from mid-2017 to early 2022 using the default parameters. Atmospheric data were also
supplemented to LiCSBAS using the Generic Atmospheric Correction Online Service for
InSAR (GACOS) [86–89]. The perpendicular baseline b⊥ for most interferograms was
between −50 m and +50 m, with the greatest value being +150 m. The small baseline
inversion algorithm was applied to produce displacement time series in the line of sight
(LOS) of the satellite after filtering the InSAR images and building the suitable network.
A velocity map was built by taking the least squares fit for each pixel’s displacement time
series as shown in Figure 4, where one can see that The Geysers lies in a subsiding region,
indicated by the negative velocities.
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Figure 4. The resulting velocity map formed using LiCSBAS. Color indicates the speed in the line
of sight of the satellite in units of mm/year. The yellow star indicates the location of The Geysers
geothermal field.

In order to facilitate processing and training, we downsized our InSAR dataset by
clipping it to the study region shown in Figure 1. This resulted in a series of 88 images with
121 × 201 pixels centered on The Geysers geothermal field covering roughly 90 m2. Then,
we performed a series of preprocessing steps to clean the dataset. To start with, in order
to deal with the few missing values that existed in random pixels at random intervals, we
resorted to linearly interpolating the last time step (if it is missing) and then applied a
second-order polynomial interpolation for the rest of the missing values within each pixel.
This resulted in a smooth and reasonable time series where the missing values previously
were. However, at this point, the InSAR dataset had two main problems:

1. It was not equally temporally separated.
2. It had a couple large temporal gaps.

These problems, if left unaddressed, can severely affect the performance and efficiency
of a machine learning model trained on the dataset as it would be given incomplete and
irregular information [90]. Therefore, not only did we have to solve these problems, but we
also had to solve them in a way that maintained the inherent structure and patterns within
the dataset. It is for this reason that we resorted to data augmentation. Specifically, we
applied a smoothing spline using SciPy’s implementation [91], which is based on the
following equation:
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∑
j
[wj(g(xj)− yj)]

2 ≤ s (3)

where g(x) is the smoothing spline function, wj represents the associated weights, and s
is the smoothing coefficient that controls the smoothness of the resulting curve and the
closeness of the approximation of the data.

While all pixels shared the same general pattern of a cyclical decreasing deformation,
choosing the same smoothing coefficient for all of them was not optimal since each pixel
had a slightly different behavior when it came to the actual deformation values involved.
Some pixels needed more smoothing than others. Hence, we enforced an “up-down” limit
which limited the amount of minima and maxima. We chose a value of 8 since the time
series covered a period of approximately 4 years, which means that it was to be expected
that the deformation would cycle through roughly a total of 8 local minima and maxima
due to seasonal groundwater level changes [92]. Therefore, for each pixel, the smoothing
coefficient was set to 100 and incremented by 50 until the up-down limit was reached.
An example of the resulting smoothing spline interpolation is shown in Figure 5. As can be
seen, the two large temporal gaps (start of 2018 to mid-2018 and late 2018 to mid-2019) were
interpolated in a way that captured the data’s natural trend. After the smoothing spline
was produced for each pixel, we used a sampling period of 6 days to create an equally
temporally separated time series. The sampling period was chosen to be 6 days since that
aligned with the current Sentinel-1 revisit time [93]. This resulted in our dataset being
augmented from 88 images to 299 images of 121 × 201 pixels.
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Figure 5. A smoothing spline interpolation for a pixel corresponding to i = 40 and j = 70.

We performed a train test split with a training percentage of 90% and 10% reserved for
testing, given that our dataset was not too large. Additionally, we built a baseline model
in order to be able to compare our machine learning models’ results. The baseline model
had to be computationally inexpensive and not too complex, so we used a linear baseline
model where a linear fit based on least squares was performed for each pixel. The error
metric used was the mean squared error (MSE). For each time step, the MSE was calculated
for the entire image, and the average MSE over the entire range was taken to be the error.

