
Citation: Lindner, C.; Degbelo, A.;

Vassányi, G.; Kundert, K.; Schwering,

A. The SmartLandMaps Approach for

Participatory Land Rights Mapping.

Land 2023, 12, 2043. https://doi.org/

10.3390/land12112043

Academic Editor: Hariklia D.

Skilodimou

Received: 22 September 2023

Revised: 1 November 2023

Accepted: 7 November 2023

Published: 10 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

land

Article

The SmartLandMaps Approach for Participatory Land
Rights Mapping
Claudia Lindner 1,2 , Auriol Degbelo 3,* , Gergely Vassányi 1, Kaspar Kundert 1 and Angela Schwering 1

1 Institute for Geoinformatics, University of Münster, 48149 Munster, Germany;
claudia.stoecker@uni-muenster.de or claudia.lindner@kadaster.nl (C.L.); vassanyigergely@gmail.com (G.V.);
kasparjkundert@gmail.com (K.K.); schwering@uni-muenster.de (A.S.)

2 Kadaster, The Netherlands Cadastre, Land Registry and Mapping Agency,
7311 KZ Apeldoorn, The Netherlands

3 Chair of Geoinformatics, Technische Universität Dresden, 01069 Dresden, Germany
* Correspondence: auriol.degbelo@tu-dresden.de

Abstract: Millions of formal and informal land rights are still undocumented worldwide and
there is a need for scalable techniques to facilitate that documentation. In this context, sketch
mapping based on printed high-resolution satellite or aerial imagery is being promoted as a fit-
for-purpose land administration method and can be seen as a promising way to collect cadastral
and land use information with the community in a rapid and cost-effective manner. The main
disadvantage of paper-based mapping is the need for digitization to facilitate the integration with
existing land administration information systems and the sustainable use of the data. Currently,
this digitization is mostly done manually, which is time-consuming and error-prone. This article
presents the SmartLandMaps approach to land rights mapping and digitization to address this gap.
The recording involves the use of sketches during participatory mapping activities to delineate
parcel boundaries, and the use of mobile phones to collect attribute information about spatial units
and land rights holders. The digitization involves the use of photogrammetric techniques to derive
a digital representation from the annotated paper maps, and the use of computer vision techniques
to automate the extraction of parcel boundaries and stickers from raster maps. The approach was
deployed in four scenarios across Africa, revealing its simplicity, versatility, efficiency, and cost-
effectiveness. It can be regarded as a scalable alternative to traditional paper-based participatory
land rights mapping.

Keywords: land administration; paper map digitization; cadastral boundary extraction; vectorization;
sketch maps; fit-for-purpose; participatory mapping; open data kit (ODK)

1. Introduction

Land rights mapping helps to establish and document secure land tenure, ensuring
that individuals and communities have the legal recognition and protection of their rights
to use, occupy, and benefit from land. It provides a clear record of land ownership,
boundaries, and associated rights, reducing the risk of land disputes, encroachments,
and forced evictions.

There are several innovative tools and technologies that can be used for land rights
mapping. These tools leverage advancements in remote sensing, geographic information
systems (GIS), and data analysis to improve the accuracy, reliability, efficiency, and trans-
parency of land rights mapping processes [1,2]. Examples of innovative tools and tech-
nologies are manifold and include high-resolution satellite imagery and aerial imagery to
capture detailed information about land cover, land use, and boundaries [3]; Unmanned
Aerial Vehicles (UAVs) providing a flexible, cost-effective and timely collection of imagery
of small to medium-sized areas [4]; GIS software providing a powerful platform for inte-
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grating, analyzing, and visualizing land-related data; and mobile applications allowing for
GNSS-supported field data collection and mapping.

Currently, millions of land rights worldwide remain digitally undocumented. Walking
the boundaries of each owned property to record their spatial extent would not only
be time-consuming but also impractical in some cases (e.g., huge plantations, swamps,
dangerous areas). Hence, the challenge of documenting all land rights worldwide cannot
be met with a classical surveying approach alone but requires complementary approaches.
Participatory mapping using sketches presents an opportunity in this context. It can not
only speed up the data collection process but also help capture local spatial knowledge
from stakeholders and increase the community’s confidence in the mapped information [5].

There are at least three approaches used to record spatial information via the use
of sketches: digital-sketching (delineating the boundaries of a geographic entity is done
with the help of a digital map, see, e.g., Refs. [6,7]); analog-freehand-sketching (the sketch
is produced freehand on paper and no background map is used during the sketching,
see, e.g., Ref. [8]); and analog-sketching-on-map (sketching is done over a georeferenced
paper map, usually an aerial orthophoto, see, e.g., Ref. [9]). The three approaches have
both advantages and disadvantages. As for digital sketching, the advantages include the
efficiency of the data processing (i.e., the data is recorded digitally and can be automatically
post-processed, analyzed, and combined with other datasets). The disadvantages are the
learning curve (i.e., there is a need to teach people how to manipulate digital maps) and
most importantly the logistics (i.e., either a whole community needs to be moved to the
location of the Maptable [7,10] used to record the boundaries, or the Maptable needs to
be transported to different locations). The key advantage of drawing on paper maps is
that the logistics are much easier to cope with (see, e.g., Ref. [11]). Besides, it removes the
technical hurdles of recording data, which means that the participants can focus entirely
on the discussion about their surroundings and the matter at hand, rather than focusing
on their interaction with a computer [11]. Finally, drawing on paper maps requires fewer
instructions for the participants [11], and having a gentle learning curve for the participatory
mapping activities is desirable so as to ‘leave no one behind’. The key disadvantage of
drawing on paper maps is the need for digitization to bring the data into a digital format.
Currently, this digitization is mostly done manually, which is time-consuming and error-
prone. The SmartLandMaps approach aims to address that gap.

The analog-freehand-sketching approach and the analog-sketching-on-map approach
share the abovementioned advantages and disadvantages of drawing on paper. The main
difference is that the use of aerial photographs or orthophotos as reference surfaces in the
sketching-on-map strategy facilitates the preservation of spatial/geometric aspects of the
drawn units. Since our goal in this work was to capture the outlines of spatial units, we
followed a sketching-on-map strategy. The contexts of the four scenarios required the use
of base maps from different sources (i.e., satellite and drone data providers) to ensure the
most appropriate level of spatial detail and timeliness of the data during the participatory
mapping activities. The focus of this work is on the following research questions:

• RQ1: How to facilitate scalable land rights recording?
• RQ2: How to automatically extract parcel boundaries from hand-drawn sketches?
• RQ3: How to automatically extract labels from hand-drawn sketches?

RQ1 is addressed through a participatory mapping-based strategy while RQ2+RQ3
are addressed through the SmartLandMaps software for the automatic extraction of parcel
boundaries and parcel labels from paper maps. The contributions of this work are lessons
learned from deploying the approach in four scenarios (RQ1) and evaluating the digitization
software (RQ2+RQ3). As discussed in Ref. [12], cadastral boundaries can be broadly
divided into two categories: (i) fixed boundaries, whose accurate spatial position has been
recorded and agreed upon and (ii) general boundaries, whose precise spatial position is
undetermined. The approach proposed in this work assists the first-time data collection
and digitization of general boundaries.
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The remainder of the article is structured as follows. Section 2 briefly presents related
work on fit-for-purpose land administration, community-based mapping and the detection
of boundaries from aerial imagery. Section 3 presents the SmartLandMaps approach, with a
focus on preparation, the collection of informed consent, the mapping, and the processing
of the collected data. The approach was deployed in four scenarios. Section 4 provides
information about the study areas while Section 5 presents the evaluation results. Section 6
revisits the research questions and Section 7 concludes the article. This paper reuses and
extends material from Ref. [13,14].

