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Abstract: Corn grain moisture (CGM) is critical to estimate grain maturity status and schedule har-
vest. Traditional methods for determining CGM range from manual scouting, destructive laboratory
analyses, and weather-based dry down estimates. Such methods are either time consuming, expen-
sive, spatially inaccurate, or subjective, therefore they are prone to errors or limitations. Realizing
that precision harvest management could be critical for extracting the maximum crop value, this
study evaluates the estimation of CGM at a pre-harvest stage using high-resolution (1.3 cm/pixel)
multispectral imagery and machine learning techniques. Aerial imagery data were collected in the
2022 cropping season over 116 experimental corn planted plots. A total of 24 vegetation indices (VIs)
were derived from imagery data along with reflectance (REF) information in the blue, green, red, red-
edge, and near-infrared imaging spectrum that was initially evaluated for inter-correlations as well as
subject to principal component analysis (PCA). VIs including the Green Normalized Difference Index
(GNDVI), Green Chlorophyll Index (GCI), Infrared Percentage Vegetation Index (IPVI), Simple Ratio
Index (SR), Normalized Difference Red-Edge Index (NDRE), and Visible Atmospherically Resistant
Index (VARI) had the highest correlations with CGM (r: 0.68–0.80). Next, two state-of-the-art statisti-
cal and four machine learning (ML) models (Stepwise Linear Regression (SLR), Partial Least Squares
Regression (PLSR), Artificial Neural Network (ANN), Support Vector Machine (SVM), Random Forest
(RF), and K-nearest neighbor (KNN)), and their 120 derivates (six ML models × two input groups
(REFs and REFs+VIs) × 10 train–test data split ratios (starting 50:50)) were formulated and evaluated
for CGM estimation. The CGM estimation accuracy was impacted by the ML model and train-test
data split ratio. However, the impact was not significant for the input groups. For validation over
the train and entire dataset, RF performed the best at a 95:5 split ratio, and REFs+VIs as the input
variables (rtrain: 0.97, rRMSEtrain: 1.17%, rentire: 0.95, rRMSEentire: 1.37%). However, when validated
for the test dataset, an increase in the train–test split ratio decreased the performances of the other
ML models where SVM performed the best at a 50:50 split ratio (r = 0.70, rRMSE = 2.58%) and with
REFs+VIs as the input variables. The 95:5 train–test ratio showed the best performance across all
the models, which may be a suitable ratio for relatively smaller or medium-sized datasets. RF was
identified to be the most stable and consistent ML model (r: 0.95, rRMSE: 1.37%). Findings in the
study indicate that the integration of aerial remote sensing and ML-based data-run techniques could
be useful for reliably predicting CGM at the pre-harvest stage, and developing precision corn harvest
scheduling and management strategies for the growers.

Keywords: aerial multispectral sensing; corn grain moisture; machine learning; precision harvest

1. Introduction

Grain moisture is critical for determining optimum harvest schedules for crops, which
has economic implications during harvest and storage. Markets and safe storages require
crops to be harvested at a grain moisture content between 13 to 15.5%, depending on
the crop, its variety, and storage duration [1]. Harvesting below this range leads to yield
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losses due to grain shrinkage, lodging, and grain dropping during harvest as well as bird
interference. On the other hand, harvesting at a moisture level above this range risks fungal
infection during storage, requires additional costs and infrastructure for artificial drying,
and eventually discounted prices at sales points. Under both situations grain yield, quality,
and net returns are at risk [2]. Corn grain moisture (CGM) decreases from about 85% during
the silking stage to 30% at around maturity through dehydration [3]. This dehydration
occurs in two steps in the field: (i) during maturation, and (ii) post-maturity [4]. As the
grain approaches physiological maturity (i.e., maturation dehydration), the assimilates
of starch and protein displace water molecules within the grain [1,5,6]. During the post-
maturity stage, the grain moisture is lost through exchange with the atmosphere, and this
dehydration is influenced by air temperature, relative humidity, and husk weight and
thickness [6].

Conventionally, corn growers assess grain moisture indirectly by spotting the milk
line and black layer around the grain to determine harvest dates. Among direct methods,
cup-shaped capacitive units and portable grain analyzers are used in fields [7]. Another
traditional technique is oven drying [4]. Researchers have also developed moisture de-
tection techniques based on the electrical and dielectric characteristics of the grains [8,9].
For non-invasive estimation, generalized growing degree days-based models are used
to determine grain moisture and dry down periods (GDDs) [1]. However, this approach
provides minimum accountability of localized soil factors, crop varieties, crop management
practices, and tillage practices that may impact CGM at spatiotemporal scales. Nonetheless,
all these methods are either destructive, time consuming, spatially inaccurate, subjective, or
expensive, therefore they are prone to errors or limitations [6–8,10]. Given these limitations,
there is a great need for techniques that not only determine CGM non-destructively but are
high-throughput in nature as well as account for spatial variability.

