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Abstract: Amidst the compounded challenges posed by global climate change and urbanization
on forest ecosystems, the integration of urbanization control measures within a climate-focused
framework may offer an avenue for breakthroughs. This study delves into the impact of climate,
specifically hydrothermal conditions, on the complex interplay between urbanization (Urb) and
forest ecological function (Eco) in the Yellow River Basin (YRB) in China. Our findings reveal: (1) The
application of a coupled coordination model reveals a stronger alignment between urbanization and
forest ecological function in the warm and humid regions in the YRB. (2) Through the cross-sectional
threshold regression model, we elucidate the diverse responses of Urb to Eco across varying climate
gradients. Among them, annual precipitation shows a double-threshold effect at 532.34 mm and
694.18 mm. As precipitation increases, the impact of Urb shifts from negative to positive on Eco.
Moreover, in regions with precipitation below 532.34 mm and above 694.18 mm, the absolute value
of response coefficients of Eco to Urb is amplified. Annual average temperature displays a single-
threshold effect at 10.11 ◦C, leading to a transition from negative to positive impact as temperature
rises. This study establishes the climate-based threshold system that governs the urbanization–forest
ecological function relationship.

Keywords: urbanization; forest ecological function; climate; coupled coordination model; threshold
regression model

1. Introduction

Climate plays a paramount role in shaping the characteristics and geographic dis-
tribution of forest ecosystems [1]. Over the past century, the Earth’s climate has been
undergoing a significant transformation, primarily characterized by global warming [2].
Compounded by the effects of urban development, the tension between preserving forest
resources and the growing land requirements for urban expansion is becoming increasingly
conspicuous [3]. Extent-wise, with urban expansion, the substantial reduction in forest
cover becomes highly evident, thereby resulting in the diminishing ecological functions
of regional forest ecosystems [4]. Demographically, the concentration of people in urban
areas significantly amplifies the demand for forest resources, such as timber and water,
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thus intensifying the ecological pressure on forests [5]. Industrially, non-agricultural sectors
further elevate the ongoing demand for forest resources [6]. Spatially, despite alterations
in land use due to urban spatial expansion, it is plausible that urban green coverage may
not adequately correspond to these changes [7]. Therefore, it is imperative to promptly
implement the corresponding environmental and social governance measures to mitigate
the adverse impacts that climate change and urbanization may exert on forests.

Compared to other ecosystems, the forest ecosystem exhibits a reduced capacity for
adaptation and a slower response to the impacts of climate change [8]. Managing the
urbanization process in line with climate conditions may offer a potential solution to
the ongoing conflicts between urbanization and forest ecology. However, the influence
of urbanization on forest ecology is intricate and multifaceted. Studies in this area can
be categorized into two primary groups. The first category of research contends that
urbanization has had detrimental effects on forest ecology. The expansion of urban areas,
along with high-intensity human activities and irrational land use practices, have resulted
in several adverse consequences for forest ecology. These include a decline in ecological
function, a reduction in biodiversity, and the destruction of habitats for various plant
and animal species [9]. For instance, the study by Deng et al. (2021), which examined
natural forests in the Liaohe River Basin in China, revealed that urbanization led to a
decrease in the water-holding capacity of the soil layer, the apomictic layer, and the forest
canopy [10]. Additionally, Qian et al. (2022) found that key drivers of the spatial and
temporal shifts in forest ecological function in Guangzhou, China, between 1979 and
2012 included alterations in forestry policies, urbanization, industrialization, and human
disturbances. Of these, excessive logging due to the division of mountains into household
plots, forest land encroachment driven by economic overexpansion, and forest degradation
all contributed to a decline in the quality of regional forest ecological functions [6].

An alternative body of research believes that urbanization yields a positive impact
on forest ecology. The factors contributing to this shift in the impact direction can be
summarized as follows: Firstly, the development of urbanization is often accompanied by
technological innovations and the adoption of green technologies, reducing cities’ reliance
on natural resources [11]. This fosters a more intensive development mode, leading to a
substantial increase in production efficiency. Ehrhardt-Martinez et al. (2002) found that
during the initial stages of urbanization, the deforestation rate continued to rise. However,
as urbanization progresses, labor productivity and the environmental consciousness of
residents improve, leading to a decline in the rate of destruction and consumption of
natural resources, such as forest land [12]. Secondly, the growing global environmental
awareness has the potential to instigate more stringent environmental measures. Through
the agglomeration effect, urbanization fosters the dissemination of knowledge and skill,
as well as the sharing of public resources, thereby enhancing the efficacy of centralized
environmental governance [7]. Song et al. (2018) pointed out that environmental edu-
cation and public engagement could prompt cities to actively invest in their ecological
environments [13]. Thirdly, the positive impact of urbanization is interconnected with
climate conditions [14]. Climate comfort significantly influences gross regional product
growth and population expansion [15], albeit across different stages. Wen et al. (2018)
discovered that precipitation plays a substantial positive regulatory role in the process
of urbanization affecting vegetation cover [16]. However, Li et al. (2021), based on the
Beijing–Tianjin–Hebei region, found that the level of urbanization had no significant impact
on the degree of forest fragmentation [17].

The aforementioned studies indicate that there is no consistent consensus regarding
the relationship between urbanization and forest ecology, and the influence of climate in
this context still remains ambiguous. To illustrate this, this study utilizes the Yellow River
Basin (YRB) in China as a case study. It explores the relationship between urbanization
(Urb) and forest ecological function (Eco) by examining the coupling coordination level
and impact coefficient, respectively, while considering the influence of climate. The specific
research ideas are outlined as follows: (1) Employing a coupled coordination model to
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investigate the developmental status of the “Urb-Eco” system in the YRB. This model
enables an exploration of the degree of coordination between urbanization and forest
ecological function. (2) Utilizing the cross-sectional threshold model to assess the nonlinear
impact of urbanization on forest ecological function. This analysis aims to identify the
changing patterns of urbanization’s effect on forest ecological function under varying
climate gradients, providing valuable insights into the dynamic nature of this relationship.

