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Abstract: The incorporation of cycling as a mode of transport has been shown to have a positive
impact on reducing traffic congestion, improving mental health outcomes, and contributing to
the development of sustainable cities. The proliferation of bike-sharing systems, characterised by
their wide availability and high usage rates, has made cycling in urban areas more accessible and
convenient for individuals. While the existence of a relationship between cycling behaviour and
the built environment has been established, few studies have specifically examined this connection
for weekdays and weekends. With the emergence of new data sources, new methodologies have
become available for research into this area. For instance, bike-sharing spatio-temporal datasets
have made it possible to precisely measure cycling behaviour over time, while street-view images
and deep learning techniques now enable researchers to quantify the built environment from a
human perspective. In this study, we used 139,018 cycling trips and 14,947 street-view images to
examine the connection between the built environment consisting of urban greenways and cycling
behaviour. The results indicated that the greenness and enclosure of the level of greenway were
positively correlated with increased cycling on both weekdays and weekends. However, the openness
of the greenway appears to have opposing effects on cycling behaviour depending on the day of
the week, with high levels of openness potentially promoting cycling on weekends but hindering it
on weekdays. Based on the findings of this study, policymakers and planners should focus on the
cycling environment and prioritise improving its comfort and safety to promote green transportation
and bicycle-friendly cities.

Keywords: urban planning; bicycle sharing; cycling behaviour; urban greenways; built environment;
urban perceptions

1. Introduction

More than 50% of the population live in and 70–80% of economic activity occurs
in urban areas [1]. By 2050, it is expected that 70% of the world’s population will live in
cities [2]. The acceleration of urban growth has made it more challenging to develop green
and sustainable cities. According to the 2016 Shenzhen Travel Survey, the proportion of
people walking and cycling in the city had decreased by 14% compared to 2000, while car
ownership had increased, and motorised travel had risen overall. As a result, air pollution
and climate warming have intensified. To prevent this trend from continuing, it has become
vital to investigate how to promote cycling.

Cycling behaviour is influenced by various factors [3] including socio-demographic
characteristics, the social environment, weather conditions, and the built environment [4–8].
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Out of these, built environment characteristics are becoming increasingly recognised as an
important factor affecting cycling behaviour [9–16]. For instance, Shen et al. [17] analysed
the influence of built environment characteristics on bicycle sharing in Singapore and
found that land-use mix and public transport were positively associated with cycling use;
Lu et al. [10] showed that cycling behaviour in Hong Kong was negatively correlated with
population density, the number of bus stops, and slope of the terrain. Therefore, many cities
are trying to improve cycling conditions to reduce the negative environmental impacts
of transport, such as investing in bicycle infrastructure and establishing new bicycle-hire
systems [18,19]. Among built environment characteristics, many scholars believe that urban
greenery promotes cycling behaviour [10,20–22], as it may be psychologically pleasing
for cyclists [23]. Urban greenery can also reduce noise and air pollution and improve the
health of residents [24–26].

However, further research in this area is still needed. First, the relationship between
urban greenery and cycling behaviour is still unclear [27,28]. Although many scholars have
demonstrated a positive association between urban greenery and cycling behaviour [10,22],
some studies have found a weak correlation [29,30], an insignificant association [31,32], or
that the two were negatively correlated [33,34]. Second, most previous work has primarily
concentrated on large-scale factors such as vegetation coverage, land use, and building
density [17,21,35], while human-scale perceptions and corresponding features of the phys-
ical environmental have received less attention. In this paper, “human scale” refers to
the fine-scale represented by the human body and its surroundings that can be directly
observed, touched, and perceived in everyday life [36]. Previous research has been mainly
concerned with the impact of visual greenness on cycling [10]; however, the relationship
between the quality of the built environment (e.g., spatial enclosure and openness) and
cycling has not been fully investigated. Third, much of the existing research on cycling be-
haviour has centred on urban streets, universities, metro stations, and other areas [20,22,37],
with less attention being paid to the densely populated greenway environment. Greenways
are often considered to serve a variety of functions such as ecological corridors [38,39], recre-
ational purposes [40,41], and the promotion of outdoor exercise [42–45]. As a green, linear,
open space, greenways are particularly associated with physical activity, with studies show-
ing that most people use greenways mainly for walking, jogging, and cycling [21,46]. It has
been shown that greenways may be more activity-enhancing than other green spaces [47].
While several research works have established the relationship between the greenway envi-
ronment and physical activity [21,43,44,48–50], there is a scarcity of studies that specifically
examine cycling behaviour in this regard.