Then, the InSAR dataset was normalized using scikit-learn’s MinMaxScaler func-
tion [94], which scales the dataset to a range of 0–1 to facilitate use with machine learning
models. An input X and output Y were created for each of the train and test sets. The input
corresponded to the previous InSAR image, and the output corresponded to the next
InSAR image.
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The geothermal injection and production data were also preprocessed in a similar
fashion. The monthly amounts were converted to daily amounts by dividing by the number
of days in the given month. A train test split was applied with the same training percentage,
and the inputs were created by taking the injection and production amounts of the day-of
the previous InSAR image.

2.4. Machine Learning Models

In developing the suitable machine learning models for the deformation prediction
problem, it was important to consider two crucial aspects of our dataset. First, the model
had to learn the inherent spatial patterns of the InSAR dataset. This would make it
more efficient at handling data pertaining to the specific region of The Geysers. Second,
the model had to learn the temporal patterns for each pixel. This would make it more
adept at predicting the precise deformation values of each pixel in the image. Therefore,
we decided to incorporate two main layers in our machine learning models: convolutional
neural networks (CNNs) and long short-term memory (LSTM) networks.

CNNs have been proven to be very powerful at processing and analyzing images [95–98].
They can even be used for time series prediction and classification [99,100]. While sev-
eral CNN model architectures exist, the main architecture involves a convolutional layer,
a pooling layer, and a fully connected layer [101]. These layers work together to extract the
different features from the images and output a prediction or classification [102,103]. A thor-
ough explanation of a CNN’s functionality and intricacies was given by Albawi et al. [104].

LSTM networks are recurrent neural networks that specialize in retaining crucial
information over long time intervals through the use of gates that govern which information
to keep and which to discard. This makes LSTM networks a powerful tool that is suitable
for time series prediction [105–108]. An in-depth review of LSTM networks and their
applications was carried out by Yu et al. [109].

In order to build and train our machine learning models, we used Tensorflow, which
is an open-source Python package for machine learning [110]. We began by building a
machine learning model that only relied on InSAR data for its inputs, called model A.
We display the model architecture in Figure 6. The model consisted of a total of 8 layers.
The first layer was the input layer that took in the previous InSAR images one at a time with
a shape of 121 × 201, with one channel that represented the LOS deformation. The images
were then fed into a time-distributed 2D CNN layer with 16 filters and a kernel size of 3.
Since we were using one image at a time (a look_back of 1), this layer was completely
equivalent to a regular 2D CNN layer. The result was 16 feature maps with a slightly
smaller resolution (119 × 199) which were then passed on to the 2D max pooling layer with
a pool size of 2. This reduced the spatial dimensions of the feature maps to 59 × 99, thereby
increasing the model’s robustness and efficiency. Each feature map was then reshaped into
a single vector in preparation for the LSTM layer that had 64 units. The output was then
flattened in order to remove the first dimension, resulting in a vector with a dimension
of 64. This was then passed on to a dense layer with 24,321 (121 × 201) units, and the
output was finally reshaped into the original image size of 121 × 201.

Another model was built that essentially used InSAR data as well as geothermal
injection and production data as inputs, called model B. This model’s architecture is
displayed in Figure 7. The layers dealing with the InSAR data were the same as model A’s.
The only difference was the incorporation of the geothermal data into the model by means
of two additional separate input layers. These layers took the injection and production
amounts on the same date as the previous InSAR image and passed them along to a dense
layer with 100 units. The resulting vectors were then concatenated with the flattened InSAR
vector and passed on to the dense layer with 24,321 units followed by the reshape layer to
bring the output back to the original image size of 121 × 201. Both models used a batch
size of 64 and were trained for 200 epochs.
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Figure 6. Model A’s architecture, including the input and output shapes.