At the county level, this study conducts a quantitative analysis of the interplay be-
tween forest ecology and urbanization in the YRB, encompassing different regions within
the basin. By doing so, the research elucidates the existing conflicts between urbanization
development and ecological environmental preservation in the YRB and its adjacent areas.
This analysis serves as a foundation for understanding and addressing the challenges aris-
ing from the intersection of urbanization and forest ecology in the context of global climate
change. Additionally, the findings of this study are expected to inform the formulation
of pertinent environmental and socio-economic governance policies, offering practical
solutions to the complex dilemma between urbanization and forest ecology.

2. Materials and Methods
2.1. Study Area

The YRB (Figure 1) spans from 95◦53′ E to 119◦12′ E in longitude and from 32◦9′ N to
41◦50′ N in latitude, covering an area of 7.52 × 105 km2 [18]. This basin encompasses nine
provinces and autonomous regions, including Qinghai, Sichuan, Gansu, Ningxia, Inner
Mongolia, Shaanxi, Shanxi, Henan, and Shandong. The predominant land use types are
grasslands and agricultural land, followed by unused land, forests, and water bodies [19].
Due to the influence of atmospheric circulation and monsoon patterns, there are significant
climate variations across different regions within the basin, leading to uneven seasonal
distribution [20]. The northwest experiences arid climate conditions, the central region
has a semi-arid climate, while the southeast enjoys a semi-humid climate [21]. The annual
average temperature ranges from −4 ◦C to 14 ◦C, with notable variations and west-to-east
gradient from cold to warm [20]. Precipitation is concentrated and unevenly distributed,
with an average annual rainfall of 470 mm [22]. Low and uneven rainfall, low humidity,
and high evaporation rates are the main climatic characteristics of this region, with frequent
occurrences of hail and sandstorms.

2.2. Research Methods
2.2.1. Coupled Coordination Model

To analyze the coordinated development status of the urbanization and forest ecologi-
cal function subsystems, and explore their preliminary relationship with climate factors,
we attempted to consider Urb and Eco as two subsystems and introduced a coupling
coordination model. In this paper, we referred to the practices of Wang Jintao (2019) to
calculate the comprehensive score, coupling degree, and coupling coordination degree [23],
which involves the following steps:

First, calculating the comprehensive score, Ti = αEcoi + βUrbi, where α and β repre-
sent the weights of the comprehensive evaluation indexes for the forest ecological function
subsystem and urbanization, respectively. Both α and β were set to 0.5. Second, calculating

the coupling degree, Ci =
√

Ecoi ×Urbi/(
Ecoi+Urbi

2 )2, where Ci represents the overall cou-
pling degree of the two subsystems in county i. The coupling degree values range between
0 and 1. C equals 1 when the coupling degree is at its maximum, indicating the highest level
of interaction and mutual influence between the systems and moving towards new and
more advanced functional states. On the other hand, C equals 0 indicating no interaction
or mutual influence between the systems, tending towards disordered development. Third,
calculating the coupling coordination degree, Di =

√
Ci × Ti. The larger the value of D, the

higher the coupling coordination degree, indicating not only an overall improvement in
the composite system, but also a more coordinated coupling relationship. We classified



Land 2023, 12, 2047 4 of 20

the sample counties based on the Urb-Eco coupling coordination degree according to the
classification criteria [24] in Table 1.
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Figure 1. The overview of the Yellow River Basin (YRB): (a) climate zone; (b) annual average
precipitation; (c) annual average temperature; (d) land use types. Note: climate type data for
each county were collected from the local government’s official websites; see Table S1 for more
specific information. Annual average precipitation and annual average temperature data were
obtained from the “WorldClim 2.1 Climate Data (1970–2000)” published by the WorldClim database
(https://www.worldclim.org, accessed on 29 September 2023) and land use type data were provided
by the National Forestry and Grassland Administration Planning Institute.

Table 1. Grade criteria of coupling degree and coupling coordination degree.

C
Grade Criteria

[0.3,0.5) [0.5,0.8) [0.8,1.0]

Antagonistic Stage Adjustment Stage High Coupling Stage

D
Grade Criteria

[0,0.1) [0.1,0.2) [0.2,0.3) [0.3,0.4) [0.4,0.5)
Extremely

imbalanced
Seriously

imbalanced
Moderately
imbalanced

Slightly
imbalanced

Nearly
imbalanced

[0.5,0.6) [0.6,0.7) [0.7,0.8) [0.8,0.9) [0.9,1.0]
Barely

coordinated
Primary

coordinated
Intermediate
coordinated

Good
coordinated

High-quality
coordinated

C refers to the coupling degree and D refers to the coupling coordination standard degree.

2.2.2. Cross-Sectional Threshold Model

To investigate the moderating effect of climate on the impact of urbanization on forest
ecological function, this study employed Hansen’s cross-sectional threshold model. Precipi-
tation and temperature were used as threshold variables separately. This study explored the
nonlinear influence of urbanization on the forest ecological function and further determined
the relationship between these factors and the role played by climate variables.

https://www.worldclim.org
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Artificially defining the gradients and introducing interaction or quadratic terms
for explanatory variables are common methods for performing grouping heterogeneity
analyses. However, most of these methods had shortcomings, such as inconsistent grouping
criteria, subjectivity, unclear interpretability, and an inability to test significance [25,26].
Hansen’s threshold model was developed to address these issues. This model selects
the number and values of thresholds “endogenously”, thus substantially reducing the
subjectivity associated with artificial grouping [27]. Moreover, the existence of the threshold
effect and the authenticity of threshold values can be verified [27]. Without loss of generality,
the construction of the cross-sectional multi-threshold model is as follows:

Ecoi = β0 + β1·Urbi·Ii(Thresi ≤ λ1) + β2·Urbi·Ii(λ2 < Thresi ≤ λ2) + · · ·
+βk·Urbi·Ii(λk < Thresi ≤ λk) + γiControli + εi(k < 436)

(1)

where: i represents county-level variables; Eco represents forest ecological function scores;
Urb represents the level of urbanization; Control represents a series of control variables;
Thres represents threshold variables, specifically set as the annual average precipitation
(Pre) and the annual average temperature (Temp); I is an indicator function, essentially a
segmented function related to the threshold variable Thres. It takes the value 1 when the
threshold variable is within that interval; otherwise, it takes 0. λ is the estimated threshold
value, β is the coefficient estimated using the nonlinear least square method, k is the number
of thresholds, γ is the coefficient of each control variable, and ε is the random disturbance
term in the model.