Remote sensing is a convenient, timely, high-throughput, and precise technique for
the non-destructive assessment of crop physiology and health such as for water [11],
chlorophyll or nitrogen, disease infection, and pest infestation, among others, for different
crops [12]. This makes remote sensing an extremely useful tool for guiding precision
agriculture operations [1]. Pertaining to corn or field crops, research has been maximally
restricted to the use of remote sensing with vegetation indices (VIs) or machine learning
(ML) techniques for yield predictions [13–16]. Whereas very limited explorations have been
conducted for estimating CGM using remote sensing. One study so far utilized satellite-
based remote sensing imagery for estimating CGM in China using vegetation indices (VIs)
as inputs to the crop-physiological model and observed R2 values of up to 0.9 [16]. However,
satellite-based remote sensing is highly restricted due to fixed data acquisitions, spatial
resolutions, and cloud cover issues especially in coastal ecosystems [17–19]. On the other
hand, small unmanned aircraft system (SUAS) platforms are widely adopted for precision
agriculture operations due to the advantages of providing on-demand data at the desired
spatial resolution, and avoidance of atmospheric and cloud interferences [12,15,20,21].

The advancement of data-run techniques such as ML has revolutionized precision
agriculture operations significantly in recent years by broadening the horizons for crop
health estimations as well as yield forecasting [15]. Some of the most widely used ML
models include the support vector machine (SVM), random forest (RF), k-nearest neighbor
(KNN), and artificial neural network (ANN), among others [15]. These models deploy an
approach of supervised learning, which are trained to approximate complexities between
the input and output variables. This enhances robustness and generalizability of ML for
estimations compared to other conventional statistical or empirical models. ML is also
capable of handling overfitting, remains unaffected by collinearity, number, or non-normal
distribution of the variables, and does not require scale normalizations [22].

Given the restricted research of using high-resolution remote sensing and ML mostly
for yield predictions, this study addresses an important gap of estimating CGM using
SUAS-based multispectral imagery and a range of statistical and ML models. This would
eventually help determine precision corn harvest schedules for the growers. It is also
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important to note that ML techniques have been restrictively evaluated for the number
of variables, and a typical range of training–testing data-split ratios. Most of the studies
generally consider 70:30 or 80:20 train–test splits, which may or may not serve for the
small–medium datasets [16]. Therefore, this study also evaluates the influence of those
two factors on CGM estimation accuracies. Specific objectives are (1) evaluating aerial
multispectral imagery-derived reflectance (REFs) and VIs for assessing CGM, (2) estimating
CGM using a range of statistical as well as state-of-the-art ML models, and (3) evaluating
the performance of those models when using only REFs and a combination of REFs and
VIs as input variables at multiple train–test data split ratios. These evaluations will be
validated over the entire dataset (100%) as well as train and test datasets independently.

2. Materials and Methods
2.1. Experimental Details

The study was conducted at an experimental farm of the Tidewater Agriculture
Research and Extension Center (TAREC) of Virginia Tech (36◦41′7.22′′ N, 76◦45′57.232′′

W), located in Suffolk, VA, USA. The corn seeds were planted between 25–28 April 2022,
into a total of 116 plots of 4 rows each that were 30-ft long. These plots were applied with
29 distinct rates and compositions of fungicides at a reproductive growth stage for disease
control and to achieve variability in crop vigor for CGM estimation modeling. The crop
was harvested on 21 September 2022 (79 DAP (days after planting)) using a plot combine
harvester that recorded yield and grain moisture contents for two middle rows of each
plot. The combine harvester is equipped with a capacitive-type grain moisture sensor to
measure grain moisture and a load sensor to measure yield. No irrigation was applied
during the course of the trial.