Land 2023, 12, 1977 11 of 22

input_1

InputLayer

input:

output:

[(None, 1, 121, 201, 1)]

[(None, 1, 121, 201, 1)]

time_distributed(conv2d)

TimeDistributed(Conv2D)

input:

output:

(None, 1, 121, 201, 1)

(None, 1, 119, 199, 16)

time_distributed_1(max_pooling2d)

TimeDistributed(MaxPooling2D)

input:

output:

(None, 1, 119, 199, 16)

(None, 1, 59, 99, 16)

reshape

Reshape

input:

output:

(None, 1, 59, 99, 16)

(None, 1, 5841, 16)

time_distributed_2(lstm)

TimeDistributed(LSTM)

input:

output:

(None, 1, 5841, 16)

(None, 1, 64)

flatten

Flatten

input:

output:

(None, 1, 64)

(None, 64)

input_2

InputLayer

input:

output:

[(None, 1)]

[(None, 1)]

dense

Dense

input:

output:

(None, 1)

(None, 100)

input_3

InputLayer

input:

output:

[(None, 1)]

[(None, 1)]

dense_1

Dense

input:

output:

(None, 1)

(None, 100)

concatenate

Concatenate

input:

output:

[(None, 64), (None, 100), (None, 100)]

(None, 264)

dense_2

Dense

input:

output:

(None, 264)

(None, 24321)

reshape_1

Reshape

input:

output:

(None, 24321)

(None, 121, 201, 1)

Figure 7. Model B’s architecture, including the input and output shapes.

3. Results
3.1. Correlation Results

We computed the Pearson and Spearman correlation coefficients for the seismicity
count and injection amounts. The calculations were performed for both the monthly counts
and the annual counts as well as for different magnitude thresholds. The results are shown
in Table 1.

Table 1. Table showing the correlation coefficients for the monthly and annual seismicity and injection
counts for different thresholds.

Magnitude Threshold Pearson (Monthly) Spearman (Monthly) Pearson (Annual) Spearman (Annual)

0.0+ 0.58 0.64 0.75 0.78

0.5+ 0.61 0.65 0.80 0.79

1.0+ 0.65 0.70 0.87 0.88

1.5+ 0.73 0.70 0.91 0.81

2.0+ 0.59 0.55 0.80 0.67

2.5+ 0.40 0.39 0.65 0.48

3.0+ 0.16 0.19 0.30 0.16
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It can be seen that the correlation coefficients increased as the magnitude threshold
increased up to a threshold of 1.5, where the maximum values were achieved for most cases.
Beyond this threshold, the correlation coefficients seem to steadily decrease. This indicates
that the amount of injected water in the wells was most correlated with the resulting
magnitude 1.5–2.0 earthquakes. For magnitude thresholds 2.5 and greater, the correlation
coefficients sharply decreased. This is attributed to the fact that there are far less earthquakes
falling within that range than there are in the lower magnitude ranges.

We explored the correlation further for the case of 1.5+ by plotting the monthly
seismicity as a function of the monthly injection amount in Figure 8. A linear fit was added
to highlight the inherent linearity between the variables. We also plotted the annual version
of the same plot in Figure 9, where the linear relation is even stronger, as demonstrated by
the higher Pearson correlation coefficient. What this indicates is that, to a certain degree,
the induced seismicity at The Geysers is predictable, given the injection amount for that
time period. While these low-magnitude earthquakes do not immediately cause severe
damage, the compounding effect of them over the years definitely does. It is for this reason
that we turned our attention to characterizing and predicting the resultant deformation.
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Figure 8. Scatter plot of the monthly seismicity and injection with a linear fit.
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Figure 9. Scatter plot of the annual seismicity and injection with a linear fit.
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3.2. Machine Learning Results

The linear baseline performed relatively well, achieving an MSE of 8.79 and 7.79 for
the train and test set, respectively. It is important to note that there was no actual training
involved with the linear baseline model. The test error being slightly lower than the train
error is a reflection of the fact that the test set was simply more linear than the train test.
This is because the test set was smaller than the train test and had less deviations from the
linear model.

Due to the stochastic nature of machine learning models, it was necessary to run
the models several times and take an average MSE to get a clearer idea of the actual
performance of the model. Therefore, we ran each model 20 times and found that model A
achieved a 5.95 ± 0.27 and 6.40 ± 0.11 MSE for the train and test sets, respectively, while
model B achieved a 5.54 ± 0.46 and 6.03 ± 0.12 MSE for the train and test sets, respectively.
The errors for the linear baseline model and the two machine learning models are shown in
Table 2.