In recent years, location-based street-view images have provided new methodological
opportunities for quantitative studies of the urban built environment [51,52]. In previous
studies, data sources such as remote sensing and elevation data have been shown to
have image resolution and perspective limitations (e.g., 30 m resolution in Landsat 8);
assessment methods such as on-site or virtual audits [53], questionnaires [54,55], and
interviews [56,57] that use small sample sizes and are time-consuming have made it difficult
to measure a wide range of urban spaces through field research. However, street-view
images allow researchers to examine visual features from a human (horizontal) perspective
and provide more accurate measurements of the built environment, including features such
as urban buildings, vegetation, and openness [58,59]. Meanwhile, advances in technologies
such as computer vision and deep learning algorithms have made objective and large-
scale automatic recognition of street-view data possible [60–62]. Therefore, street-view
recognition has become an increasingly applied technique in the field of built environment
research, particularly in the areas of walkability [63–67], street greenery [68–73], urban
thermal environments [58,74–76], and space quality assessment [77–80]. For instance,
He et al. [81] measured street greenery by Pyramid Scene Parsing Network (PSPNet) and
found a positive correlation between street greenery and the time older people spent
engaging in physical activity; Dai et al. employed full convolutional networks (FCN) to
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segment street-level images in Wuhan and demonstrated a significant correlation between
urban visual space and residents’ psychological perceptions [82].

Moreover, the availability of spatio-temporal bike-sharing datasets facilitate more
precise measurement of bicycle usage and enhances our understanding of its temporal
variation. Temporal variables are an influential factor in the demand for bicycle sharing [3],
and the impact of the built environment on cycling behaviour may vary between week-
days and weekends, as the decision structure and demands associated with weekday and
weekend travel are different [83,84]. For example, on weekdays, commuters have more sen-
sitive travel times than on weekends due to their busy schedules and fixed timetables [85].
Previous researchers have relied on cyclists’ self-reported data and travel survey datasets,
which are costly and have limited sample sizes and poor data quality [86,87]. They are
also ill suited to the effective exploration of temporal changes in travel behaviour. In
contrast, large-scale GPS data are more accurate and detailed than traditional travel survey
datasets [87,88] and have been widely used to explore travel behaviour [89,90].

In summary, there are still significant gaps in our understanding of this topic. Firstly,
while some researchers have examined the correlation between visual greenery and cycling
behaviour, other human-scale perceptual factors of the physical environment have been less
explored. Secondly, the relationship between densely populated greenway environments
and cycling behaviour has been insufficiently investigated, particularly in the Pearl River
Delta (PRD) greenway network, where the greenway density is significantly higher than
in other regions [91]. Thirdly, many previous studies on the built environment–cycling
association have not adequately accounted for the temporal aspect of cycling. To address
these issues, this study aims to investigate the correlation between the built environment
and cycling behaviour in the vicinity of urban greenways in Shenzhen, utilizing data
from bike-sharing activities and streetscape imagery. We further explore whether there
are temporal differences in the relationship by comparing cycling data on weekdays and
weekends. The findings of this study may provide new insights into the relationship
between the built environment and cycling behaviour in densely populated areas and serve
as a reference for greenway planning in other regions.