2.2. Aerial Image Acquisition

Aerial imagery was acquired at vegetative stage-R5 on August 25, 2022 using a DJI Phantom
4 Multispectral quadcopter drone (SZ DJI Technology Co., Shenzhen, China, Figure 1). Imagery
data were acquired earlier than the harvest date (i.e., 21 September 2022) to evaluate the feasibility
of CGM estimation before the actual harvest operation was deployed. In addition, this is also the
stage after which the crop started senescing. The SUAS was equipped with a five-band multispec-
tral imaging sensor with blue (450 nm± 16 nm), green (560 nm± 16 nm), red (650 nm± 16 nm),
red-edge (RE: 730 nm± 16 nm), and near-infrared (NIR: 840 nm± 26 nm) wavelength sensors
of 2.08 megapixels each. DJI Ground Station Pro (DJI GS Pro, version 2.0.17, SZ DJI Technology
Co., Shenzhen, China) was used as the ground station control software to set up the SUAS flight
mission for an altitude of 25 m above ground level (AGL). This provided multispectral images at
a spatial resolution of 1.3 cm/pixel. The multispectral imaging sensor was also configured to
capture images at 80% front and 75% side overlaps for seamless orthomosaicing during
stitching operations. The SUAS had a real time kinematic (RTK) sensor to receive geolo-
cation corrections for each image as well as a skyward facing downwelling light sensor
to record light irradiance during each capture. This light information is used along with
the images of a calibrated reflectance panel (6×, Sentera, Inc., St. Paul, MN, USA) that
were captured after each flight for radiometric calibration of imagery from the mission.
This process eliminates any inconsistencies induced within images due to sunlight fluctu-
ations during the flight mission (Figure 1). The imaging flight was conducted near solar
(±2 h) noon period for high-quality crop feature retrieval. The SUAS has an SD card for
the storage of acquired imagery.

2.3. Image Analysis
Pre-Processing and Feature Extraction

Initially, multispectral snapshots (1125 images: 225 per waveband) were transferred
from the SUAS SD card to a photogrammetry and mapping software platform (Pix4D
Mapper, Pix4D, Inc., Lausanne, Switzerland). In this platform five seamless multispectral
reflectance orthomosaics pertaining to each type of sensor (blue, green, red, RE, NIR) were
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obtained as a result of sequential image stitching operations (Figure 2), which include
keypoint feature extraction and matching, imagery optimization, georectification, point
cloud generation, orthomosiacing, and radiometric calibration.
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Figure 2. Flowchart showing steps of aerial multispectral image analysis and estimation of corn grain
moisture using statistical and machine learning model.

The obtained REF orthomosaics were further processed in QGIS using the “Raster
Calculator” toolbar (Figure 2) to obtain 24 VIs (Table 1). These VIs were selected for their
significance reported in characterizing crop health under a broad range of growth and
agroclimatic conditions. The soil background was segmented out from each VI raster using
the histogram separation method [23,24]. Next, a shapefile polygon layer was created,
where rectangular areas of interest (AOI) of equal dimensions were drawn around the two
central rows of each trial plot. Using this shapefile and the “Zonal Statistics” toolbar, mean
REF and VI values for each AOI (of all non-zero and not-a-number pixels) were extracted,
which were then exported in the “*.xls” format for further analysis (Figure 2).
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Table 1. Vegetation indices extracted from aerial multispectral imagery for corn grain moisture assessments.

Vegetation Index Equation Reference

Normalized Difference Vegetation Index (NDVI) (NIR − R)/(NIR + R) [25]
Infrared Percentage Vegetation Index (IPVI) (NIR)/(NIR + R) [26]
Green Normal Difference Vegetation Index (GNDVI) (NIR − G)/(NIR + G) [27]
Green Difference Vegetation Index (GDVI) NIR − G [28]
Enhanced Vegetation Index (EVI) 2.5 × (NIR − R)/(NIR + 6 × R − 7.5 × B + 1) [29]
Leaf Area Index (LAI) 3.618 × EVI − 0.118 [30]
Modified Non-Linear Index (MNLI) (NIR2 − R) × (1 + L)/(NIR2 + R + L) [31]
Soil Adjusted Vegetation Index (SAVI) 1.5 × (NIR − R)/(NIR + R + 0.5) [32]
Optimized Soil Adjusted Vegetation Index (OSAVI) (NIR − R)/(NIR + R + 0.16) [33]
Green Soil Adjusted Vegetation Index (GSAVI) (NIR − G)/(NIR + G + 0.5) [32]
Green Optimized Soil Adjusted Vegetation Index
(GOSAVI) (NIR − G)/(NIR + G + 0.16) [32]

Modified Soil Adjusted Vegetation Index (MSAVI2) (2 × NIR + 1 − sqrt ((2 × NIR + 1) 2 − 8 × (NIR −
R)))/2 [34]

Normalized Difference Red-edge Index (NDRE) (NIR − RE)/(NIR + RE) [35]
Green Ratio Vegetation Index (GRVI) NIR/G [28]
Green Chlorophyll Index (GCI) (NIR/G) − 1 [36]
Green Leaf Index (GLI) ((G − R) + (G − B))/((2 × G) + R + B) [37]
Simple Ratio (SR) NIR/R [38]
Modified Simple Ratio (MSR) ((NIR/R) − 1)/(sqrt (NIR/R) + 1) [39]
Renormalized Difference Vegetation Index (RDVI) (NIR − R)/sqrt (NIR + R) [40]
Transformed Difference Vegetation Index (TDVI) 1.5 × ((NIR − R)/sqrt (NIR + R + 0.5)) [41]
Visible Atmospherically Resistant Index (VARI) (G − R)/(G + R − B) [42]
Wide Dynamic Range Vegetation Index (WDRVI) (a × NIR − R)/(a × NIR + R) [43]

R, G, B, RE, and NIR are pixel values of the spectral responses in red, green, blue, red-edge, and near-infrared images.