2. Related Work
2.1. Fit-for-Purpose Land Administration

Fit-for-purpose land administration (FFPLA) aims to close the global tenure security gap
by providing secure and sustainable land rights to all members of society, in particular to
those in informal or customary land tenure situations. In contrast to traditional (classical)
survey approaches, it emphasizes the need for practical, affordable, and scalable solutions
that can be implemented in a context-specific manner to meet the diverse needs and realities
of different communities. Over the past decade, from its first publication in 2014 [15] and
the establishment of basic principles that address spatial, legal, and institutional frameworks,
the FFPLA has evolved into a viable concept that is implemented in various contexts [16].
Mapping visual boundaries using high-resolution satellite or aerial imagery is a key element of
FFPLA methods for spatial data collection [15] and has been piloted across the globe [17–21].

2.2. Community-Based Mapping

Community-based mapping is a process of visualizing and understanding the physical,
social, and economic characteristics of a community through the creation of maps. It in-
volves collecting and analyzing information about the people, places, and resources within
a particular community, and then presenting that information in a spatial format. The goal
of community mapping is to create a comprehensive understanding of a community’s as-
sets, needs, and resources, and to use this information to inform community development,
planning, and decision-making processes. Among others, community mapping has the
following key qualities:

• Increased spatial knowledge: Community members have a deep understanding of
their local area and can provide valuable insights and information that may not be
reflected in traditional maps;

• Empowerment [22]: Community-based mapping empowers local residents to take
ownership of their geographic information and to share their knowledge and perspec-
tives with others;

• Increased local engagement: By involving local residents in the mapping process,
community-based mapping can promote community engagement and strengthen
local networks;

• Improved decision-making: Community-based maps can inform local decision-making
and planning processes, ensuring that the perspectives and needs of local residents
are considered.

Best practices in community engagement and various methods of participatory map-
ping have a long history in documenting land use and tenure and are used by various,
mainly non-governmental organizations (e.g., Community Land Protection Facilitator
Guide [23]). However, community mapping approaches have also gained importance in
large-scale land tenure documentation projects (e.g., Rwanda) and are promoted as an
FFPLA methodology [16,24]. Different tools and approaches can be utilized depending on
the context, resources, and capacities [5,8,9]. However, in the realm of land administration,
Ho et al. [25] revealed that while technology aims to promote inclusivity, it often falls short
due to the lack of proper checks and the failure to view communities as equal partners in
knowledge creation.
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2.3. Detection of Boundaries Using Machine Learning and Deep Learning

Previous work has investigated the automatic detection of boundaries from aerial
and satellite imagery. These boundaries can be either from buildings [26–31] or cadastral
boundaries [32–38]. Since the focus of this work is on the automatic extraction of cadastral
boundaries, we will now briefly review previous work touching on this topic.

Mango et al. [35] used neural networks to facilitate the process of converting paper-
based cadastral maps into digital data. L-CCN was used to detect lines in Ref. [39],
and ResNet-50 was used to detect numbers in Ref. [40] with promising results. Fetai et al. [34]
used both the U-Net model [41] (open-source) and the ENVINet5 model (proprietary)
while training deep neural networks on the task of automatic recognition of visible land
boundaries. The areas selected for testing featured agricultural fields, roads, fences,
hedges and tree groups. They reported accuracies greater than 95% for both models.
Crommelinck et al. [36] used gPb (globalized probability of boundary) to automatically
detect contours from orthoimages that show visible cadastral boundaries. They reported
errors of omission between 14% and 52%. Crommelinck et al. [32] compared random
forest (RF) and convolutional neural networks (CNNs) for the detection of cadastral bound-
aries and reported accuracies of 41% and 52%, as well as precisions of 49% and 76% for
the two methods, respectively. Xia et al. [37] tested the performance of CNNs against
MRS (multi-resolution segmentation) and gPb (globalized probability of boundary) for
cadastral boundary detection in urban and semi-urban areas. They reported that CNNs
outperformed MRS and gPb. The average quality assessment values obtained in their
work for the CNNs were 0.79 in precision, 0.37 in recall, and 0.50 in F-measure. Finally,
Persello et al. [38] used the SegNet model [42] to learn about the boundaries of agricultural
fields in smallholder farms. They reported F-measures higher than 0.60 in their test areas.

Overall, many of the works presented above have relied on deep learning with promis-
ing results. Although deep learning models can learn complex characteristics that are
challenging to specify manually, one drawback of deep learning methods is that they need
large datasets for training. This is not the case in this work, where we only have a small
number of instances (see Section 4). By contrast, conventional approaches (e.g., region-
based, edge-based, and clustering-based) to image segmentation require less data. Their
drawback, however, is the sensitivity to contrasts between objects and the background,
and the subjectivity of the parameter selection (see Ref. [43]). We present an edge-based
processing pipeline for boundary extraction in Section 3.4. We also report on the perfor-
mance of the U-Net model [41] and the SegFormer model [44] on the boundary detection
task. These two models have proven useful in many scenarios and correspond to the state
of the art on semantic image segmentation. The U-net model was trained from scratch
using a standard architecture. We fine-tuned pretrained SegFormer models on the sketches
collected during the work, in the spirit of few-shot learning [45]. Image segmentation
approaches using deep learning were reviewed in Ref. [46]. For a recent review of semantic
segmentation in the context of geospatial artificial intelligence, see Ref. [43].

3. Method—The SmartLandMaps Approach

We build upon best practices for community engagement and participatory mapping
methods while designing our mapping strategy (Figure 1). The mapping strategy is
introduced in this section, with a focus on preparations (Section 3.1), the collection of
informed consent (Section 3.2), mapping (Section 3.3), and the processing and digitization
of the collected data (Section 3.4). For a discussion of the three pillars of the SmartLandMaps
approach (acceptance, efficiency, and flexibility), see Ref. [47].

The recommended mapping process can be divided into three main phases: the prepa-
ration phase, the mapping phase, and the processing phase. The preparation phase should
start at least six weeks before the mapping phase to ensure enough time for raising the
community’s awareness and allow for technical preparations. The actual mapping phase
relies on a strong commitment from the local community and includes mobilization, an in-
troduction to the mapping activity, obtaining informed consent and the actual collection
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of spatial and textual data on land ownership and land use. The processing phase starts
by tracing validated lines with a black marker, followed by taking photos of the map,
which are then uploaded to the SmartLandMaps cloud along with the collected textual
information. From here, land data can be fed into a national land administration system
and further used for validation processes and issuance of land titles. The entire process
requires only a tablet computer or smartphone, no software, and no sophisticated technical
skills on the part of the community mappers.

Figure 1. Mapping strategy of the SmartLandMaps approach.

3.1. Preparations

Preparations for community mapping processes are highly important and can sig-
nificantly influence the success, accuracy, reliability, and effectiveness of the mapping
initiative. Several aspects need to be considered to ensure that the process is well-organized,
community-driven, and results in accurate, relevant, and impactful mapping outcomes.
Table 1 outlines main activities and considerations in chronological order.

The purpose and scope of the community mapping activity should be at the forefront
of any further decisions about the mapping process and subsequent preparation. Eight
to four weeks before the planned fieldwork, a fieldwork plan should be drawn up. This
will include decisions on the extent of the mapping area, a thorough review of existing
procedures and practices that may influence the mapping process, and a data model and
data collection strategy—all in cooperation and consultation with local partners, i.e., gov-
ernment representatives or local organizations. Once the mission plan has been drawn up,
special attention should be paid to sensitizing the community, involving local leaders and
community elders and gaining their trust and involvementin the process. If community
members understand the purpose and benefits of the mapping activity, they are more
likely to participate actively, contribute valuable information and take ownership of the
results. The data model and the data collection strategy are introduced and discussed with
community representatives. The data model should be appropriate to the mapping activity
and local circumstances. Co-designing with local representatives ensures compliance with
standards while meeting specific needs.