2. Materials and Methods
2.1. Study Area

Shenzhen is one of the major cities in southern China, located in the Pearl River Delta,
close to Hong Kong, with a high population density and vibrant economic activity. It
has a stable bicycle-sharing service in place, making it a popular choice for researchers
from various fields [20,22,87,92]. Based on data from October 2018, the average daily
usage of shared bicycles in Shenzhen reached 650,000 [87]. Additionally, the area covered
by greenways in Shenzhen is one of the longest in China. According to data from 2015,
Shenzhen’s greenway network comprises 342 km of regional greenways, 673 km of urban
greenways, and 1031 km of community greenways [93].

Greenways serve multiple purposes including beautification, recreation, and the fulfil-
ment of ecological and diverse human needs [94]. The Pearl River Delta (PRD) Greenway
Network is the first modern greenway project to be implemented in China [95], which seeks
to improve the ecological environment, raise the standard of living, and drive economic
growth, and as a result of this programme, 18,019 km of greenways had been built in
Guangdong Province by the end of 2018 [96]. Although the programme has provided
some public facilities and boosted the tourism economy in less-developed villages, the
ecological and human functions of the greenways have been overlooked in the rush to
achieve results. It has been noted that there is a lack of expertise in greenway planning and
implementation of this greenway network as well as sound ecological and landscaping
strategies [91]. Forming part of this greenway network, most of Shenzhen’s greenways
are situated in built-up areas, and from our observations, many of them often overlap
with transportation corridors and have narrow widths and limited ecological functions,
rendering them impractical for outdoor sports and cycling. This situation is not only the
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result of land resource constraints but also the fact that current greenway planning places
excessive emphasis on the transportation function of the greenway network and fails to
consider the needs of non-motorised transport. To address this dilemma, this study aims
to investigate the relationship between the greenway environment and cycling behaviour
through quantitative analysis, with the objective of offering theoretical support for future
greenway planning in highly populated areas.

Based on greenway data from the Shenzhen government’s open data platform, this
study selected 23 urban greenways in the Luohu District after excluding those with incom-
plete data or bicycle-access bans. Consequently, the creation of buffers around the green-
ways was required to investigate the impact of the built environment on cycling behaviour
at a spatial scale. To avoid overlapping buffers and double-counting of cycling activity, we
used the Thiessen-polygon method to ensure that they were all independent [22,97,98]. The
sampling points were generated along the path of each urban greenway on a 500 m scale,
and buffer zones of 300 m were created using ArcGIS Pro software based on the greenway
sampling points (Figure 1).
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Figure 1. Buffer areas around urban greenways.

2.2. Variables
2.2.1. Cycling Frequency

Following previous studies [20,22,99], the number of bike-sharing trips was chosen as
the dependent variable in this study. We investigated cycling behaviour along the green-
ways and trips that began or finished within the buffer zone. In this study, dockless bicycle
sharing data were obtained from the daily order dataset of bicycle-sharing companies
updated by the Shenzhen government’s open data platform (https://opendata.sz.gov.cn/
data/dataSet/toDataDetails/29200_00403627, accessed on 13 August 2022). The dataset
provides data on bicycle sharing in Shenzhen in 2020 and 2021, which is anonymised
and contains user and company IDs, latitude and longitude coordinates of the start and
end points of journeys, and timestamps. This paper selected six days of rides from 6 to
11 April 2021, a period that included four weekdays and one weekend, during which the
dataset recorded approximately two million rides within Shenzhen. The meteorological
conditions during the given period were conducive to cycling, characterised by sunny skies
and temperatures ranging from 21 ◦C to 29 ◦C.