2.4. Data Analysis and CGM Estimation

A dataset containing CGM measurements (%) along with five REF and 24 VI features
was derived for 116 plots. Firstly, data normality was checked, and all the data followed a
normal distribution. Then, a Pearson correlation analysis was conducted to identify the
association between the CGM and all the derived REF and VI features.

Next, four ML models and two statistical models were formulated for CGM estimation.
These models include stepwise linear regression (SLR), partial least-squares regression
(PLSR), random forest (RF), k-nearest neighbor (KNN), support vector machine (SVM),
and artificial neural network (ANN). In SLR, the variable with the maximum sum of
squares of regression is selected first, and then binary regression is formed by selecting
an additional variable from the remaining variables. This process repeats until all non-
significant variables are eliminated that could induce cofounding effects [44,45]. PLSR
combines basic multiple linear regression functions and performs correlation and PCA
to eliminate collinearity between variables and maintains relationships with dependent
variables, i.e., CGM [46,47]. PLSR also has the capability of avoiding non-normal data. RF is
a highly used ML model for agricultural operations that assembles multiple decision trees
to estimate a result. The strength of RF is its ability to handle complex datasets and mitigate
overfitting for predictive modeling. In this study, the RF model was initially tested with
1000 trees for all dependent variables and optimum trees were identified in the ranges of
300–400 where the prediction accuracy was almost saturated. This hyperparameter tuning
was achieved by setting “five variables selected at random” as candidates for each iteration
of tuning [48]. KNN performs its function by approximating the association between
the independent and dependent variables by averaging the observations in the same
neighborhood. In this study, for KNN, repeated cross validation was adopted with three
repeats or iterations for up to 30 neighbors. Once the least mean square error was obtained
for a particular number of neighbors, that number was used for final model training [49].
SVM identifies a hyperplane in an n-dimensional space that distinctly classifies the data
points. This hyperplane is developed iteratively such that the misclassification error is
minimal while predicting continuous outputs [50,51]. ANN is a supervised ML model that
comprises node layers, namely, an input layer, one or more hidden layers, and an output layer.
The structure of ANN is inspired by the brain where each node connects to another with an
associated weight and threshold. If the output of any node is above the threshold, that node
gets activated and sends the data to the next layer of the network. This process repeats for
user-defined iterations until the network’s output error reaches the desired value [50,52]. The
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major advantage of ANN over other statistical or linear models is that it flexibly computes the
complicated or non-linear relationships between the input and the outputs. In this study, two
hidden layers were selected with ten and three nodes, respectively.

Prior to implementing these models, significant variables that would be used as
inputs were identified among the derived 29 REF and VI features. This was completed
to complement reduced overfitting and enhanced robustness of ML models for CGM
estimation. For this, firstly a principal component analysis was conducted to identify the
collinear variables. Two primary axes that explained the main variability, intercorrelations,
and dominating pattern of VIs in the data matrix were used to generate the PCA biplots for
dimensionality reduction. Next, a pair-wise correlation analysis was conducted between
all REF and VI features to reduce the number of variables. A threshold of 0.99 was defined
in this pair-wise correlation analysis and variables with correlations above this threshold
were identified and variables with largest mean absolute correlation were removed.

In the next step, two groups of input variables, (1) REFs and (2) REFs+VIs, as well as
ten training–testing datasets were defined. These training–testing datasets were based on
ten split ratios starting from 50:50 up until 95:5 at a 5% increment of the training dataset.
These sets of train–test splits were developed to identify and evaluate appropriate training
data sizes for the best model performance, especially for small- to medium-sized datasets as
in this study (i.e., total 116 data points). For evaluating the estimation model performances,
the trained models were implemented on the entire dataset, the testing dataset, as well as
the training dataset. Metrics of Pearson correlation (r) and relative root mean square error
(rRMSE, %, Equation (1)) were computed to evaluate the model performance and accuracy of
CGM estimation. All the ML and statistical modeling, metrics (r and rRMSE) computations,
and other analyses were performed with the R statistical computing software (version 4.3.1;
RStudio, Inc. Boston, MA, USA) with all statistical analyses inferred at 5% significance.

rRMSE (%) = 100×

√
∑n

i=1(CGME−CGMm)2

n
mean(CGM m)

(1)

where CGME is the estimated CGM and CGMm is the measured CGM.