Table 2. Table showing the train and test errors of the baseline and machine learning models.

Linear Baseline Model A Model B

Train MSE 8.79 5.95 ± 0.27 5.54 ± 0.46

Test MSE 7.79 6.40 ± 0.11 6.03 ± 0.12

While both models were able to improve upon the linear baseline model, model B
outperformed the other two, as evidenced by having the lowest average error on both the
train set and the test set. The relatively low standard deviations showcase the stability
and reliability of the models in reproducing the same results. Additionally, we aimed to
visualize the performance of the models, and thus we plotted the first three images from
the test set along with the models’ predictions as well as the resulting residuals. The plots
for model A are shown in Figure 10, and the plots for model B are shown in Figure 11.
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Figure 10. Model A’s prediction of the first three images from the test set along with the residuals.



Land 2023, 12, 1977 14 of 22

122.880

122.835

122.790

122.745

122.700

38.74

38.76

38.78

38.80

38.82

38.84

38.86 Data

200

150

100

50

0

122.880

122.835

122.790

122.745

122.700

38.74

38.76

38.78

38.80

38.82

38.84

38.86 Model

200

150

100

50

0

122.880

122.835

122.790

122.745

122.700

38.74

38.76

38.78

38.80

38.82

38.84

38.86 Residuals

2

1

0

1

2

122.880

122.835

122.790

122.745

122.700

38.74

38.76

38.78

38.80

38.82

38.84

38.86

200

150

100

50

0

122.880

122.835

122.790

122.745

122.700

38.74

38.76

38.78

38.80

38.82

38.84

38.86

200

150

100

50

0

122.880

122.835

122.790

122.745

122.700

38.74

38.76

38.78

38.80

38.82

38.84

38.86

2.0
1.5
1.0
0.5

0.0
0.5
1.0
1.5
2.0

122.880

122.835

122.790

122.745

122.700

38.74

38.76

38.78

38.80

38.82

38.84

38.86

200

150

100

50

0

122.880

122.835

122.790

122.745

122.700

38.74

38.76

38.78

38.80

38.82

38.84

38.86

200

150

100

50

0

122.880

122.835

122.790

122.745

122.700

38.74

38.76

38.78

38.80

38.82

38.84

38.86

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Figure 11. Model B’s prediction of the first three images from the test set along with the residuals.

Visually, both models did a good job at predicting the true data and replicating the
general deformation patterns. The residuals were minor and seemed to be concentrated
over the geothermal field itself. Overall, the models performed well at capturing the
subsidence occurring at The Geysers and were better suited for the task than a linear
baseline model, as shown by the error differences. However, it must be noted that the
models were only predicting the next time step which corresponded to the deformation
6 days into the future. Attempting to predict values beyond that would cause the errors to
quickly rise as each new prediction was used as input for the next prediction.

In order to further visualize the performance difference between the models, the actual
and predicted deformation images from the test set were averaged and plotted on a scatter
plot with a linear fit included in Figure 12. While both models generally followed the
y = x line in this plot, it is model B that did a slightly better job at following that line, owing
to its improved predictive power.
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4. Discussion
4.1. Correlation and Machine Learning

The correlation between injection and seismicity at The Geysers geothermal field
is well documented in the literature. To start with, Majer et al. [68] looked at this very
correlation following the Santa Rosa Injection Project and found that earthquake activity
had a good temporal correlation with the injection rates. Additionally, it was noted that
this was especially true for seismic events with magnitudes greater than or equal to 1.5,
and it was found that for earthquakes larger than magnitude 3.0, the correlation was not
as present, which is in line with the findings in this study. Similar results were found by
Batini et al. [111], who looked at the Larderello–Travale steam field in Italy and concluded
that the injection-induced seismicity has a magnitude ceiling of around 2.0, after which
correlations with injection begin to decrease. Moreover, Leptokaropoulos et al. [112] studied
the correlation at two specific injection wells at The Geysers for different seismic response
delays covering a time period of 7 years from 2007 to 2014. The results showed a clear
positive correlation between the injection and seismicity rates and a peak correlation for a
seismic delay of about 2 weeks. Our results extend the correlation analysis at The Geysers
geothermal field to cover recent times and further corroborate previous researchers’ works.
Furthermore, this study motivates the incorporation of geothermal injection and production
data into machine learning models aimed at predicting future deformations, as the data
serve as a proxy for earthquake occurrence and associated subsidence.