The testing of the threshold model primarily consists of two parts [27–29]. First is the
F-test for the existence of threshold effects, that is, the significance test of threshold effects,
with the null hypothesis H0 : β1 = β2 = · · ·= βk. The F-statistic is F =

(
S0 − Sk

(
λ̂
))

/σ̂2,
where S0 is the sum of squared residuals when there is no threshold value. Since the
threshold value λ cannot be identified under the null hypothesis H0, the distribution of
the F-statistic is non-standard [28]. Therefore, Hansen (1999) proposed the “Bootstrap”
resampling method to obtain the asymptotic distribution of the F-statistic and construct
the corresponding p-value for significance testing [30]. This test assesses whether there
would be significant differences in the parameters among the k + 1 sample groups divided
by k threshold values. Second, the LR-test for the validity of threshold values, that is,
using maximum likelihood estimation to test whether the estimated threshold value λ̂

significantly matches the true value λ, with the null hypothesis H0 : λ̂ = λ. LR-statistic
is LRk(λ) =

(
Sk(λ)− Sk

(
λ̂
))

/σ̂2. When LRk(λ) ≤ −2 ln
(
1−
√

1− α
)
, the null hypothesis

cannot be rejected in a condition when α is the significance level for the test of validity.

2.3. Variables
2.3.1. Dependent Variable

Forest Ecological Function Index (Eco): Forest ecological function refers to the eco-
logical environment and benefits provided by a forest ecosystem through its inherent
ecological characteristics and processes [31–34]. It is conducive to human survival and
progress and encompasses a wide range of aspects, including water conservation, soil
and water preservation, climate regulation, water purification, and the protection of bio-
diversity [35]. We constructed Eco based on the existing practices [31–36], following the
guidelines outlined in “Technical Regulations for National Forest Resource Continuous
Inventory” (GB/T 38590-2020) [37]. The Eco subsystem includes eight components: forest
biomass, naturalness, community structure, tree species composition, total vegetation
cover, canopy closure, average tree height, and dead leaves thickness. Using the predefined
weights, a comprehensive score for this subsystem was calculated. The specific steps are:
(1) Each factor is assigned with different scores for the three types (I, II, and III) based
on its relevance. These scores for each factor are denoted as Xi. (2) Weights (wi) were
determined based on their relative importance. (3) The forest ecological function score (sF)
for each site was calculated using the formula sF = 1/∑8

i=1 Xiwi. (4) By weighting the site
data according to the site area, the site-level data was transformed into the county-level
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data, resulting in the comprehensive Eco scores for each sample county in the YRB. For
assessment factors of forest ecological function and their classification, please see Table S2
for details.

2.3.2. Threshold-Dependent Variable

Urbanization (Urb): Urbanization takes on the multidimensional form of socio-
economic change, and a single dimension of the population urbanization is insufficient
to reflect the complex characteristics of land use types, migration, industrial structure,
residents’ lifestyles, and ecological environments [23,38]. Additionally, different dimen-
sions of urbanization representation have varying impacts on ecological efficiency [38].
Therefore, referring to the previous studies [38–42], we evaluated the comprehensive level
of urbanization (Urb) in the YRB using indicators from four dimensions: land urbaniza-
tion (URL), population urbanization (URP), industrial urbanization (URI), and spatial
urbanization (URS). We determined the weights of each evaluation indicator using the
entropy method. This method calculates the information entropy of the indicator items to
determine their weights, making the weight determination more objective [43]. Specifically,
we used the proportion of built-up area as a proxy variable for URL, the proportion of the
urban population to the total resident population for URP, the proportion of value added of
non-agricultural industries for URI, and the green coverage rate of built-up areas for URS.

2.3.3. Threshold Variables

The annual average precipitation (Pre) and the annual average temperature (Temp):
Hydrothermal conditions exert a significant influence on both the urban and forest ecosys-
tems. Particularly in the region located north of China’s Qinling Mountains and Huai River,
precipitation has consistently served as a crucial limiting factor for vegetation growth [44–46].
Indeed, climate intricately governs the distribution of forest tree species [47], influences forest
productivity [48], shapes forest structure [49], modulates plant functional traits [50], and
ultimately impacts the forest ecological functions and services [51,52]. In the previous
studies, key explanatory variables related to human socio-economic activities, such as
gross domestic product per capita (GDP) [17], degree of openness to foreign trade [53],
and urbanization level [38] have been used as threshold variables. However, one of the
main objectives of our study was to explore the changes in the relationship between ur-
banization and forest ecological function under different climatic conditions. Therefore,
natural climatic factors were distinguished from the socio-economic activity factors, and
hydrothermal conditions were used here as thresholds in our analyses.

2.3.4. Control Variables

Within the cross-sectional threshold model, we incorporated controls for pertinent
variables that have impacted the forest ecological functions. These variables encompass
natural factors, such as altitude, slope, and contiguity level, alongside socio-economic
factors including the regional economic scale (GDP), economic density, population density,
disposable income of urban residents, and disposable income of rural residents. Moreover,
in the domain of human activity factors affecting forest ecological function, it would be
crucial not to disregard the policy-related factors. Notably, following the implementation of
China’s Grain for Green Program, the rate of vegetation recovery has surpassed that of the
pre-implementation period by over sixfold [20]. Consequently, our study, in alignment with
the actual circumstances in the YRB, considered introducing the three policy-related virtual
variables: reforestation intensity, grassland restoration intensity, and wetland restoration
intensity. These variables are considered very instrumental in representing the policy
impact of significant initiatives in different counties [54,55].
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2.4. Data Sources and Processing
2.4.1. Data Sources

The data for all variables were obtained from the year 2018, which covers 448 counties
in the YRB. The data sources with specific indicators are shown in Table 2.