3. Results
3.1. Crop Reflectance and Vegetation Index Feature Evaluation

Pearson’s correlation (r) analysis (Figure 3 and Table 2) showed that CGM had strong
and significant correlations with REFs in RE, and NIR, and the derived 24 VIs (0.68–0.80).
The correlation with REFs in the red band was moderate (r = −0.52). Among the VIs, the
highest correlation was observed for GNDVI (r = 0.80) and the lowest for VARI (0.68).
Correlations with the REFs in blue and green wavebands were the lowest (−0.27 and 0.05).
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spectral features, and (c) final selected input features after dimensionality reduction.
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Table 2. Correlations of reflectance and vegetation indices with corn grain moisture.

Vegetation Index Pearson Correlation (r)

Blue −0.27
Green 0.05
Red −0.52
Red Edge 0.66
Near Infrared 0.74
Normalized Difference Vegetation Index (NDVI) 0.77
Infrared Percentage Vegetation Index (IPVI) 0.77
Green Normal Difference Vegetation Index (GNDVI) 0.80
Difference Vegetation Index (DVI) 0.76
Green Difference Vegetation Index (GDVI) 0.76
Enhanced Vegetation Index (EVI) 0.77
Leaf Area Index (LAI) 0.77
Non-Linear Index (NLI) 0.78
Modified Non-Linear Index (MNLI) 0.76
Soil Adjusted Vegetation Index (SAVI) 0.77
Optimized Soil Adjusted Vegetation Index (OSAVI) 0.78
Green Soil Adjusted Vegetation Index (GSAVI) 0.78
Green Optimized Soil Adjusted Vegetation Index (GOSAVI) 0.79
Modified Soil Adjusted Vegetation Index (MSAVI2) 0.77
Normalized Difference Red-edge Index (NDRE) 0.76
Green Ratio Vegetation Index (GRVI) 0.79
Green Chlorophyll Index (GCI) 0.79
Green Leaf Index (GLI) 0.69
Simple Ratio (SR) 0.77
Modified Simple Ratio (MSR) 0.78
Renormalized Difference Vegetation Index (RDVI) 0.77
Transformed Difference Vegetation Index (TDVI) 0.78
Visible Atmospherically Resistant Index (VARI) 0.68
Wide Dynamic Range Vegetation Index (WDRVI) 0.78

R, G, B, RE, and NIR are reflectance in red, green, blue, red-edge, and NIR images. Correlation coefficients are
significant at p < 0.001.

3.2. Non-Invasive CGM Estimation with ML
3.2.1. Input Feature Selection

In the PCA, two primary PCs comprising 24 VIs and five REFs accounted for the
variability of 86.75% and 8.85% (Total = 95.60%, (Figure 3a)). The eigenvectors for the
REF in blue, green, and red wavelengths tended towards the top of the biplot (Figure 3a),
so they could be inferred to have more influence on PC-2 while the REFs in RE and NIR
wavelengths, as well as all other VIs, formed a dense cluster towards the extreme left,
top-left, or lower-left region, so they could be inferred to have more influence on PC-1.
The PCA could also visualize numerous VIs that completely coincided or were colinear
with other VIs. This observation was also supported by Figure 3b that shows complete
intercorrelations (i.e., r = 1) between such VIs. Next, using the function “findCorrelation”
in RStudio, we were able to identify the groups of VIs that had complete intercorrelations
and among them drop VIs that had the largest mean absolute correlation. The function
considers the absolute values of pair-wise correlations between variables and removes the
variable with the largest mean absolute correlation. This is similar to removing variables
that have lower loadings (determined through PCA) or less representation of the variability
in data compared to its collinear variable(s). The process determined five REFs and six VIs
that were not collinear and included B, G, R, RE, NIR, IPVI, NDRE, GCI, GLI, SR, and VARI.
These were finally used for CGM estimation through statistical and ML models (Figure 3c).

3.2.2. Using Reflectance Features as Inputs

The CGM through statistical and ML models was initially estimated using only the
REF features as the predictor variables (Table 3). For validation over the test dataset,
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SLR performed the best at a 50:50 split (r = 0.74, rRMSE = 2.43%), followed by PLSR,
SVM (50:50), RF, and KNN, and ANN was the weakest performer at the same split ratio
(r = 0.61, rRMSE = 4.43%). For validation over the train dataset, RF performed best at a
95:5 split (r = 0.96, rRMSE = 1.31%), followed by ANN (70:30), PLSR (75:25), KNN (75:25),
and SVM (70:30). SLR was the weakest performer at a 75:25 split (r = 0.8, rRMSE = 2.37%).
For validation over the entire dataset, RF (r = 0.94, rRMSE = 1.51%) performed the best
followed by ANN, PLSR, SLR, SVM, while KNN (r = 0.79, rRMSE = 2.6%) was the weakest
at a 95:5 split.