The steps involved in processing the data were as follows. First, greenways possess
not only recreational attributes but also serve as transport corridors for accessing other
destinations [47]. This dual function raises the possibility that people may use them pri-
marily for transportation rather than for their environmental qualities. To mitigate the
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impact of mobility purposes on cycling behaviour, this study only selected cycling data
with departure times between 10 a.m. and 3 p.m. Second, it was necessary to exclude
travel data unrelated to actual cycling behaviour [17,87,100]. Therefore, data that were too
short in duration (less than 3 min) and too fast in speed (greater than 20 km/h) were also
excluded. These anomalies may result from redeployment by the bike-sharing company
and data input errors. The speed was calculated based on the straight-line distance and
duration of the trip. The distance was calculated by importing each trip’s start and end
coordinates into GIS software. As the dataset does not record the actual route of each trip,
it was not possible to identify the precise distance travelled. Thirdly, only bicycle trips
starting or ending in the buffer zone were considered. This produced a final total of 139,018
trips within the buffer zone. After cleaning and filtering the raw data, the cycling data were
further categorised into weekdays and weekends to examine the impact of any potential
temporal differences on cycling behaviour.

2.2.2. Visual Space Indicators

This study used street-view images from Baidu Maps with streetscape recognition
techniques to measure the built environment. Baidu Street View (BSV) is the main source
of street-view data in China and has been employed in many studies [64,101,102]. The BSV
is a 360-degree horizontal and 180-degree vertical panoramic image and can be accessed
online. Based on OpenStreetMap (OSM) data [103], 5242 street-view sampling points were
generated along each street at a sampling distance of 100 m. Each sampling point’s latitude
and longitude coordinates were then recorded, and the street-view images were taken in
four directions: 0, 90, 180, and 270 degrees [20,104,105]. The size of each street view image
was 480 × 320 pixels, and the vertical angle was 0 degrees. A final total of 14,947 street
images was obtained.

Deep learning methods are able to extract high-dimensional visual features to enhance
the understanding of images [1,106]. Moreover, semantic segmentation models can detect
the proportion of different types of objects in street-view images [58,73,107]. Therefore,
they have become the primary tool used for streetscape processing in the built environment
field [52]. This study used a visual image semantic segmentation program [62] and trained
the fully convolutional network (FCN) using the ADE20K dataset [108]. FCNs have been
shown to successfully identify everyday objects in street-view images and predict their
semantic properties [53,58]. The pixel comparison accuracy of the network was 0.814426
and 0.66839 for the training and test datasets, respectively. The street-view image data
acquired were then processed by this trained segmentation model (Figure 2).

In this study, three different visual space indicators from a human perspective were
selected as independent variables in order to analyse their relationship with cycling be-
haviour, namely openness, greenness, and enclosure. In the process of street-view data
acquisition described above, four images were collected for each sampling point, with
azimuth angles of 0, 90, 180, and 270. The number of pixels accounted for by the visual
elements, such as greenery, sky, and buildings, was then calculated using the FCN-based
segmentation method, and the proportion of the whole scene that they occupied was
determined. The greenness of each sample point was calculated by the ratio of the number
of pixels in the trees and plants in each image to the total number of pixels in each image
using the following formula:

Greennesssample =
∑4

i=1 pixelst_i + ∑4
i=1 pixelsp_i

∑4
i=1 pixelso_i

(1)



Land 2023, 12, 619 6 of 19
Land 2023, 12, x FOR PEER REVIEW 6 of 20 
 

 
Figure 2. Street-view image segmentation obtained via the FCN network. 

In this study, three different visual space indicators from a human perspective were 
selected as independent variables in order to analyse their relationship with cycling be-
haviour, namely openness, greenness, and enclosure. In the process of street-view data 
acquisition described above, four images were collected for each sampling point, with az-
imuth angles of 0, 90, 180, and 270. The number of pixels accounted for by the visual ele-
ments, such as greenery, sky, and buildings, was then calculated using the FCN-based 
segmentation method, and the proportion of the whole scene that they occupied was de-
termined. The greenness of each sample point was calculated by the ratio of the number 
of pixels in the trees and plants in each image to the total number of pixels in each image 
using the following formula: 𝐺𝑟𝑒𝑒𝑛𝑛𝑒𝑠𝑠௦௔௠௣௟௘ = ∑ 𝑝𝑖𝑥𝑒𝑙𝑠௧_௜ + ∑ 𝑝𝑖𝑥𝑒𝑙𝑠௣_௜ସ௜ୀଵସ௜ୀଵ ∑ 𝑝𝑖𝑥𝑒𝑙𝑠௢_௜ସ௜ୀଵ  (1)