In addition to planning and consultation with local stakeholders, map production
plays an important role. The printed orthophoto is the key mapping instrument, and if the
map content or the resolution does not match the scope and the mapping objective, it is
unlikely that the mapping activity will be successful. In particular, the selection of a suitable
orthorectified image is important, especially in urban areas with multi-storey buildings
causing relief displacement. Poor-quality maps can make it difficult to identify properties
and respective boundaries. In this regard, the size of boundary objects and parcels should
guide a decision on the required spatial resolution. Customary lands with several hundreds
of hectares require a different spatial resolution of the base map than small plots in urban
surroundings. At the same time, the data source for map creation should match the given
timeline and budget. As a starting point, Enemark et al. [48] suggests different scales for
mapping applications depending on topography and land use.
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Table 1. Preparation steps for community mapping with the SmartLandMaps approach.

What When Who Comments

Definition of the objective of the
community mapping activity 8 weeks ahead All parties involved What to achieve? Whom to speak to? What

challenge to solve?

Definition of the mapping area 6 weeks ahead Local partner The area should be accessible, involvement of
local representatives is crucial

Decide on and obtain the base data
for the maps 5 weeks ahead

Local partner
(existing aerial data?),
local drone company,
satellite data provider

Based on local requirements, financial resources,
data availability

Identification of current surveying
practices, data models and local

requirements
5 weeks ahead Local partner Derive from country-specific land policies and

survey manuals

Definition of a data collection
process (and data model) 4 weeks ahead

SmartLandMaps in
consultation with

local partners

Based on local characteristics/visual
boundaries/mission objective/type of land

tenure to be mapped

Creating a field mission plan 4 weeks ahead All parties involved Decide on what needs to be done, by whom and
with what kind of equipment

Sensitization of local stakeholders in
the mapping area 3 weeks ahead Local partner Share field mission plan and fine-tune

requirements and activities based on local needs

Prepare and print base maps and
mapping material 2 weeks ahead SmartLandMaps and

local entity
Decide on layout, stickers and map features

based on local circumstances

Circulate the final schedule of
all activities 1 week ahead Local partner Notify local representatives (and citizens) about

meetings and activities

3.2. Informed Consent

Following Bhutta [49], there are four determinants of the process of developing in-
formed consent: (i) information provision and sharing by the research team with the
participants and community leaders, (ii) discussion and interaction between researchers
and potential participants, (iii) participant understanding, and (iv) acceptance/rejection of
participation. To comply with these, we used an iterative model for consent. As discussed
in Ref. [50], iterative models of consent are based on the assumption that ethical agree-
ments can best be secured through a process of negotiation that aims to develop a shared
understanding of what is involved at all stages of the research process. Hence, participants’
agreement is not obtained through one-off (written) agreements, but the consent process is
spread throughout the whole duration of the project (i.e., consent is asked on an as-needed
basis at different stages of the data collection).

Step 1: Sensitization and information (group consent): Before any data was collected, we
informed all participants about the purpose, the procedure, the benefits, and the risks of
participating in this research. We mentioned explicitly that the participation is voluntary
and that the participants can quit the data collection activity at any time without having
to state their reasons for doing so. Furthermore, we elaborated on the protection of any
data collected and outlined the anonymization procedure. On site, a script detailing these
aspects was developed and read out loud to the group. We then gave room for questions
and gave the possibility for the attendants to leave the group if they did not want to
participate. With this procedure, a first oral group consent was collected and the mapping
and sketching could start with the persons manifesting their consent by staying.

Step 2: Participatory mapping of the parcel boundaries: The group that consented in
step 1 discussed and marked the boundaries of their respective plots on the printed or-
thophoto provided by SmartLandMaps. Their discussions were not recorded. To protect
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the anonymity of the participants, we took pictures without participants’ faces (i.e., hands
drawing on the paper sheet), photographing only the hands of those who consented. In this
step, no additional personal information is collected.

Step 3: Collection of personal information (oral informed consent): After the discussion
and sketching session, we collected information on land ownership. Prior to starting the
digital questionnaire, we again explained that the data collection is voluntary, that they can
withdraw their participation at any time, and that they have to orally consent to continue
with the questionnaire. We recorded the oral informed consent with a voice recorder, which
was integrated into our questionnaire. The questionnaire did not foresee any obligatory
fields regarding personal data. Hence, the participants could choose which data they
wanted to provide and skip as many questions as they wished1.

The above procedure (steps 1 to 3) was followed in the Benin scenario because the data
collection in Benin was for research purposes only. In Chad and Sierra Leone, a slightly
different procedure was followed in steps 1 and 3, as the data collection was embedded in
a project setting with its own requirements for informed consent. In all cases, however, con-
sent was sought in the local language of the community members as part of the voluntary
group consent process.

3.3. Mapping

The community mapping process involves introducing community leaders to the pro-
cess, often led by a local trusted body such as an NGO. Mapping materials and technology
are introduced, questions are answered, and a mapping plan is developed. Meeting places
are chosen at known meeting points within the mapping area to ensure that everyone can
reach them easily. Mapping rules are agreed upon with local stakeholders. In some cases,
separate mapping sessions for men and women may be planned to ensure that everyone
can attend and actively participate in the mapping activity. Conflict resolution measures
should be put in place, such as field-based boundary validation using GNSS technology if
the boundary cannot be clearly defined from the orthophoto alone. According to Ref. [48],
the field adjudication and recording process has three main elements: the location of the
land right to be enjoyed, the nature of the right, and the person holding the right. The field
adjudication process was supervised by a trusted intermediary such as a village elder or
community official. It should be noted, however, that no title documents were issued as the
field data collection was for research and demonstration purposes only, with an emphasis
on the participatory process and technical feasibility.

Boundary data collection: A mapping assistant leads the mapping activity. The mapping
assistant could be a para surveyor or a trusted person who knows how the mapping process
works and what particular attention should be paid to the cartographic requirements and
communication during the participatory mapping activity. In any case, he or she must take
a neutral position. During the process, community members can also take charge of the
mapping under the supervision of the mapping assistant. Property owners use landmarks
such as churches, intersections, roads, sacred places, or schools to orient themselves on
printed maps. If necessary, the mapping assistant will support the identification of land-
marks and visible boundaries. Corner points of the plot are then marked either with small
sticky dots or with dots drawn on the map with a ballpoint pen. Additional questions
might be asked to confirm the location of the parcel such as: “Is this tree on your neighbor’s
plot, or does it belong to your plot? How many houses are on your plot?”. The mapping
assistant then connects the points with the help of a ruler and a ballpoint pen so that an
area is created. When the property owner is satisfied with this, a spatial ID is assigned and
a label is attached to the parcel that was just determined.

Administrative data collection: We used an Android App to perform the data collection.
The Android App (Figure 2) was customized from the ODK collect app2. We created all
questionnaires for the field studies ourselves using ODK Build. After the offline data
collection in the field, the data is sent to a server once an internet connection is available.
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We have our own server, located currently in a cloud from the provider DigitalOcean3.
We chose DigitalOcean because it was recommended by ODK Collect. It has proven to be
reliable throughout the whole project (18 months of testing). The data can be downloaded
as a CSV (Comma Separated Values) file from our own ODK server. There is also the
possibility of accessing the data from an API (Application Programming Interface). We
have written a code (Python) that does the conversion from CSV to JSON (JavaScript Object
Notation). Since the boundaries are extracted as JSON data as well, this enables the merging
of the boundaries and administrative data using the parcel IDs obtained from the sticker
extraction process (Section 3.4).