Table 3. Comparison of model analysis using reflectance and a combination of reflectance and VIs at
different train–test ratios.

Parameters Dataset: Entire Dataset: Test Dataset: Train

Train:Test
Ratio

Input
Group

Best
Model r rRMSE

(%)
Best

Model r rRMSE
(%)

Best
Model r rRMSE

(%)

50:50
REFs

RF
0.86 2.14 SLR 0.74 2.43

RF
0.96 1.59

REFs+VIs 0.87 2.08 SVM 0.70 2.58 0.97 1.34

55:45
REFs

RF
0.87 2.11 SLR 0.74 2.51 RF 0.96 1.47

REFs+VIs 0.87 2.08 SVM 0.69 2.68 ANN 0.97 1.26

60:40
REFs

RF
0.88 2.05 SLR 0.70 2.27

RF
0.96 1.47

REFs+VIs 0.88 2.03 SVM 0.67 2.64 0.97 1.26

65:35
REFs

RF
0.88 2.02 SLR 0.66 2.67

RF
0.96 1.41

REFs+VIs 0.88 2.02 SVM 0.64 2.78 0.97 1.22

70:30
REFs

RF
0.89 1.95 SLR 0.61 2.76

RF
0.96 1.43

REFs+VIs 0.89 1.93 SVM 0.60 2.92 0.97 1.21

75:25
REFs

RF
0.89 1.92 ANN 0.62 2.82

RF
0.96 1.35

REFs+VIs 0.90 1.86 SVM 0.60 3.08 0.97 1.17

80:20
REFs

RF
0.91 1.86 PLSR 0.65 2.70

RF
0.96 1.34

REFs+VIs 0.92 1.73 SLR 0.71 2.74 0.96 1.21

85:15
REFs

RF
0.93 1.69 PLSR 0.62 2.82

RF
0.96 1.33

REFs+VIs 0.92 1.65 SLR 0.67 2.69 0.97 1.20

90:10
REFs

RF
0.94 1.55 PLSR 0.43 2.91

RF
0.96 1.32

REFs+VIs 0.94 1.45 SLR 0.51 2.84 0.97 1.16

95:5
REFs

RF
0.94 1.51 KNN 0.69 3.25

RF
0.96 1.31

REFs+VIs 0.95 1.37 SLR 0.77 2.59 0.97 1.17

REFs is the reflectance-only input group, REFs+VIs is the reflectance and selected vegetation indices input group.

3.2.3. Using Reflectance and Vegetation Index Features as Inputs

In the second stage of CGM estimation, five selected REFs and six VIs as a result of
dimensionality reduction process were used as the inputs (Table 3). For the validation over
the test dataset, SVM performed the best at a 50:50 split (r = 0.70, rRMSE = 2.58%), followed
by RF, SLR, ANN, and PLSR, and KNN was the weakest performer at the same 50:50 split
(r = 0.62, rRMSE = 2.69%). For the validation over the train dataset, RF performed best
(r = 0.97, rRMSE = 1.17%), followed by ANN, SLR, PLSR, and SVM at a 95:5 split while
PLSR was the weakest performer at that split (r = 0.82, rRMSE = 2.54%). For the validation
over the entire dataset, RF at a 95:5 split (r = 0.95, rRMSE = 1.37%) performed best followed
by ANN, SLR, SVM, and PLSR, while KNN (r = 0.77, rRMSE = 2.74%) was the weakest
performer at a 95:5 split.

3.2.4. Impact of Training and Testing Data Split Ratios

As the training dataset size increased for training the models, the CGM estimation
accuracy also increased when validated over the train and entire datasets (rtrain: 0.61–0.97,
rRMSEtrain: 1.15–2.86%, rentire: 0.76–0.95, rRMSEentire: 1.37–3.31%) also increased
(Figures 4b,c and 5, Table 3) and decreased when validated over the test dataset (rtest:
−0.17–0.77, rRMSEtest: 2.27–5.59%, Figures 4a and 5, Table 3). For the train–test split ratio
of 95:5, the accuracy of CGM estimation was the best and RF was the best performing
model when validated over the train and entire datasets (rtrain = 0.97, rRMSEtrain = 1.17%,
rentire = 0.95, rRMSE entire = 1.37%, Figure 4b,c and Figure 5, Table 3) with REFs+VIs as the
input group. In addition, SLR performed the best at a 95:5 split ratio when validated over