Table 2. Overview of data sources.

Criteria Sub-Criteria Original Data Source

Natural
indicators

Forest biomass; Naturalness; Community structure;
Tree species composition; Total vegetation cover;
Canopy closure; Average tree height; Litter layer
thickness; Altitude; Slope; Contiguous area level; Land
use types

The 9th National Forest Resources Inventory in
China results, the original data were provided by the
Planning Institute of the National Forestry and
Grassland Administration.

Climatic zones Official website of each county’s government.

Annual average temperature; Annual average
precipitation data

The “WorldClim 2.1 Climate Data (1970–2000)”
published by the WorldClim database
(https://www.worldclim.org, accessed on 29
September 2023).

Socio-economic
indicators

Total area by county; Built-up area; Urban population;
Year-end resident population; Value added of
non-agricultural industry; Regional gross domestic
product; Green coverage; Economic density;
Disposable income of urban residents; Disposable
income of rural residents

The CNKI Big Data Platform (https://data.cnki.net,
accessed on 29 September 2023) and national
economic and social development statistical
bulletins of various counties.

Reforestation intensity; Grassland restoration
intensity; Wetland restoration intensity

China Forestry and Grassland Statistical Yearbook
2018 (http://www.forestry.gov.cn, accessed on 29
September 2023) and China Forestry Statistical
Yearbook 2002–2017 (https://data.cnki.net, accessed
on 29 September 2023).

2.4.2. Data Processing

For the natural indicators, the county-level data were obtained by applying the area-
weighted coefficients based on the sample areas. In cases where certain counties had
missing variable values, they were replaced with the averages of the same variable from
other counties within the same city. For counties where replacement was not possible, the
samples were excluded. After data processing, a total of 436 valid samples were retained,
which accounts for 97.32% of the total sample size. Descriptive statistics for the relevant
variables are presented in Table 3. Data processing and model analysis were conducted
using Microsoft Excel 2010 and StataMP 17, while the visualization of map data was carried
out using ArcGIS 10.2.

Table 3. Descriptive statistics of variables.

Variable Definition N Mean Std. Dev. Min Max

Eco Forest ecological function index. 436 0.438 0.065 0.342 0.691
Urb Comprehensive urbanization score. 436 0.108 0.158 0.010 1.826
Pre The annual average precipitation (mm). 436 514.639 144.314 115.708 813.681
Temp The annual average temperature (◦C). 436 8.947 4.216 −4.557 15.140

Altitude Average altitude by county (m). Here, altitude has
been log-transformed. 436 6.637 1.283 0.898 8.434

Slope Average slope by county (◦). 436 10.886 8.099 0.000 37.022

GDP Regional gross domestic product (108 CNY). Here,
GDP has been log-transformed.

436 4.790 1.149 1.176 7.490

Economic density The ratio of regional gross domestic product to the
total area (108 CNY/km2). 436 0.652 2.718 0.000 41.303

https://www.worldclim.org
https://data.cnki.net
http://www.forestry.gov.cn
https://data.cnki.net
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Table 3. Cont.

Variable Definition N Mean Std. Dev. Min Max

Population density The ratio of the permanent resident population to
the total area (104 person/km2). 436 0.084 0.135 0.000 0.686

Disposable income of
urban residents (104 CNY) 436 3.052 0.572 0.956 4.594

Disposable income of
rural residents (104 CNY) 436 1.268 0.431 0.377 3.352

Contiguous area level
The size of the contiguous area, evaluated
according to the forest cover type and takes values
from 0 to 7.

436 4.313 1.171 1.000 6.779

Reforestation intensity

A summation dummy variable equals 1 when a
county has implemented only one of the projects.
including “natural forest resource protection”,
“grain for green”, “construction of key protective
forest systems in the Three-North region”, “control
of wind and sand sources in Beijing and Tianjin”,
and “construction of fast-growing and high-yield
timber forest bases in key areas”; 0 when none of
the above projects have been implemented; and the
highest value is taken to be 5.

436 3.323 0.878 1.000 4.000

Grassland restoration
intensity

A dummy variable equals 1 when a county has
implemented the “grazing prohibition and
grassland restoration project” and 0 otherwise.

436 0.312 0.464 0.000 1.000

Wetland restoration
intensity

A summation dummy variable equals 1 when a
county has implemented only one of the projects
including the “converting croplands to wetlands”
and “wetland protection and restoration”; 0 when
none of the above projects have been implemented;
and the highest value is taken to be 2.

436 0.789 0.750 0.000 2.000

2.5. Study Flowchart

Based on the above analyses, we drew a study flowchart (Figure 2).
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3. Results
3.1. Coupling and Coordination Results
3.1.1. Subsystem Scores

The scores of two subsystems, namely the comprehensive urbanization level (Urb)
and the forest ecological function index (Eco), are shown in Figure 3.
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Figure 3. Subsystem scores in counties of the YRB calculated by coupled coordination model.
(a) Subsystem scores for urbanization (Urb); (b) subsystem scores for forest ecological function (Eco).
Note: each subsystem score is sliced into 5 parts: low, lower, normal, higher, and high, using the
natural breakpoint method, respectively.

Figure 3a illustrates the comprehensive scores of the Urb subsystem calculated using
the entropy method. In terms of regional distribution, Urb in the YRB shows relatively low
overall spatial differentiation, with 75.51% of county-level samples below the average level.
Counties with higher Urb scores were only sporadically distributed in the southern part of
the YRB. In a county-by-county comparison, Beilin District in Shaanxi province had the
highest Urb score, while Alashan Zuoqi in Inner Mongolia had the lowest Urb score.