Figure 2. Screenshots of the Android App for data collection. Landing page of the app (left); an
example of a question asked in English (middle); question translated in French (right).

3.4. Processing and Digitization

The processing pipeline involves several steps and algorithms. To convert the pa-
per map to a digital format, the map is photographed with a consumer-grade cam-
era, taking overlapping, non-tilted images. This allows the photos to be fed into a
photogrammetric/structure-from-motion pipeline to produce a georeferenced, orthorecti-
fied image of the map. The creation of vector data from the georeferenced digital images
is done by Python programs running from a Google Colab notebook. The boundaries are
extracted from the images as binary rasters using computer vision algorithms and water-
shed segmentation. The binary raster is used as a basis for creating polygons, which are
stored in a GeoJSON file. Another Python program deals with detecting printed numbers
on the stickers, which are used for spatially joining attribute data to the vectorised parcels.
The programs mentioned above are based on open-source libraries, which include OpenCV
and skimage for image manipulation, gdal and pyproj for handling map projections and
transformations, and shapely for constructing polygon geometries. For text recognition on
the stickers, we used the Google Tesseract Optical Character Recognition Engine.

Creation of a georeferenced orthorectified image: The digitization starts with the process-
ing of all photos taken from the sketched map using WebODM4, with the aim of generating
an orthophoto from the input data. The processing pipeline proceeds from motion struc-
ture, multi-view stereo, meshing, texturing, and ends with orthophoto generation [51].
As the photos of the map do not have usable geotags, the generated output is georeferenced
using pre-existing markers (small red crosses) on the printed map. The location of at least
five evenly distributed markers and the corresponding coordinates in the target reference
system are used to apply the Helmert transformation. A georeferenced orthorectified
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image of the annotated printed map is then generated and used for boundary detection
and vectorization.

Boundary detection: The boundary detection is performed iteratively on patches of the
original image, which are merged into a single binary image as an output result. The input
image is first blurred using a 5 × 5 Gaussian filter, then it is converted into grayscale. These
steps reduce noise and simplify the subsequent edge detection process. Edge detection
is performed using the Canny algorithm, which detects significant changes in intensity.
Next, Euclidean distance transformation is applied, which computes the distance of each
pixel to the nearest edge, providing a measure of proximity to the boundaries. Using the
distance-transformed image, peaks are detected to identify potential boundary locations.
The watershed algorithm is applied to the negative of the distance-transformed image,
utilizing the previously detected peaks as markers. Additionally, a binary mask is used
to specify which regions of the image should be labeled. This binary mask is created by
thresholding the grayscale image with a user-defined threshold value, which is one of the
most important parameters. The threshold value was held constant at 60 for all techniques.
The result is a segmented image with distinct labeled regions. Finally, all non-zero labeled
regions are assigned a value of 255, while the background is assigned a value of 0, creating
a binary image with the detected lines. In order to eliminate small gaps due to missed
pixels close to patch edges and corners, this process is done again using a different patch
arrangement. This time, padding is added to the image on the top and left sides, in a width
equal to half the patch size. After the second binary image is obtained, the padding is
cropped and the two results are combined using a bitwise OR operation. In the last step,
dilation is applied using a 5 × 5 kernel to close the remaining small gaps in the boundaries.
The steps described here share some similarities with the workflow presented in Ref. [52],
but there are two key differences: no assumption that land parcel boundaries are straight
lines and no use of the Hough transform during the process.

Vectorisation: The vectorisation of parcel boundaries starts with reading in the binary
mask and applying a skeletonization algorithm, which shrinks all lines to a minimum
width. Next, using OpenCV’s findContours() function, the contours of the shrunk lines are
detected and filtered so that only inner contours remain. This means that all gaps in parcel
boundaries have to be closed in order to get a contour from the parcel. Using gdal.Info,
georeferenced coordinates and coefficients are obtained from the original image, which are
then applied to create georeferenced polygons. The script iterates over the contours and
creates UTM polygons using Shapely’s Polygon function. The polygons are transformed
into WGS84 with pyproj, and are filtered by their geodetic area. We chose 50 m2 as the lower
threshold. Then, a GeoJSON FeatureCollection is created with two predefined attributes,
parcelID (set to an integer starting from 1) and parcelType. The script permutes over the
coordinates and creates a JSON-compatible geometry object for each polygon. The output
is written into a GeoJSON file.

We have tested two different vector post-processing approaches in order to mini-
mize the deviation between the generated polygon shapes and the original boundaries.
Figure 3 illustrates the effect of both methods. The first method (Figure 3, left) creates
a minimum area convex hull over the raw polygons by utilizing Shapely’s convex_hull
method. The program then removes overlapping areas and returns a new dictionary with
all the features. This approach works generally well, eliminating small holes and produc-
ing straight polygon boundaries. The drawback of this method is that it cuts corners for
individual concave polygons, therefore, it produces wrong boundaries. These polygons
either need manual editing or have to be supplied to a fixing algorithm, which subtracts
the largest polygon out of the difference between the pre-processed and post-processed
geometries. The second approach (Figure 3, right) first filters the points of the raw polygons
to only keep the exterior ring, which eliminates all possible holes. Generalization and
cleaning are done by GRASS GIS commands, which are invoked from a GRASS session
by utilizing the grass_session Python library. This requires GRASS to be installed on the
engine where the script is running. After creating a custom Session instance, we open a
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new mapset and import the raw polygons GeoJSON with the v.in_ogr command. A mini-
mal snapping tolerance (1 × 10−10) is applied, which fixes some topological errors. Next,
we perform Douglas–Peucker generalization by using v.generalize. The generalization
threshold is adjustable and depends on the sizes of the parcels and we have decided to
use 5 × 10−6. The v.generalize command also creates polygons to fill small gaps that
happened during the polygon creation. v.clean dissolves these small polygons into an
adjacent one with the largest common boundary. v.out_ogr creates a GeoJSON output of
the final result. Compared to the convex hull approach, GRASS retains a more accurate
shape for the polygons, especially concave ones, but can fail to straighten the boundary
at noise-related bends and errors. Preliminary testing [14] has shown that the optimal
threshold for boundary extraction is dependent on the image. This is also the case for the
optimal parameter for the generalization algorithm. Ideally, these parameters should be
adapted based on the scenario. Nonetheless, this is not practical for comparison activities
across all scenarios. Hence, we chose two values for the comparative assessment in this
article based on preliminary tests: 60 as a threshold value for the boundary extraction
and 5 × 10−6 as a generalization threshold for the vectorization. We are aware that this
inevitably flavors some methods in some conditions to the detriment of others.

Figure 3. Examples of the convex hull method and the GRASS method, respectively.

Sticker detection: Sticker detection is performed by first filtering the RGB channels of
the image so that the resulting binary image only contains the stickers as white pixels
and everything else as black. For this thresholding, a minimum and a maximum value
(0–255) must be specified for all 3 channels as the input parameters. As we had bright
yellow stickers, we used the following values: Red—between 160 and 255, Green—between
150 and 255, and Blue—between 0 and 120. After filtering, morphological closing and
blurring are applied to close holes and reduce the noise. Next, OpenCV’s findContours()
function detects all contours and keeps only the ones above a size threshold. For each
contour, an algorithm creates an approximate polygon, which is then used for determining
a minimum area rotated rectangle. The coordinates of the central point are saved for the
GeoJSON creation in a list. Optical Character Recognition requires numbers to be aligned
horizontally. For this reason, the rotated rectangles are rotated back to horizontal, resulting
in a clip of the original image, on which the numbers are either in the desired position
or upside down. We use an asterisk as the last character of each text on the stickers (see
Figure 4, left), which, if not detected, indicates that the sticker is upside down and the
snippet needs to be flipped.