In Equation (1), 𝑝𝑖𝑥𝑒𝑙𝑠௧_௜ denotes the number of pixels in trees segmented from pho-
tos taken in the ith direction of each sampling point in the four directions, 𝑝𝑖𝑥𝑒𝑙𝑠௣_௜ de-
notes the number of pixels in plants segmented from streetscape images in the ith direc-
tion, and 𝑝𝑖𝑥𝑒𝑙𝑠௢_௜ denotes the total number of pixels in streetscape images in the ith di-
rection. Based on Equation (1), Equation (2) was formulated to quantify the greenness of 
the study area, where n denotes the number of sampling points in each buffer, and 𝐺𝑟𝑒𝑒𝑛𝑛𝑒𝑠𝑠௦௔௠௣௟௘ denotes the value of the greenness index of each sampling point. 

𝐺𝑟𝑒𝑒𝑛𝑛𝑒𝑠𝑠௦௜௧௘ = ∑ 𝐺𝑟𝑒𝑒𝑛𝑛𝑒𝑠𝑠௦௔௠௣௟௘௝௡௝ୀଵ 𝑛 × 100% (2)

Openness represents the portion of the sky visible from the ground. This study uses 
sky exposure to reflect openness. The openness was calculated by the ratio of the number 
of pixels in the sky to the total number of pixels in the street-view images. Equation (3) 
was used to quantify the openness of each sampling point, and Equation (4) was used to 
quantify the openness within the study area as a whole. 𝑝𝑖𝑥𝑒𝑙𝑠௦_௜ denotes the number of 

Figure 2. Street-view image segmentation obtained via the FCN network.

In Equation (1), pixelst_i denotes the number of pixels in trees segmented from photos
taken in the ith direction of each sampling point in the four directions, pixelsp_i denotes
the number of pixels in plants segmented from streetscape images in the ith direction, and
pixelso_i denotes the total number of pixels in streetscape images in the ith direction. Based
on Equation (1), Equation (2) was formulated to quantify the greenness of the study area,
where n denotes the number of sampling points in each buffer, and Greennesssample denotes
the value of the greenness index of each sampling point.

Greennesssite =
∑n

j=1 Greennesssample j

n
× 100% (2)

Openness represents the portion of the sky visible from the ground. This study uses
sky exposure to reflect openness. The openness was calculated by the ratio of the number
of pixels in the sky to the total number of pixels in the street-view images. Equation (3)
was used to quantify the openness of each sampling point, and Equation (4) was used to
quantify the openness within the study area as a whole. pixelss_i denotes the number of
sky pixels extracted from the picture taken in the ith direction at each sampling point, and
Opennesssample denotes the openness index calculated for each sampling point.

Opennesssample =
∑4

i=1 pixelss_i

∑4
i=1 pixelso_i

(3)

Opennesssite =
∑n

j=1 Opennesssample j

n
× 100% (4)

Enclosure refers to the extent to which people are spatially enclosed by the urban
environment. Following previous studies [82], the enclosure was calculated by the ratio
of the number of pixels in trees and buildings to the total number of pixels in the street
view image. Equation (5) was used to quantify the enclosure of each sampling point, while
Equation (6) was used to quantify the enclosure within the study area overall. pixelsb_i
represents the number of pixels in the buildings extracted from the photograph taken in
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the ith direction at each sample point, and Enclosuresample represents the value of enclosure
calculated at each sample point. A higher enclosure value means a denser spatial enclosure.