Figure 3b shows that the forest ecological function scores in the YRB exhibit significant
spatial variations. Taking the 400 mm annual precipitation line as a dividing criterion, a
basic pattern of “higher in the southeast, lower in the northwest” was observed. Moving
from the southern part of the YRB towards the surrounding areas, especially to the north,
the forest ecological function gradually weakened. Counties with a “high” score of Eco are
located in the southern part of the YRB, where annual precipitation exceeds 600 mm, includ-
ing southern Shaanxi and Sichuan provinces, with Zhouzhi County in Shaanxi province
having the highest Eco score. Counties with a “low” level of forest ecological function
had a broader distribution, covering almost the entire YRB region in Inner Mongolia, with
the poorest Eco found in Honggu District, Gansu Province. Counties with Eco scores
between “high” and “low” show significant differences in the spatial distribution. The
counties categorized as “normal” are scattered across various provinces and cities, while
those classified as “lower” are mainly found in the upper and lower reaches of the YRB.
Counties with a “higher” level are predominantly located in the central-right part of the
YRB, primarily in Shaanxi and Shanxi provinces.

Arranging the average scores of each province and municipality, the Urb scores in the
YRB can be ranked as follows: Henan > Shaanxi > Shandong > Overall (0.1093) > Qinghai
> Gansu > Shanxi > Ningxia > Inner Mongolia > Sichuan. As for the Eco scores, the ranking
is Sichuan > Shaanxi > Henan > Shanxi > Gansu > Overall (0.4383) > Qinghai > Shandong
> Ningxia > Inner Mongolia. More than half of the provinces scored higher than the YRB’s
average Eco score. Sichuan province exhibited a significant spatial discrepancy between
Urb and Eco: while its Eco score was high, its Urb score was relatively low.
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3.1.2. Coupling Results

To further explore the relationship between urbanization and forest ecological function,
the coupling degree and coupling coordination results of the two were calculated and
presented (Figure 4).
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Figure 4a shows that most counties are still in the “adjustment stage” of the Urb-Eco
continuum. In counties located in the northern part of the YRB, which receives the least
annual precipitation, the overall coupling degree was at a relatively low “antagonistic
stage”. This could be characterized by competition and resource competition between the
two subsystems, with alternating dynamics. Counties in the “high coupling stage” are
primarily situated in the regions with an annual average precipitation exceeding 600 mm
and an annual average temperature above 10 ◦C. In these areas, there was a high level
of interaction between urbanization and the forest ecological function. However, this
proportion of counties was relatively low. While coupling degree is important for assessing
the strength of coupling interactions and predicting the development order between the
Urb and Eco subsystems, it might sometimes fail to reflect the overall functionality or
development level of the systems. Therefore, it was necessary to construct a coupling
coordination degree model. As evident from Figure 4b, counties with high-quality Urb-Eco
coupling coordination are relatively scarce and dispersed, while the majority of counties
are still in the “primary coordinated” stage, indicating that there is significant room for
improvement in the overall coupling coordination of the system.

Scatter plots and linear regression lines illustrating the relationships between the
coupling degree and coupling coordination of the two systems with changes in annual
precipitation and annual average temperature are shown in Figure 5. The coordinated
development level of urbanization and forest ecological function was positively correlated
with both categories of climate factors, indicating that a warm and humid climate favors
the coordinated development of urbanization and forest ecological function.

3.2. Threshold Model Results
3.2.1. Test of Threshold Effect Existence

Before identifying the threshold effects of the annual temperature and the annual
precipitation in the impacts of urbanization on forest ecological function in the YRB, a
threshold effect existence test was conducted and the results are presented in Table 4.
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Table 4. Test results of threshold effect existence.

Threshold
Variable

Threshold-Dependent
Variable

Threshold Model
Selection F-Value p-Value

Critical Value

1% 5% 10%

Pre Urb Single 26.613 *** 0.000 7.443 4.400 3.140
Double 6.206 ** 0.013 6.685 3.294 2.339
Triple 5.671 ** 0.047 9.914 5.591 3.745

Temp Urb Single 9.730 *** 0.002 7.515 4.193 2.892
Double 5.578 ** 0.023 8.654 4.339 3.017
Triple 2.599 0.127 6.710 3.882 3.100

***, **, and * represent significance at the 1%, 5%, and 10% levels, respectively with 5% being the commonly used
significance level. p-values and critical values were obtained by simulating 5000 iterations using the Bootstrap
method [56].

When taking Pre as the threshold variable and Urb as the threshold-dependent vari-
able, single threshold effects, double threshold effects, and triple threshold effects of Pre
were all significant at the 5% confidence level. However, further assessment was needed in
conjunction with a test of the authenticity of the threshold values under these three types of
threshold models [27,30]. On the other hand, when taking Temp as the threshold variable
and Urb as the threshold-dependent variable, the single threshold and double threshold
models were significant at the 1% and 5% significance levels, respectively, while the triple
threshold model was not significant. Therefore, the triple threshold effect of Temp was
preliminarily ruled out.

3.2.2. Test of Threshold Value Authenticity

After detecting the existence of threshold effects, further estimation and validation of
the threshold values were conducted. The estimated threshold values and their correspond-
ing confidence intervals under the different threshold models are presented in Table 5.
When “Pre” was used as the threshold variable, the estimated value for a single threshold
was 532.342 mm, with a 95% confidence interval of [413.342, 559.629]. The estimated values
for the second threshold (694.178 mm) and the third threshold (285.953 mm) were both
outside of this interval, indicating significant differences between the second and third
threshold values compared to the first single threshold value [29]. However, by examining
the results of the LR test in Figure 6, the LR values were consistently below the critical
threshold (Figure 6d), suggesting that the confidence interval for the third threshold is
excessively wide and cannot effectively contribute to the threshold convergence. Therefore,
it was eventually decided to adopt the double threshold model, that is, to take 532.342 mm
and 694.178 mm as the threshold values of Pre.
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Table 5. Results of authenticity test of threshold values.