During the rotation process, a black padding is added to maintain a rectangle shape by
using the OpenCV function imutils.rotate_bound. As we are only interested in the center of
the snippets, contour detection and polygon creation are performed again, and the snippets
are cropped by this polygon. The resulting image is now ready for OCR to be applied.
To increase efficiency, detection is performed five times on different resized versions of the
image, in the range where performance is best. A function analyses the text and returns
an assumption parameter, whether the detection was successful or not. Based on the
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five results, the program chooses the mode value from the ones labeled good (if any).
The output GeoJSON file is a FeatureCollection containing all detected stickers as point
features with the detected number and the assumption as parameters (Figure 4).

Figure 4. An example of the output from the sticker detection process.

4. Study Areas

The data input for this paper comes from four different scenarios, including projects
in Benin, Chad, and Sierra Leone. The mapping activity was carried out by organizations
partnering with SmartLandMaps in all three countries, each with its own unique history
and challenges. In Benin, a centralized land administration system is being established,
with mapping supported by the Dutch-funded Land Administration Modernisation
Project [53]. Sierra Leone faces problems of land grabbing [54] and is working on land
tenure security through novel land policy reforms and major donor funding through
the World Bank’s Land Administration Project. Chad is tackling challenges such as
slow mapping and land conflicts, with support from the Dutch Ministry of Foreign
Affairs’ LAND-at-scale program. As described in Table 2, mapping activities in these
countries have involved collaboration with local communities, government agencies,
and technology providers.

Table 2. Characteristics of the study areas, taken from Ref. [14].

Benin Chad Sierra Leone

Partners
involved

Kadaster International, VNG
International, YILAA

Kadaster International, Government of
Chad, esri North Africa, Trimble,

University of Twente

FIG YSN VCSP, Trimble, Ministry of
Land, Housing and Country Planning

Date 1–9 February 2022 11–12 October 2022 24–25 January 2023

Orthophoto UAV-based orthophoto,
1.8–2.3 cm MAXAR, 50 cm MAXAR, 50 cm

Land use class Urban residential and
rural residential Peri-ruban residential Rural agroforestry

The land-use context, as well as the land tenure system and the size of the spatial
units, were heterogeneous across the scenarios. In Benin, the data collection took place in
an urban setting with private ownership (Seme-Podji) and in a rural setting with individual
and group ownership (Zè) [13]. In Chad, SmartLandMaps was tested alongside other
forms of cadastral surveying and mapping in a peri-urban environment near the capital
N’Djamena, characterized by private property rights [55]. The context in rural Sierra Leone
was very different, with predominantly agroforestry land use and a customary tenure
system, i.e., family lands averaging several hundred hectares. Looking at Figure 5, it
is clear that the presence of visible boundaries was different in each scenario, allowing
different strategies to be observed in how community members deal with them. For more
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information on the contextual specifications, data collection, observations and results,
see Ref. [14].

Figure 5. An excerpt of the community mapping outputs. The scale is the same for all maps.

5. Evaluation

The evaluation touches upon five aspects: the digitization performance, cost and time
considerations, the simplicity of the mapping activity for participants, the inclusiveness of
the whole approach, and its versatility.

5.1. Digitization Performance

The tests were done in two steps: first a comparison of the convex-hull-based approach
and the Douglas–Peucker approach to find out the best between the two, and second an
assessment of the impact of the pre-processing strategy (Blurring or Mean-Shift) on the
performance of the best approach. Table 3 shows the results. Overall, the test on the four
scenarios (Benin urban, Benin rural, Chad, and Sierra Leone) show that our method can
achieve excellent performance on different datasets in a quick timeframe. Depending on the
size of the input image, the boundary detection took about 3 min (Chad-North scenario) to
16 min (Benin rural scenario). The vectorization only took 1 to 3 min, similar to the sticker
detection. Since the performance values were obtained without adjusting the threshold
parameter (boundary extraction algorithm) and the generalization parameter (vectorization
algorithm), the values in Table 3 should be seen as the lower bounds of the final performance.
That is, calibration specific to a scenario can further increase them.

Table 3 also presents the performance results for model training (U-Net) and model
fine-tuning (SegFormer model, nvidia/mit-b1) on the dataset. As discussed in Section 2.3,
deep learning models are not entirely appropriate for the current context given the small
amount of data points. Nonetheless, since U-Net and SegFormer stand for the state of the
art in image segmentation, we trained the two models to use their results as a baseline for
the comparison of the proposed algorithms. The dataset from the Benin urban scenario,
which had the largest number of parcels (see Figure 5), was used for training. The outcome
map was manually labeled using two classes (background and boundary) and then divided
into patches (512, 512, 3). This resulted in a total of 1260 patches. About 70% of these
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patches were used for training, 20% for validation, and 10% for testing. The dataset
was not balanced (723 patches ∼57% showed a boundary and 537 patches ∼43% did not
show any boundary). We did not use data augmentation. The metrics obtained on the
validation dataset during training were: 99% (accuracy, U-Net); 48% (Mean IoU, U-Net);
92% (accuracy, SegFormer); 86% (Mean IoU, SegFormer). Examples of prediction outcomes
per patch on the test dataset (i.e., unseen patches) are shown in Figure 6. We fine-tuned
both nvidia/mit-b0 and nvidia/mit-b1. Since we obtained slightly better results with the
nvidia/mit-b1 model, we only report the results for nvidia/mit-b1.

In the case of the Benin and Chad scenarios, blurring with Douglas–Peucker generaliza-
tion (using GRASS) produced the best performance regarding boundary detection, with a
0.99 F-measure. We can see a slight improvement in both precision and recall compared to
the Convex hull method. The most significant difference is observed with the Benin urban
scenario, where the number of true positives exceeds the Convex hull result by 6, while the
numbers of false positives and negatives are simultaneously lower. In all cases, there have
been no invalid geometries using GRASS, as opposed to a few cases with the Convex hull.
Both approaches led to a significant number of features that require manual editing, which
suggests that both methods call for further improvements. Mean-Shift proved to be less
efficient with lower recall values than Convex hull and Douglas-Blur for both Benin images.
In the case of Chad, where all three methods produced the same F-measure, the number of
features needing to be edited is almost double that of the other methods.

Results show a much lower efficiency for all the above-mentioned methods in the case
of the Sierra Leone scenario. The cause of this issue is linked to the boundary detection
threshold parameter, which we left unchanged for the sake of comparison. As this image is
generally brighter, a higher threshold would have been necessary, as it is directly linked to
the detection of lines. Using image correction techniques (such as brightness and contrast
adjustment), this concern could be addressed. This also indicates that without raster
pre-processing, choosing the optimal boundary parameter is essential.

Out of the two neural networks, U-Net produced far better results than the SegFormer
model. It managed to obtain the best F-measure for Sierra Leone with 0.56 and yield 0.91 for
the Chad scenario. Arguably, these results do not come close to our best-performing method
with optimal parameters, but they show that U-Net could be a promising alternative in
the future. Nevertheless, efficiency is vastly dependent on the training and testing data,
and detecting boundaries over different backgrounds remains a challenge.