Land 2023, 12, 2188 9 of 15

the test dataset with REFs+VIs as the input group. At the same split ratio, even when using
REFs as the input group and validation over train and entire datasets, RF performed the
best (rtrain = 0.96, rRMSEtrain = 1.31%, rentire = 0.94, rRMSEentire = 1.51%). SLR performed
the best (r = 0.74, rRMSE = 2.43%) with REFs as the input group and SVM performed the
best (r = 0.70, rRMSE = 2.58%) with REFs+VIs as the input group for the train–test split
ratio of 50:50 when those models were validated over the test dataset. ANN also improved
its performance at a train–test split ratio of 55:45 when using REFs+VIs as the input group
and was validated over the train dataset (rtrain = 0.97, rRMSEtrain = 1.26%, Table 3). When
validated over the test dataset, ANN improved its performance for the split ratio of 75:25
and with REFs as inputs (rtest = 0.62, rRMSEtest = 2.82%).
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Figure 5. Plots of (a) Pearson correlation (r), and (b) Relative root mean square error (rRMSE) summa-
rizing the performance of six corn grain moisture estimation models for ten train–test data split ratios,
and for two input groups (REFs, REFs+VIs) over three validation datasets (entire, test, train).

4. Discussion

Among the REFs in five wavebands, NIR had the highest correlation with CGM
(r = 0.74) depicting sensitivity to the chlorophyll light absorption feature of plants [53].
Correlations with REF in blue and green (r = −0.27, r = 0.05) wavebands were the lowest,
possibly due to a low signal-to-noise ratio [44,54]. Among the total 24 derived VIs, GNDVI
had the highest correlation with CGM, followed by GCI, GRVI, GOSAVI, and WDRVI,
among others (r = 0.78–0.80), while VARI had the lowest correlation (r = 0.68). GNDVI is
derived using NIR (840± 20 nm), which is more sensitive to chlorophyll content, supporting
a strong correlation [44]. On the other hand, VARI had low correlation due to its nonlinear
mathematical operation as well as its derivation using blue and green wavebands that had
low correlations with CGM. VIs such as IPVI and GCI had stronger correlations with CGM
as those take into consideration the dynamic variations in the visible–NIR region pertaining
to canopy water, chlorophyll, and nitrogen contents [55]. In this study, GCI and GNDVI
outperformed VIs that use reflectance in the red band such as IPVI, NDVI, TDVI, RDVI,
and others, as the reflectance in the green band (560 ± 10 nm) is relatively more sensitive to
chlorophyll and crop moisture contents [16,42]. This was also corroborated by observations
made by Kayad et al. [56] where VIs computed using green band reflectance outperformed
others in estimating corn grain yield. These VIs may also perform well for CGM estimation
using simple or multiple linear regression or other statistical models (Table 2) as also
supported by previous studies [16]. Nonetheless, using REF or VI feature as independent
inputs may lack robustness when evaluated under other agroclimatic conditions [57,58].
Therefore, this study advanced research towards the estimation of CGM using statistical and
ML models as those have the capability to robustly approximate complex and non-linear
relationships between the inputs (VIs or REFs) and outputs (i.e., CGM).

From the process of conducting PCA and eliminating collinear variables, blue, green,
red, RE, NIR, IPVI, NDRE, GCI, GLI, SR, and VARI were identified as not to have absolute
correlations (i.e., r = 1) among each other. IPVI had collinearity with NDVI but was
selected over the latter for its capability to overcome the limitations of NDVI, which can
become saturated for higher biomass, and is also subjected to relatively higher noise
from atmospheric and soil background conditions [19]. Studies have also reported IPVI
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to perform superior to NDVI for estimating crop nitrogen status and grain yield across
different growth stages [21,59]. Although GNDVI had a higher correlation with CGM
compared to GCI, it was not selected most probably due to it having a higher mean absolute
correlation compared to GCI [60]. An only study conducted thus far for CGM estimation
reported canopy chlorophyll content representing LAI as a strong input variable [16].
Most of the crop health status estimations such as chlorophyll content, water content,
or yield have utilized not only the REFs as inputs to ML or statistical models but also
the VIs [16,58]. Studies that have performed predictive modeling using ML have neither
evaluated inter-correlationships between the input variables (i.e., VIs) nor eliminated the
collinear variables before estimating the output [61,62]. This may often lead to model
overfittings, compromised robustness, and require extensive computations from a user’s
practical standpoint [63]. Most of the ML-based prediction studies have by default utilized
70:30 or 80:20 as the train–test data split ratios for model training and validations [5,64].
However, the consideration of the entire data size as well as impact of varying training data
proportions to identify the best train–test data split ratio have been minimally assessed.
This may also impact model over-fitness and robustness [50].