Threshold Variable Threshold-Dependent
Variable

Threshold Model
Selection

The Threshold
Estimate

95% Confidence
Interval

Pre Urb

Single 532.342 [413.342, 559.629]
Double 694.178 [184.199, 811.225]

532.342 [413.293, 564.808]
Triple 285.953 [184.199, 748.854]

Temp Urb

Single 10.105 [0.238, 13.873]
Double 9.191 [−2.012, 15.092]

10.105 [9.335, 10.357]
Triple 8.942 [−2.012, 14.570]

The threshold estimate is the value at which the likelihood ratio test statistic LR = 0.
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Figure 6. Confidence interval construction with each threshold model. (a) Likelihood ratio (LR)
map corresponding to the single threshold estimate (532.342) for annual average precipitation (Pre).
(b) LR map corresponding to the first threshold estimate (532.342) under the double threshold model
for Pre. (c) LR map corresponding to the second threshold estimate (694.178) under the double
threshold model for Pre. (d) LR map corresponding to the threshold estimate (285.953) under the
triple threshold model for Pre. (e) LR map corresponding to the single threshold estimate (10.105) for
annual average temperature (Temp). (f) LR map corresponding to the first threshold estimate (10.105)
under the double threshold model for Temp. (g) LR map corresponding to the second threshold
estimate (9.191) under the double threshold model for Temp. (h) LR map corresponding to the
threshold estimate (8.942) under the triple threshold model for Temp. Note: in the figure, the dashed
horizontal line (LR = 7.352) corresponds to a significance level of 0.05 [27].

Similarly, when “Temp” was considered as the threshold variable, the confidence
interval for a single threshold was relatively narrower compared to the confidence inter-
vals for the second and third thresholds, indicating more precise estimation results [28]
(Figure 6). Although the double threshold model was significant at the 5% confidence
level, the estimated threshold values were considered unreasonable for two main reasons:
Firstly, both estimated threshold values of the double threshold fall within the confidence
interval of the single threshold. Secondly, the confidence interval for the first threshold
value (9.191 ◦C) of the double threshold model encompasses almost the entire sample
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space and exhibits mixed signs at the confidence interval boundary [27]. Since there is no
evidence of a triple threshold effect, no further discussion is conducted regarding the third
threshold estimation value.

3.2.3. Threshold Model Results

The estimation results of the double-threshold model for Pre and the single-threshold
model for Temp are presented in Table 6. For the subset with precipitation as the threshold
variable (Column 1), using two threshold values, 532.342 mm and 694.178 mm, we divided
the samples into three subgroups: P1, P2, and P3. The coefficient of “Urb” on “Eco” changed
with an increase in Pre. Initially, it progressively reduced its negative impact, and then it
shifted from negative to positive, indicating the ecological promotion effect of urbanization.
Specifically, in P1, which mainly includes the county-level samples from Qinghai, Inner
Mongolia, and Ningxia, where there are high proportions of the primary industries, which
has displaced the forest cover and ecological functions. Additionally, these areas experience
the plateau continental climate, temperate continental climate, and temperate continental
monsoon climate with distinct seasonal characteristics, including hot and rainy summers
and cold, dry winters. Limited precipitation and ecological fragility restrict the growth and
recovery of forest vegetation in P1. Consequently, urbanization exerts the most pronounced
stress on forest ecological function, with the largest absolute coefficient value of 0.197.

Table 6. Regression results of threshold model.

Variable (1) (2)

Slope 0.00469 *** (11.00) 0.00503 *** (11.72)
Altitude −0.00718 ** (−2.03) −0.00721 ** (−1.97)

GDP −0.00644 ** (−2.02) −0.00706 ** (−2.19)
Economic density 0.00169 (0.81) 0.00164 (0.77)

Population density 0.0936 *** (4.10) 0.0992 *** (4.24)
Disposable income of urban residents −0.0155 *** (−2.95) −0.0133 ** (−2.47)
Disposable income of rural residents 0.0142 * (1.73) 0.0121 (1.44)

Contiguous area level 0.00472 * (1.96) 0.00489 ** (1.98)
Reforestation intensity 0.00509 (1.31) 0.000283 (0.08)

Grassland restoration intensity −0.0188 *** (−3.14) −0.0206 *** (−3.38)
Wetland restoration intensity 0.00713 ** (2.06) 0.00891 ** (2.53)

Urb_1 P1: −0.197 *** (−3.50) T1: −0.141 ** (−2.38)
Urb_2 P2: 0.0134 (0.34) T2: 0.012 (0.30)
Urb_3 P3: 0.306 ** (2.48) —

Constant 0.453 *** (14.33) 0.463 *** (14.42)
R2 0.435 0.405

Ajusted R2 0.416 0.387
F 23.15 22.12
N 436 436

Standard deviations are provided in parentheses. ***, **, and * represent significance at the 1%, 5%, and 10% levels,
with the 5% level being the commonly used significance level.

In P2, which mainly covers counties in Shanxi, Shaanxi, Gansu, and Sichuan, the
seasons are well-defined, with cold winters, hot summers, and often a rainy season in
the Huang–Huai–Hai warm temperate zone, where temperatures exceed 30 ◦C in July
and August. Here, the expansion of urbanization has led to a reversal in its impact on
forest ecological function, resulting in a promotional effect with a coefficient of 0.0134 (not
statistically significant).

In P3, mainly comprising counties along the southern YRB, the expansion of urban-
ization enhances the promotion effect on forest ecological function, with a significant
coefficient of 0.306. These areas experience a significant Northern Hemisphere subtropical
monsoon climate, with high-pressure systems forming in the interior of northwest Asia
during the winter, leading to prolonged cold north winds. The favorable climatic conditions
endow these areas with the capacity for forest growth and self-repair. In these regions,
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the progress of urbanization contributes to the improvement of forest ecological function,
indicating a higher degree of coordinated development between the two.

Similarly, when taking “Temp” as the threshold variable (Table 6, Column 2), the
coefficients of “Urb” on “Eco” shifted from negative to positive as temperature increased.
However, the absolute value of these coefficients did not exhibit a clear trend. With a single
threshold value of 10.105 ◦C, within the resulting subintervals, T1 and T2, the coefficients
were significant at −0.141 and not significant at 0.012, respectively. This suggests that in
counties with higher annual average temperatures, factors other than urbanization may
play a more significant role in influencing forest ecological function. The direction of the
control variable coefficients aligns with the results in Table 6 (Column 1).