The Benin scenarios were excluded from the sticker detection, as they only contain
stickers with handwritten digits, in a non-standardized form. In the case of the Chad
scenario, there was only 1 missed sticker out of the 52 cases, which means 0.98 accuracy
and complete precision. However, in the Sierra Leone scenario, none of the 11 stickers were
detected. The reason behind this poor result is the same as mentioned above, namely the
unchanged parameters for two images with different characteristics. The sticker detection
can achieve great proficiency, but similarly to boundary vectorization, it relies on the
appropriately chosen parameters unless raster pre-processing is involved.

5.2. Cost and Time Considerations

The costs and time needed for capturing boundary data determine, whether an ap-
proach used in a small pilot project is scalable, i.e., whether it could eventually be rolled
out for larger regions or be used to create a country-wide cadaster. A cadastral project
can be called “fit-for-purpose” if it is implementing a good compromise between the de-
sired positional accuracy on the one hand, and the available resources in terms of money
and time on the other hand. Our practical experience in the mentioned four scenarios
showed that the SmartLandMaps approach is suitable for projects with comparatively
low costs per parcel and time to complete a larger data capture exercise. In Benin and
Chad, we were able to capture with one field team up to 200 parcels per day when using
the SmartLandMaps approach, while the same team achieved only 20–30 parcels when
walking to and measuring the boundary points of each parcel with a handheld device



Land 2023, 12, 2043 14 of 21

and a GNSS antenna. The costs incurred for the data capture with the SmartLandMaps
approach averaged from 5 to 10 USD/parcel including the drone image and the processing
of the data in the SmartLandMaps Cloud, while the direct surveying with the handheld
device we did for comparison resulted in costs from 20 to 50 USD/parcel. These costs are
in line with the unit costs stipulated by UN-Habitat, FIG, and GLTN in their framework for
costing and financing land administration services (CoFLAS [56]). From these observations
on costs/time and the digitization performance (Section 5.1), we can state that the Smart-
LandMaps approach is fit-for-purpose: It is reliable, faster, low cost (4–5 times cheaper),
and scalable (adding more field teams does not necessitate much investment in training),
but requires, as a compromise, that reachable positional accuracy is 0.8 to 1.5 m lower than
the positional accuracy of traditional surveying.

Table 3. Digitization performance (TP: True Positives; FP: False Positives; FN: False Negatives; NG:
Features with NULL geometry; NE: Needs to be edited; N/A: Not applicable). The highest metric for
a scenario is highlighted in grey.

TP FP FN NG NE Precision Recall F-Measure Scenario

slm-Convex-hull 191 4 10 4 30 0.98 0.95 0.96 Benin urban

slm-Douglas-Blur 197 1 4 0 33 0.99 0.98 0.99

slm-Douglas-Mean-Shift 161 0 42 0 70 1.00 0.79 0.88

slm-Convex-hull 74 0 3 1 8 1.00 0.96 0.98 Benin rural

slm-Douglas-Blur 75 0 2 0 8 1.00 0.97 0.99

slm-Douglas-Mean-Shift 71 0 6 0 11 1.00 0.92 0.96

unet-Convex-Hull 19 2 58 0 2 0.90 0.25 0.39

unet-Douglas 19 2 58 0 2 0.90 0.25 0.39

segformer-Douglas 8 0 69 0 2 1.00 0.10 0.19

segformer-Convex-Hull 8 0 69 0 2 1.00 0.10 0.19

slm-Convex-hull 51 0 1 1 9 1.00 0.98 0.99 Chad north

slm-Douglas-Blur 51 0 1 0 8 1.00 0.98 0.99

slm-Douglas-Mean-Shift 52 1 0 0 15 0.98 1.00 0.99

unet-Convex-Hull 43 0 9 0 5 1.00 0.83 0.91

unet-Douglas 44 0 8 0 3 1.00 0.85 0.92

segformer-Douglas 13 0 39 0 2 1.00 0.25 0.40

segformer-Convex-Hull 13 0 39 0 3 1.00 0.25 0.40

slm-Convex-hull 4 0 8 0 4 1.00 0.33 0.50 Sierra Leone

slm-Douglas-Blur 4 0 8 0 1 1.00 0.33 0.50

slm-Douglas-Mean-Shift 1 0 11 0 0 1.00 0.08 0.15

unet-Convex-Hull 5 1 7 0 3 0.83 0.42 0.56

unet-Douglas 5 1 7 0 0 0.83 0.42 0.56

segformer-Douglas 0 0 12 0 0 0.00 0.00 0.00

segformer-Convex-Hull 0 0 12 0 0 0.00 0.00 0.00

Sticker detection 0 0 0 N/A 0 0.00 0.00 0.00 Sierra Leone

Sticker detection 51 0 1 N/A 0 1.00 0.98 0.99 Chad north
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Figure 6. Examples of boundary predictions on the test dataset. Patches where the whole boundary is
correctly predicted (left); patches where the boundary is not correctly predicted for at least one of the
techniques (right). The boundaries predicted at the patch level are then merged (and post-processed
to close gaps) to obtain the parcels for a whole study area.

5.3. Simplicity

The main mapping activity required only a pen, a printed orthophoto, and a mobile
device with a camera. Because SmartLandMaps allows for an almost fully automated
digitization workflow, mapping assistants need only very basic skills to facilitate the
mapping activity, but also to initiate digitization. Simplicity applies not only to the mapping
process, but also to the ease with which community members engage with the map as an
accessible and easy-to-understand method of collecting spatial information. According to
a survey in Benin (n = 388), almost 90% of participants reported that they found it either
very easy (65%) or fairly easy (22%) to mark the boundaries of their parcels on the map [13].
However, it is important to note that this result can be influenced by the type of land
cover and land use. Adjustments to the ease of mapping may be necessary in cases of
homogeneous land cover [57].

5.4. Inclusiveness

Inclusiveness can refer to the diversity of tenure systems or to the dimension of people
involved. In the three study sites, SmartLandMaps proved to be inclusive of both formal
and informal tenure systems. As for the dimension of inclusiveness of the mapping process,
we observed all kinds of participants in the mapping session, including women and men,
old and young, people with disabilities, educated and literate, as well as illiterate and less
educated people. However, it should be noted that future data collection campaigns should
consider measures to further increase women’s participation in the mapping process, which
was particularly low in Chad and Sierra Leone.

5.5. Versatility

It was shown that SmartLandMaps can be applied in different contexts with an
adapted community mapping process, depending on different tenure systems, community
structures, and visibility of boundaries. Where boundaries are poorly visible and the
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participatory mapping process alone cannot produce reliable sketches on the orthophoto,
a combination with additional ground measurements where necessary can be considered.
Easily identifiable labels allow for the merging of non-spatial data with spatial units. In the
future, different colors for the labels can even allow for different layers of information on
one map.

6. Discussion

SmartLandMaps emphasizes the importance of community participation and co-
creation of information, all while ensuring that the approach does not compromise on the
need for digital data handling realized through a semi-automated digitization pipeline.
Introducing the SmartLandMaps approach to the existing set of land tenure recording
tools can be a significant step forward, especially when we consider the general benefits
highlighted in Rambaldi’s work on participatory GIS (PGIS) [58].

6.1. Key Takeaways

We now revisit the three research questions mentioned at the outset of the article and
summarize the main lessons learned.