Enclosuresample =
∑4

i=1 pixelst_i + ∑4
i=1 pixelsb_i

∑4
i=1 pixelso_i

(5)

Enclosuresite =
∑n

j=1 Enclosuresample j

n
× 100% (6)

2.2.3. Covariables

Developing the work of previous studies [10,21,22] further, this study considered the
built environment characteristics that may affect cycling behaviour. These factors include
the normalised difference vegetation index (NDVI), land-use mix, the greenway link-node
ratio, building density, number of parks and plazas, and greenway width.

The normalised difference vegetation index (NDVI) is an indicator used to assess
vegetation exposure at a large scale from a vertical perspective. The NDVI is calculated
based on the contrast between the two bands (chlorophyll pigment absorption in the red
band and high reflectance of plant material in the near-infrared band) through remote
sensing image data [10]. The remote sensing data were obtained from Landsat 8 OLI_TIRS
satellite digital products provided by Geospatial Data Cloud (http://www.gscloud.cn/
sources/accessdata/411?pid=1, accessed on 13 August 2022), with an image resolution of
30 m, taken on 20 February 2021, with cloudiness of 0.04%. The raster of the remote sensing
images was imported using GIS software, and the NDVI was calculated, followed by the
average NDVI value of each buffer zone. The higher values represent greater amounts of
vegetation in the area. The equation used to calculate NDVI is as follows, in which NIR
denotes the near-infrared band, and R refers to the red band:

NDVI =
NIR− R
NIR + R

(7)

The land-use mix was calculated using 14 different types of point of interest (POI) data,
and the relative percentages of different land-use types were ascertained [109]. The number
and type of POI in each buffer with a search radius of 100 m were then calculated using
ArcGIS software. Subsequently, the proportion of each type in each buffer was calculated
to arrive at a measure of the land-use mix, also known as the Shannon–Wiener diversity
index (SHDI) [110]. The equation for calculating SHDI is as follows:

SHDI = −
m

∑
i=1

pi × ln pi (8)

where pi is the proportion of type i in the whole buffer, and m is the total number of types
of POI in the buffer. This indicator is greatest when there is a similar proportion of POIs
of each type. When there is only one type of POI or none at all in the area, the value is
zero. Land-use mix is a measure of the functional complexity of an area and has been
widely used in research on the built environment [17,21,72,111]. Compact, mixed-use urban
environments have been shown to promote cycling [31,34].

We also included four other indicators: link-node ratio, building density, number of
parks and plazas, and greenway width. First, the link-node ratio refers to the connectivity
of the greenway to the surrounding roads. The link-node ratio was obtained by dividing
the number of links by the number of nodes on the greenway. Links are greenway segments,
and nodes are greenway intersections or cul-de-sacs. Higher ratio values indicate better
connectivity. Second, building density is defined as the ratio of the area covered by
buildings within a buffer to the buffer area as a whole. A higher ratio indicates a more
densely built-up area, reflecting a more densely populated area with more traffic activity.
Third, the number of parks and plazas was calculated from the number of parks and plaza

http://www.gscloud.cn/sources/accessdata/411?pid=1
http://www.gscloud.cn/sources/accessdata/411?pid=1
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POIs in the buffer zone. Fourth, greenway width is the average width of greenways in the
buffer zone.

2.3. Statistical Analysis

Following previous studies [22,99], as cycling frequency is a count variable, this study
used a multivariate Poisson regression model to investigate the influence of visual-spatial
factors on cycling behaviour along greenways. Each of the three visual space indicators
was used as the independent variable in the regression model. The variance inflation factor
(VIF) of each variable was less than 5 in the multi-collinearity test, so it was concluded
that there was no significant collinearity in the model in this study. The model used in this
study was specified as follows:

P(Y = yi|λ) =
λβ0+β1Vi+β2Ci+εi e−λ

(β0 + β1Vi + β2Ci + εi)!
(9)

where yi represents the use of bicycle sharing around the greenway, Vi denotes a vector of
variables of the three visual spatial indicators, Ci denotes a vector of covariates, λ denotes
the Poisson event rate, and εi denotes the random error.