The coordinated development of urbanization and forest ecological function depended
not only on the climate conditions of a county, but also on various natural factors, such
as slope, elevation, and contiguous forest area, as well as human factors like economic
development, population density, household income, and ecological engineering. Grass-
land restoration has squeezed the space for forest growth and inhibited the enhancement
of forest ecological function. Conversely, increased afforestation and wetland restoration
efforts have had a positive impact on forest ecological function.

4. Discussion
4.1. The Role of Climate in Shaping Urb-Eco Relationship

Coupling coordination is the result of the comprehensive scores of subsystems and
the comprehensive effects of coupling degree [57]. Despite the urbanization development
in the YRB promoting economic growth and improving people’s living standards, it has
also caused substantial harm to the forest ecosystem, leading to the relatively poor overall
coordination between the two. The positive correlation between Urb and Eco coordination
and both categories of climate factors suggests that a warm and humid climate is conducive
to the harmonious development of urbanization and forest ecological function.

On a deeper dive, the explanatory role of climate in the relationship between urban-
ization and forest ecological function was examined. There are two structural change
points for the threshold variable “Pre” in the context of Urb, located at 532.342 mm and
694.178 mm, respectively, which are reasonable, because, according to China’s precipitation
classification, these thresholds fall within the semi-humid range, leading to the division
into 3 distinct zones: P1, P2, and P3. Additionally, when considering “Temp” as the thresh-
old variable for Urb, there exists only a single threshold value at 10.105 ◦C, resulting in
categorization into two zones: T1 and T2. To be specific, firstly, the direction of Urb’s impact
changes from negative to positive, suggesting that the detrimental effect of urbanization on
forest ecological function tends to manifest in colder and drier counties, while its beneficial
effect tends to manifest in warmer and wetter counties. Secondly, for counties with lower
(P1) and higher (P3) humidity levels in the basin, urbanization has a greater impact on
the forest ecological function. This pattern is not easily discernible when taking annual
average temperature as the threshold variable since there is only a single threshold. Thirdly,
a comparison of the threshold effects of the two climate factors, Temp and Pre, shows that
Urb’s impact is much more sensitive on Pre. This suggests that urbanization development
is driving the transformation of agricultural land into urban land, the migration of surplus
rural labor to the urban areas, industrial optimization and upgrading, as well as the expan-
sion of green spaces. The release of ecological space signals a positive contribution to the
enhancement of forest ecological function. The results indicate that climate explains the
spatial differences in the impact of urbanization on forest ecological function in the YRB.

4.2. Mechanism

This study explored the intricate interplays between climate and nonlinear impacts
of urbanization on the forest ecological function. The results show that climate plays a
moderating role in the effects of urbanization on the forest ecological function, manifesting
a trajectory that transitioned from constraint to facilitation. Specifically, in the process of
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urbanization affecting forest ecological function, a dual threshold effect emerged concerning
annual average precipitation, while a single threshold effect was observed for annual
average temperature. A climate threshold framework was subsequently established based
on these results.

Favorable water and thermal conditions serve to mitigate the adverse consequences of
urbanization on the forest ecological function. In regions with a more humid and warm
climate, urbanization’s influence on these functions shifts from constraining to facilitating,
in stark contrast to the arid and cold climate regions. This transformation can be attributed
to two positive influences on the forest ecological function: the regulatory impact of
superior thermal and hydrological conditions, and the ameliorating effect of heightened
urbanization. Specifically, warmer and wetter climate effects promote forest growth and
ecosystem resilience, as substantiated by this study. It underscores the role of hydrothermal
conditions in shaping the extent to which urbanization impacts forest ecological function.
Areas with favorable precipitation conditions generally exhibit superior vegetation growth
dynamics and restoration capacity compared to areas with insufficient precipitation [58].
Over shorter timeframes, seasonally arid forests exhibit lower resilience than their humid
tropical counterparts [59]. Yao et al. (2021) explored the agro-pastoral zones experiencing
significant land use changes, whereby ecosystem resilience was significantly enhanced in
wetter environments but weakened in drier ones [60]. Moreover, climate influences the
forest ecological function by affecting forest species distribution [47], forest structure [49],
forest productivity [48], plant functional traits [50], and forest ecological services [51,52].
As forests progressively assume the role of ecological “reservoirs” under climate regulation,
their capacity to self-repair and accommodate human-generated emissions and pollutants
increases [61]. This aids in mitigating the adverse impacts of urbanization on forests.

On the flip side, urbanization contributes to the enhancement of forest ecological
function. Following the classic Environmental Kuznets Curve theory, there exists an “in-
verted U-shaped” relationship between economic development and environmental quality.
Once a certain threshold is surpassed, environmental quality improves as economic de-
velopment levels rise due to the predominance of positive effects over negative ones [62].
This is exemplified by the “promotion effect” of economic development on the ecologi-
cal environment [38]. Wen et al.’s (2018) research aligns with the outcomes of this study,
demonstrating that precipitation plays a significant positive moderating role in the urban-
ization process affecting vegetation cover [16]. Urbanization accompanies the influx of
numerous production factors, leading to increased production efficiency and the transfor-
mation of various forest resource types [4], thereby augmenting centralized environmental
management [7]. Furthermore, as urbanization progresses, both the government and public
awareness of environmental protection intensify, benefiting the enhancement of forest
ecological environments and functions. Li et al. (2021) reported that the implementation
of reforestation projects could diminish forest fragmentation [17]. Ehrhardt-Martines et al.
(2002) also noted a decreasing rate of natural resource consumption, including forest land,
due to urbanization [12].

5. Strengths and Limitations
5.1. Strength of the Study

This study offers a proactive roadmap for addressing the challenges posed by global
climate change and achieving a harmonious balance between urban development and
environmental conservation. It serves as an innovative reference for the development of
sustainable and climate-resilient urbanization policies. The main differences between our
study and previous studies are as follows.