How to facilitate scalable land rights recording? A participatory mapping approach, com-
bined with efficient digitization techniques can be useful for general boundary recording
in a time-efficient manner. The digitization of the maps is fast (see Section 5.1), which
means that the bottleneck of the approach is the effort needed to mobilize the participants
and run several mapping campaigns in parallel. It should be noted that, even though the
mapping sessions were carried out at different locations, contexts, and cultures, the printed
orthophoto was always the key instrument for interaction, cohesion, and consensual spa-
tial decision-making. In this sense, one could argue that the process was as important
as the result, as observed in other studies as well [59]. Moreover, it was observed that
SmartLandMaps has relatively low requirements when it comes to technological know-
how, making it accessible and easily adopted by local entities. It only requires a minimal
amount of training for local community members to become proficient in its use. In this
vein, a train-the-trainers approach can easily be applied to keep the knowledge in the
country [24].

How to automatically extract parcel boundaries from hand-drawn sketches? We have
tested several techniques for boundary detection and boundary vectorization during the
work. Table 3 shows good results for our digitization approach. Blurring as a preprocessing
technique yields slight improvements in comparison to mean-shift for the detection task.
For vectorization, Douglas–Peucker has often led to better results than the use of convex
hulls. The two machine-learning models tested did not always yield performance as good
as the algorithm for boundary extraction proposed. Since the prediction at the patch level
was good (Figure 6), this is an indication that more post-processing is needed to close gaps
between predicted boundaries at the patch level when reconstructing the final image. We
defer a closer look into this to future work.

How to automatically extract labels from hand-drawn sketches? We have used a work-
flow including the printing of numbers on stickers that are placed on the paper map,
a self-written script that uses OpenCV to search for stickers in the digitized map image
and Tesseract for character recognition with promising results (Table 3). Early tests using
hand-written digits without a symbol to mark the end of numbers, as shown in Figure 4,
produced less reliable results.

6.2. Limitations

The digitization of cadastral boundaries introduces positional error as documented
in Ref. [60]. In our case, these positional errors related to the boundaries may come from
the different thicknesses of the lines drawn by participants and also the fact that their
drawing may not perfectly align with the outlines of the boundaries on the ground. We
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have documented an assessment of the positional accuracy of the approach in Ref. [13].
The SmartLandMaps approach is useful for first-time recording to get an inventory of the
parcels available in a region, as well as their general outlines (i.e., the general-boundary
approach). It can be followed by more rigorous surveying approaches (i.e., the fixed-
boundary approach) to increase the accuracy of the positions of the boundaries in the
digital land administration systems.

6.3. Future Work

The SmartLandMaps approach as discussed in this manuscript presents a novel
procedure to easily digitize sketched and annotated maps. However, the process of
community mapping can also disadvantage minorities and exacerbate social imbalances
if special attention is not given to it from the outset. As this paper aimed at a proof of
concept of the technology and mapping methodology, this aspect was not the subject of
this investigation and could be taken up in subsequent studies, i.e., how to ensure that all
individuals and not only elites participate in the mapping session. As for the digitization,
the results have shown promising results and could be extended in at least three ways.
First, edge detection relied primarily on canny edge detection in this work. It would be
interesting to explore alternative edge detection mechanisms (e.g., L-CNN [39]) and their
impact on the results. Second, the tested machine learning-based approaches have shown
promise, despite the limited training data used. This suggests that, with more data and
empirical testing, we may arrive at models with even better results than those observed
in this study in the future. In particular, it would be interesting to explore how U-Net and
SegFormer will perform with more training data and/or data augmentation, and how
additional models for semantic segmentation (e.g., TransUnet [61], UnetFormer [62])
would contribute to the automatic extraction of cadastral boundaries in future work.
Third, more data in additional scenarios would be useful to increase the diversity of
the data collected and increase the generalizability of the results to various types of
participatory mapping contexts.

7. Conclusions

Millions of formal and informal land rights are still undocumented worldwide and
there is a need for scalable techniques to facilitate that documentation. Through the
combined use of satellite or drone-based aerial photography, participatory mapping,
and digitization software, the SmartLandMaps approach reduces the time and costs to
create digital data with information on the extent of a land right (parcel boundaries),
the land rights, restrictions and responsibilities, as well as information on the land right
holder. This article has presented an overview of the different components of the approach
and lessons learned from its deployment in four scenarios. The SmartLandMaps approach
proved to be efficient, with digitization being a reliable and quick step, in contrast to
previous workflows where the proper digitization of paper sketch maps was a major
bottleneck and often prone to errors. The importance of community interaction and the
mapping process itself was emphasized, with the printed orthophoto being a key tool
for interaction and decision-making for all community members during the mapping
sessions. The SmartLandMaps approach was also accessible and easily adopted by lo-
cal entities, requiring minimal technological know-how and offering the potential for a
train-the-trainers approach to maintaining local knowledge. In order to automatically
extract parcel boundaries from hand-drawn sketches, several techniques were tested.
Blurring as a preprocessing technique gave slight improvements, and Douglas–Peucker
generally outperformed convex hulls for vectorizing. The machine learning models did
not consistently perform as well as the proposed algorithm for the extraction of the bound-
aries. The identification of labels from hand-drawn sketches was achieved by innovative
character recognition modules automatically reading printed number labels placed on
paper maps. All in all, the approach is most suitable for areas where inventory work will
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help collect basic information about land tenure/use but is less suitable for areas where
the cadastre is already established at a satisfactory level.
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Notes
1 An important aspect of treating the data responsibly is reporting: Since the data collected is sensitive, we make sure in the

reporting of the results (e.g., this article) not to display them on a digital map, as they can provide the geographic context of
digitized data (and potentially lead to the identification of some participants).

2 https://getodk.org/, accessed on 31 July 2023.
3 https://www.digitalocean.com/, accessed on 31 July 2023.
4 https://www.opendronemap.org/webodm/, accessed on 31 July 2023.

References
1. Bennett, R.; Oosterom, P.V.; Lemmen, C.; Koeva, M. Remote sensing for land administration. Remote Sens. 2020, 12, 2497.

[CrossRef]
2. Koeva, M.; Stöcker, C.; Crommelinck, S.; Ho, S.; Chipofya, M.; Sahib, J.; Bennett, R.; Zevenbergen, J.; Vosselman, G.; Lemmen, C.; et al.

Innovative Remote Sensing Methodologies for Kenyan Land Tenure Mapping. Remote Sens. 2020, 12, 273. [CrossRef]
3. Wassie, Y.A.; Koeva, M.N.; Bennett, R.M.; Lemmen, C.H.J. A procedure for semi-automated cadastral boundary feature extraction

from high-resolution satellite imagery. J. Spat. Sci. 2018, 63, 75–92. [CrossRef]
4. Stöcker, C.; Ho, S.; Nkerabigwi, P.; Schmidt, C.; Koeva, M.; Bennett, R.; Zevenbergen, J. Unmanned Aerial System imagery, land

data and user needs: A socio-technical assessment in Rwanda. Remote Sens. 2019, 11, 1035. [CrossRef]
5. Eilola, S.; Käyhkö, N.; Ferdinands, A.; Fagerholm, N. A bird’s eye view of my village – Developing participatory geospatial

methodology for local level land use planning in the Southern Highlands of Tanzania. Landsc. Urban Plan. 2019, 190, 103596.
[CrossRef]

6. Barros, M.S.; Degbelo, A.; Filomena, G. Evaluative image 2.0: A web mapping approach to capture people’s perceptions of a city.
Trans. GIS 2022, 26, 1116–1139. [CrossRef]