For these reasons as well as by identifying our dataset to be of medium size, our
study not only eliminated the collinear input variables but also identified the best train–test
split ratio(s) for statistical or ML models for CGM estimation. It was observed that model
performances improved (Figure 5) when validated over the train and entire datasets, for
increasing proportions of training data [16,62]. This observation was consistent when
using both input groups, REFs or REFs+VIs. Although REFs+VIs improved the model
performance compared to REFs as inputs, the impact was not significant (p = 0.374, Table 4).
Apparently, in the maximum cases irrespective of both input groups, ML models outper-
formed statistical models for estimating CGM (Figure 5) when validated over the training
and entire datasets.

Table 4. Effect of input parameters on performance of models for corn grain moisture estimation.

Variable p Value (r) p Value (rRMSE)

Model <0.001 <0.001

Train–test split <0.001 0.619

Dataset <0.001 <0.001

Input group 0.374 0.725

Train–test split: Dataset <0.001 <0.001

Train–test split: Input group 0.189 0.290

Dataset: Input group 0.450 0.002

Train–test split: Dataset: Input group 0.204 0.544
Where Dataset (train, test, entire), Input groups (REF, REF+VIs), and Model (SLR, PLSR, ANN, SVM, RF, KNN).

Interestingly, SVM and SLR at a 50:50 split ratio when validated over test datasets
using either of the input groups performed the best as those have been reported for smaller
datasets [50]. SVM is computationally expensive to work with large data as the algorithm
often fails while determining optimum boundary hyperplanes, making it more accurate
and robust for small data sizes, which has also been supported by other studies [65,66]. By
removing the collinearity of inputs, the cofounding effects on the estimation of CGM was
also eliminated, thereby improving performances of statistical models such as SLR and
PLSR [67]. This study’s data size was relatively small compared to what ANNs generally
require, and this was the reason why ANN was the least good performer amongst all
other evaluated models in this study [50,62,68]. Overall, RF performed the best compared
to all other models as it is capable of withstanding the overfitting problem unlike other
statistical linear models, and it was relatively less reliant on dataset size compared to other
ML models [53,69]. This is because RF is a decision-tree-based model that employs several
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sub-models and bagging techniques, for increased stability and resilience of the prediction
outcomes [70].

This study demonstrated the feasibility of SUAS and integrated ML techniques for
CGM estimation, which has not been explored thus far. The performance of the model
may further be improved by collecting data over multiple cropping seasons as well as
agroclimatic conditions. Identifying the earliest stage where accurate CGM could be
predicted as well as their translation to satellite imaging platforms are the next goals in
our efforts. Those estimates can be later converted into maps (raster or shapefiles) for the
corn growers who can develop precision harvest scheduling and management strategies
for enhanced crop value.

5. Conclusions

This study investigated the use of aerial multispectral imagery for assessing CGM as
well as estimating it using state-of-the-art ML and statistical models. To the best of our
knowledge, this was the first investigation of its kind to estimate grain moisture contents.
Using Pearson correlation, the REFs and VIs derived from the SUAS imagery data were
found to have a strong correlation between CGM and GNDVI, GCI, and IPVI, among others
with the highest correlations (r: 0.68–0.80). PCA and pairwise correlation analysis identified
REFs in blue, green, red, RE, NIR and VIs such as GCI, IPVI, NDRE, GLI, SR, and VARI as
potential inputs to estimate CGM using statistical and ML models.

All four evaluated ML models and two statistical models for estimating CGM im-
proved in performance with the increase in size of training datasets. While most ML
models performed well overall, RF was observed to be the most stable (r: 0.86–0.97,
rRMSE: 2.14–1.17%). It was observed that the input groups (only REFs or REFs+VIs) for
CGM estimation did not impact model performances. However, the train–test split ratios
did impact the model performances significantly with 50:50, 50:45, 60:40, 80:20, and 95:5
being among the split ratios that yielded strong performances. The 95:5 train–test split
ratio was the best when models were validated over the train and entire datasets while the
50:50 split ratio was the best when models were validated over the test dataset. The statistical
models i.e., SLR and PLSR, also yielded comparable performances to most of the ML models
(r: 0.61–0.74, rRMSE: 2.76–2.43%) while ANN could not be the best-performing model of the
study except at a 55:45 split ratio and for validation over train and entire datasets.

Overall, our study demonstrated that aerial multispectral imagery when integrated
with ML models could suitably estimate CGM even for small–medium dataset sizes. These
computations are critical for the corn growers to non-invasively as well as spatially map
CGM status for scheduling and managing harvest schedules and resources. We will be
further evaluating the models tested in the study over different growth stages to identify
the earliest time when CGM near optimum harvest could be estimated. Moreover, these
models could be translated in the form of webtools that farmers could utilize for planning
and executing precision operations on the ground and for extracting the best economic
value of their crop.
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