Firstly, our study introduces a climate perspective to investigate how climate affects
the relationship between urbanization and forest ecological function. Previous studies often
used urbanization itself as a threshold variable to explore the nonlinear impact of urbaniza-
tion on the ecological environment under the different urbanization gradients [63–66]. In
our study, climate factors serve as threshold variables, with urbanization as the threshold-
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dependent variable, allowing for an examination of the potential moderating effect of
climate on the nonlinear impact of urbanization on the forest ecological function.

Secondly, previous studies predominantly relied on the urban population proportion
(Urb) as a representation of urbanization indicators, often overlooking a comprehensive
assessment of urbanization levels [43]. In contrast, our study not only considered the
transition from agricultural to urban populations, but also incorporated various aspects
of urban development, including changes in land use, adjustments in industrial structure,
and modifications in urban green coverage. Consequently, it introduced variables, such as
land urbanization, social urbanization, spatial urbanization, and ecological urbanization
to construct a comprehensive urbanization index. On the other hand, compared to using
forest coverage as a single proxy indicator of forest quality, the forest ecological index can
more accurately and comprehensively reflect the structure, ecological functions, and overall
efficiency of the forest [67,68]. Therefore, our study adopts a more comprehensive forest
ecological functional indicator.

Thirdly, our study focuses on the county-level scale, as this is a crucial governance
unit that bridges urbanization and ecological civilization construction. However, research
at the county level and even smaller scales has been limited due to a lack of ground-based
experiments [14]. Through county-level research, we have established a climate threshold
system that can characterize how urbanization affects forest ecological function, and our
results will be instrumental in offering decision support to the management authorities.

5.2. Limitation of the Study

Firstly, this study employs cross-sectional data and does not delve into the dynamic
changes of variables. Forest ecological function is influenced by both natural and human
factors. Natural factors exhibit long-term stability, whereas human activities, such as
socio-economic factors, are more dynamic and constitute essential components of current
research on the vegetation cover impacts [69]. Thus, this study considers it feasible to
investigate climate distribution differences within the same year. Secondly, this study
compensates for missing data by incorporating data from other counties within the same
city, which might have introduced the disparities between the estimated values and actual
values. In future research, the fuzzy numbers can be employed to represent the uncertain
data [70], facilitating further exploration of the impacts of different types of urbanization
on the forest ecological function. Thirdly, we have investigated only two primary climatic
factors, temperature, and precipitation. Thus, future research needs to include other
climatic factors. Fourthly, in exploring the impact of urbanization on the forest ecological
function under the climate context, we chose to utilize data at an annual scale. In future
studies, the consideration of data at a finer scale, such as quarterly or monthly intervals, can
allow for a more precise and comprehensive examination of the effects of climate-shaped
urbanization on the forest ecological function. Lastly, the threshold values of temperature
and precipitation were not considered as fixed as they are subject to variations depending
on the study year, study area, and selection of indicators. Within each climate gradient, the
impact coefficient of urbanization on forest ecological function will also change.

6. Conclusions and Recommendations

This study, based on the county-level data acquired from the Yellow River Basin in
China, examined the shaping role of climate factors in the relationship between urbanization
and forest ecological function. With this motivation, the research unfolds along two lines.
The first line of inquiry employs a coupled coordination modeling to qualitatively assess
the coupling and coordination between urbanization and forest ecological function, as well
as their connection to climate factors, temperature, and precipitation. The second line of
inquiry utilizes a threshold regression model that estimates how the impact coefficient
of urbanization on forest ecological function varies under the different precipitation and
temperature gradients. This approach aims at constructing a climate threshold system that
elucidates the impact of urbanization development on the forest ecological function.
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The major conclusions are: (1) Both the systematic coupling degree and the coupling
coordination degree between urbanization and forest ecological function exhibit positive
correlations with two climatic factors: annual precipitation and annual temperature. This
suggests that a warm and humid climate facilitates the coordinated development of ur-
banization and forest ecological function. (2) The spatial differentiation in the impact of
urbanization on the forest ecological function can be explained by climate. Urbanization
tends to exert a stress effect on the forest ecological function in colder and drier counties.
Conversely, in warmer and more humid counties, the dominant role played by the “reser-
voir” effect of forest ecological regulation, which mitigates the stress effects of urbanization.
Consequently, the promotional effect of urbanization becomes apparent. In counties with
the lowest and highest humidity levels, urbanization has a greater impact on the forest
ecological function. Since there is only a single threshold, this pattern is difficult to capture
when annual temperature is used as the threshold variable. The impact coefficient of
urbanization on the forest ecology is more sensitive to precipitation than temperature.

This research provides a fresh perspective and theoretical framework for tailoring
region-specific strategies in managing the pace of urbanization, bolstering early warning
mechanisms for forest ecological function, and crafting conservation strategies. These find-
ings yield two notable policy recommendations. Firstly, by categorizing urban planning
based on the precipitation and temperature gradients, it becomes feasible to effectively over-
see the urbanization development, ensuring the harmonious coexistence of urbanization
and forest ecological function. In regions marked by conspicuous stress effects induced by
urbanization, it becomes imperative to rigorously control the pace of development, enforce
stringent regulations concerning land use transitions, mitigate the rapid expansion of urban
populations, carefully reconfigure the industrial structure, and direct capital and technologi-
cal investments towards urban core areas to enhance land use efficiency [71]. This approach
effectively mitigates resource misallocation. In areas where the beneficial impacts of ur-
banization become discernible, urbanization can be incrementally advanced, but it should
refrain from hastily expanding towns and launching construction initiatives [16]. Moreover,
it is vital to fortify ecological safety measures and nurture ecosystem development [5].
Secondly, it is crucial to continue promoting urban forest development while maintaining a
balance between socio-economic growth and forest ecosystem construction. This entails the
establishment of an integrated urban–rural forest ecosystem [72]. Implementing afforesta-
tion and wetland restoration projects plays a pivotal role in enhancing forest ecological
function. Consideration should be given to creating peri-urban ecological buffer zones,
primarily composed of forests and wetlands, in suburban areas. These zones should serve
as the central framework for a network of forests and water bodies, fully realizing their
ecological potential.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/land12112047/s1, Table S1: cover area by each climate zone and
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References [37,67] are cited in the supplementary materials.
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