Deformation prediction through the use of machine learning models applied to InSAR
data has been performed before. To begin with, Ma et al. [113] applied a deep convolutional
neural network to predict short-term deformation at the Hong Kong International Airport
and found that the resulting errors were low compared with ground observations and
demonstrated the effectiveness of using such a model in short-term deformation prediction.
Moreover, Liu et al. [114] developed a heterogeneous LSTM network in an attempt to
capture complex nonlinear temporal correlations and applied it over Cangzhou, China
after dividing the area into homogeneous subregions. Their results showed that the model
performed the best compared with other prediction models. In addition, in a proof-of-
concept study, Hill et al. [115] applied a range of time series prediction tools on InSAR time
series data and found that the LSTM models performed the best, especially when predicting
signals with regular annual variations over the short term, as was the case for this study.
In fact, in a previous study, we built an LSTM model and used it to predict deformation
over the city of Madera in the Central Valley in California [116]. The results were compared
to a baseline averaging model as well as a CNN model, and we found the LSTM model
built to be the best. At The Geysers geothermal field, machine learning has been used to
explore the spectral properties of seismic sources, which revealed changes in the faulting
processes [60]. Additionally, machine learning has been used to predict ground motion
resulting from induced seismicity, and the results were compared with an empirical ground
motion model, showing that the neural network performed better [61]. To the authors’ best
knowledge, machine learning used to predict subsidence at The Geysers using InSAR has
not been performed yet. Improvements in the machine learning model compared with our
previous study [116] have been made. In fact, the combination of LSTM and CNN layers
makes the models capable of capturing both temporal and spatial patterns. Additionally,
the use of larger images gives the models more data to train on and increases its predictive
capabilities. It is for these reasons that the models are able to improve upon the linear
baseline model. Finally, the incorporation of geothermal injection and production data
in model B made it more effective at predicting deformation than model A. This shows
promise for models similar to model B to be built and applied at other geothermal fields
experiencing subsidence.

Future work could be aimed at developing models that attempt prediction further into
the future. This would be accomplished either by defining a bigger time step or building
a model that is inherently trained for predicting several time steps into the future. This
would give policy makers a better understanding of what the future of the geothermal field
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looks like, aiding them in decision making. Furthermore, one could look into incorporating
even more data into the model, such as reservoir pressures, temperature profiles, flow
rates, geological data, and heat flow data. This would potentially make the model more
accurate with its predictions by tailoring it to the specifics of The Geysers geothermal field.
Finally, it is possible to further optimize the hyperparameters involved with the machine
learning model, making it even better at predicting accurate deformation values. These
methods could be an extensive grid search, a Bayesian-based optimization, a gradient-based
optimization, or even an evolutionary algorithm.

4.2. Limitations

There are some limitations to take into account when looking at this study. To start
with, we relied entirely and solely on the USGS catalog for the seismicity data in our study.
However, several other earthquake catalogs exist that have slightly different techniques
and protocols of processing data which ultimately lead to different earthquake parameters,
such as the moment magnitude, location, origin time, and moment tensors. As a result,
efforts have been made to assess catalog completeness as well as accuracy [117]. While the
USGS catalog is deemed to be of good quality [118], no catalog is free of errors. However,
for the purposes of our study, errors were as limited as possible since we only relied on the
moment magnitude and counts of the earthquakes in the region for the correlation study.
Therefore, the results of the study are generally reliable. Improvements could have been
made by looking at different catalogs and combining them in a way to minimize errors and
optimize the resulting linear model to obtain more accurate relations, but that fell beyond
the scope of this paper.