7. Aguilar, R.; Calisto, L.; Flacke, J.; Akbar, A.; Pfeffer, K. OGITO, an Open Geospatial Interactive Tool to support collaborative
spatial planning with a maptable. Comput. Environ. Urban Syst. 2021, 86, 101591. [CrossRef]

https://doi.org/10.34740/KAGGLE/DSV/6295751
https://huggingface.co/aurioldegbelo/slm-unet-080823
https://huggingface.co/aurioldegbelo/slm-segformer-080823-b1
https://huggingface.co/aurioldegbelo/slm-segformer-080823-b1
https://huggingface.co/aurioldegbelo/slm-edge-detection
https://getodk.org/
https://www.digitalocean.com/
https://www.opendronemap.org/webodm/
http://doi.org/10.3390/rs12152497
http://dx.doi.org/10.3390/rs12020273
http://dx.doi.org/10.1080/14498596.2017.1345667
http://dx.doi.org/10.3390/rs11091035
http://dx.doi.org/10.1016/j.landurbplan.2019.103596
http://dx.doi.org/10.1111/tgis.12867
http://dx.doi.org/10.1016/j.compenvurbsys.2020.101591


Land 2023, 12, 2043 19 of 21

8. Chipofya, M.; Karamesouti, M.; Schultz, C.; Schwering, A. Local domain models for land tenure documentation and their
interpretation into the LADM. Land Use Policy 2020, 99, 105005. [CrossRef]

9. Chipofya, M.; Jan, S.; Schwering, A. SmartSkeMa: Scalable documentation for community and customary land tenure. Land 2021,
10, 662. [CrossRef]

10. Vonk, G.; Ligtenberg, A. Socio-technical PSS development to improve functionality and usability—Sketch planning using a
Maptable. Landsc. Urban Plan. 2010, 94, 166–174. [CrossRef]

11. Van Wart, S.; Tsai, K.J.; Parikh, T.S. Local ground: A paper-based toolkit for documenting local geo-spatial knowledge. In
Proceedings of the First ACM Annual Symposium on Computing for Development (ACM DEV’10), London, UK, 17–18 December
2010; Dearden, A.M., Parikh, T.S., Subramanian, L., Eds.; ACM: New York, NY, USA, 2010; p. 11. [CrossRef]

12. Crommelinck, S.; Bennett, R.; Gerke, M.; Nex, F.; Yang, M.; Vosselman, G. Review of automatic feature extraction from
high-resolution optical sensor data for UAV-based cadastral mapping. Remote Sens. 2016, 8, 689. [CrossRef]

13. Stöcker, C.; Degbelo, A.; Kundert, K.; Oosterbroek, E.P.; Houedji, I.A.; Mensah, G.K.S.; Gambadatoun, B.; Schwering, A.
Accelerating participatory land rights mapping with SmartLandMaps tools: Lessons learnt from Benin. In Proceedings of the FIG
Congress 2022: Volunteering for the Future—Geospatial Excellence for a Better Living, Warsaw, Poland, 11–15 September 2022.

14. Stöcker, C.; Vassányi, G.; Degbelo, A.; Kundert, K. Community-based mapping with SmartLandMaps: Versatile, simple and
inclusive. In Proceedings of the FIG 2023, Orlando, FL, USA, 28 May–1 June 2023.

15. Enemark, S.; Bell, K.C.; Lemmen, C.; McLaren, R. Fit-for-Purpose Land Administration; International Federation of Surveyors:
Copenhagen, Denmark, 2014.

16. Enemark, S.; McLaren, R.; Lemmen, C. Fit-for-Purpose Land Administration—Providing Secure Land Rights at Scale; International
Federation of Surveyors: Copenhagen, Denmark, 2021.

17. Panday, U.S.; Chhatkuli, R.R.; Joshi, J.R.; Deuja, J.; Antonio, D.; Enemark, S. Securing Land Rights for All through Fit-for-Purpose
Land Administration Approach: The Case of Nepal. Land 2021, 10, 744. [CrossRef]

18. Becerra, L.; Molendijk, M.; Porras, N.; Spijkers, P.; Reydon, B.; Morales, J. Fit-For-Purpose Applications in Colombia: Defining
Land Boundary Conflicts between Indigenous Sikuani and Neighbouring Settler Farmers. Land 2021, 10, 382. [CrossRef]

19. Ngoga, T.H. Rwanda’s Land Tenure Reform: Non-Existent to Best Practice; CABI: Wallingford, UK, 2018.
20. Dadey, D.A. Exploring UAVs for Participatory Mapping on Customary Lands to Understand Women’s Land Rights in Northern

Region of Ghana. Master’s Thesis, University of Twente, Enschede, The Netherlands, 2022.
21. Asiama, K.; Bennett, R.; Zevenbergen, J. Participatory Land Administration on Customary Lands: A Practical VGI Experiment in

Nanton, Ghana. ISPRS Int. J. Geo-Inf. 2017, 6, 186. [CrossRef]
22. Parker, B. Constructing community through maps? power and praxis in community mapping. Prof. Geogr. 2006, 58, 470–484.

[CrossRef]
23. Knight, R.; Brinkhurst, M.; Vogelsang, J. The Community Land Protection Facilitator’s Guide. Namati. 2016. Available online:

https://namati.org/resources/community-land-protection-facilitators-guide/ (accessed on 25 November 2020).
24. Hull, S.; Liversage, H.; Rizzo, M.P.; Evtimov, V. An Overview of Frontier Technologies for Land Tenure: How to Avoid the Hype

and Focus on What Matters. Land 2022, 11, 1939. [CrossRef]
25. Ho, S.; Choudhury, P.R.; Joshi, R. Community participation for inclusive land administration: A case study of the Odisha urban

slum formalization project. Land Use Policy 2023, 125, 106457. [CrossRef]
26. Zeng, Y.; Guo, Y.; Li, J. Recognition and extraction of high-resolution satellite remote sensing image buildings based on deep

learning. Neural Comput. Appl. 2022, 34, 2691–2706. [CrossRef]
27. Zhao, W.; Persello, C.; Stein, A. Building outline delineation: From aerial images to polygons with an improved end-to-end

learning framework. ISPRS J. Photogramm. Remote Sens. 2021, 175, 119–131. [CrossRef]
28. Benchabana, A.; Kholladi, M.K.; Bensaci, R.; Khaldi, B. Building detection in high-resolution remote sensing images by enhancing

superpixel segmentation and classification using deep learning approaches. Buildings 2023, 13, 1649. [CrossRef]
29. Sirko, W.; Kashubin, S.; Ritter, M.; Annkah, A.; Bouchareb, Y.S.E.; Dauphin, Y.N.; Keysers, D.; Neumann, M.; Cissé, M.; Quinn, J.

Continental-scale building detection from high resolution satellite imagery. arXiv 2021, arXiv:2107.12283.
30. Wang, H.; Miao, F. Building extraction from remote sensing images using deep residual U-Net. Eur. J. Remote Sens. 2022, 55, 71–85.

[CrossRef]
31. Wierzbicki, D.; Matuk, O.; Bielecka, E. Polish cadastre modernization with remotely extracted buildings from high-resolution

aerial orthoimagery and Airborne LiDAR. Remote Sens. 2021, 13, 611. [CrossRef]
32. Crommelinck, S.; Koeva, M.; Yang, M.Y.; Vosselman, G. Application of deep learning for delineation of visible cadastral

boundaries from remote sensing imagery. Remote Sens. 2019, 11, 2505. [CrossRef]
33. Khadanga, G.; Jain, K. Extraction of parcel boundary from UAV images using deep learning techniques. In Advances in Signal

Processing and Intelligent Recognition Systems: Proceedings of the 6th International Symposium, SIRS 2020, Chennai, India, 14–17 October
2020; Thampi, S.M., Krishnan, S., Hegde, R.M., Ciuonzo, D., Hanne, T., Kannan, R.J., Eds.; Springer Nature: Singapore, 2021;
pp. 155–160.
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