The use of geodetic techniques such as InSAR is also accompanied by errors to care-
fully consider. Each InSAR image is subject to various errors from different sources, such as
orbital, atmospheric, unwrapping, and decorrelation noise errors [119,120]. The LiCSBAS
time series process typically reduces errors by eliminating unreliable InSAR images that ex-
ceed certain noise indices’ thresholds. Furthermore, the incorporation of atmospheric data
from GACOS is able to reduce the errors even further by essentially applying a tropospheric
correction to the unwrapped InSAR images. Additionally, the perpendicular baselines b⊥
of the interferograms used for the InSAR time series generation mostly ranged from −50 m
to +50 m with a maximum of +150 m. These values are low enough that the interfero-
grams are much less susceptible to errors arising from the digital elevation model [121,122].
A lower b⊥ threshold would certainly increase the accuracy of the deformation values
produced. However, its effects on the machine learning models’ performance would be
minimal. In fact, the deformation velocity values obtained were compared with Global
Navigation Satellite System (GNSS) data. The closest GNSS station is P206, and its height
is decreasing at a rate of −1.464 mm/year. The InSAR velocity map indicates a subsiding
rate of −1.1 mm/year for P206’s location. While the InSAR study does underestimate the
velocity, its values can be considered as generally reliable.

4.3. Recommendations

The neural networks built in this study outperformed a baseline linear model in
predicting future deformations when applied at The Geysers, proving the strength and ef-
fectiveness of using machine learning for land subsidence monitoring and forecasting. This
is especially true for models that not only incorporate deformation data but also geothermal
data for the case of The Geysers, as it makes the model more robust to deformation changes.
Being able to predict accurate land subsidence values is crucial to establishing policies that
would mitigate hazards associated with land subsidence. These policies would essentially
dictate the amount of fluid extraction allowed and maintain a certain balance between the
fluid injection and extraction amounts in order to achieve long-term sustainability and to
prevent excessive land subsidence that would otherwise be hazardous [123]. It is for these
reasons that we find it advisable to incorporate machine learning into hazard mitigation
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models monitoring subsidence at The Geysers, as it would directly aid policy makers in
making more informed decisions regarding the geothermal operations that are taking place.

5. Conclusions

In this paper, the correlation between seismicity and injection at The Geysers geother-
mal field was inspected, and the subsidence resulting from the induced seismicity was
predicted. We started by plotting the seismicity and geothermal injection and production
amounts from 1975 to 2023 and noticed that the injection and seismicity followed the same
trend. Efforts to quantify the relation between the two culminated in computing the Pearson
and Spearman correlation coefficients. The peak values were found to be for earthquakes
with a minimum magnitude of 1.5, and the correlation values started to decrease after a
minimum magnitude of 2.0, which suggests that injection is most correlated with seismic
events lying in the 1.5–2.0 magnitude interval. A linear fit between the seismicity and
injection was made for both the monthly and annual amounts, suggesting a predictable
seismic behavior in the given injection amounts. However, the scope of this paper was
more interested in the resulting deformation. It is for this reason that we used the results of
the correlation study as motivation for geothermal data fusion with InSAR deformation
data for prediction purposes.

An InSAR time series over The Geysers region was built using LiCSBAS, resulting
in deformation data from mid-2017 to early 2022, as well as a velocity map showing the
negative values in the area which highlight the subsidence taking place. Before applying
our machine learning models, the InSAR and geothermal datasets were preprocessed, and a
linear baseline model was built based on a mean squared error metric after splitting the
datasets into train and test sets. Two machine learning models were developed which
included LSTM as well as CNN layers in order to capture the temporal and spatial patterns
of the data. The novelty of our approach is the inclusion of geothermal data as an additional
input in model B, which improved upon model A, the model which did not include any
geothermal input. This incremental improvement provided by model B, combined with
the fact that the difference in computational times between the two models was negligible
as well as the importance of having accurate deformation values, makes it favorable to
use geothermal data in machine learning models that aim to predict deformation over
geothermal fields. Overall, this paper shows the effectiveness of machine learning models,
especially ones that incorporate additional geothermal data, in predicting the subsidence
values at The Geysers and, given the importance of having accurate deformation values
in the decision-making process of policy makers, shows the potential for use in hazard
mitigation models.
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