Previous studies [83,99] have shown that cycling behaviour may differ across periods
of time. Therefore, this study used two regression models to examine cycling behaviour on
weekdays and at weekends and their relationship with the built environment consisting of
urban greenways.

Figure 3 presents the flowchart of this study. Firstly, the study initially collected data
from various sources, including street-view images, bicycle-sharing data, remote sensing
images, and map data. Secondly, each street view-image underwent semantic segmentation
using the FCN-8 s model, which enabled us to obtain the proportion of different objects
and calculate three visual spatial indicators. GIS and python were also used to process the
data and extract the cycling frequency on weekends and weekdays along with other built
environment factors. Thirdly, a multivariate Poisson regression analysis was conducted
to investigate the association between cycling and the built environment, suggesting
implications for promoting bicycle-friendly environments and greenway planning.
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3. Results
3.1. Descriptive Analysis

Table 1 summarises the properties of all the variables. The average number of rides in
the study area varies by time period, with weekends seeing a higher number of rides than
weekdays. The average number of rides at weekends was 1200.625 compared to 971.531 on
weekdays, indicating that cycling is more frequent on weekends. In terms of visual space
indicators, the study area is generally quite enclosed, with an average greenness rating of
26.494, an average openness value of 13.117, and an average enclosure value of 37.348.

Table 1. Descriptive statistics.

Variables Mean (SD)

Dependent variables Cycling frequency at weekends (total number of rides) 1200.625 (1688.951)
Cycling frequency on weekdays (total number of rides) 971.531 (1526.465)

Visual space indicators
Greenness (%) 26.494 (15.548)
Openness (%) 13.117 (4.956)
Enclosure (%) 37.348 (9.342)

Covariates

NDVI (%) 14.675 (6.785)
Land-use mix (SHDI) 1.801 (0.659)

Greenway connectivity (link-node ratio) 1.327 (0.611)
Greenway width (m) 2.524 (0.657)

Building density (km2/km2) 0.161 (0.123)
Number of parks and plazas (number) 1.375 (2.616)

SD, standard deviation.

With regard to the covariates, the mean NDVI of the study area was 14.675, which
was generally lower than the visual-spatial indicator of greenness, suggesting that the
vertical perspective measurement may be different from the actual greenness observed
by the human eye. The average land-use mix of the study area was 1.801, the average
greenway link-node ratio was 1.327, the average greenway width was 2.524, the average
building density was 0.161, and the average number of parks and squares was 1.375.

3.2. Baseline Results

Table 2 shows the effect of visually perceived greenery and built environment charac-
teristics on cycling behaviour along the urban greenway on weekends and on weekdays.
The results show that greenness is positively associated with cycling behaviour during dif-
ferent periods of time. In contrast, NDVI was negatively correlated with cycling behaviour.
Land-use mix, greenway width, building density, and the number of parks and plazas
were all positively associated with cycling behaviour. However, greenway connectivity
was negatively correlated with cycling behaviour.

Table 2. The regression model results with regard to street-view greenness.

Cycling Frequency
at Weekend

Cycling Frequency
on Weekdays

Cycling Frequency
in a Week

Coef. (SE) Coef. (SE) Coef. (SE)
Visual space indicators

Greenness 0.015 *** (0.001) 0.014 *** (0.001) 0.015 *** (0.001)
Covariates

NDVI −0.184 *** (0.001) −0.211 *** (0.002) −0.196 *** (0.001)
Land-use mix 1.881 *** (0.025) 2.175 *** (0.035) 1.967 *** (0.020)

Greenway connectivity −0.379 *** (0.011) −0.566 *** (0.013) −0.456 *** (0.008)
Greenway width 0.330 *** (0.012) 0.062 *** (0.015) 0.224 *** (0.009)
Building density 1.185 *** (0.054) 1.395 *** (0.062) 1.228 *** (0.041)

Number of parks and plazas 0.027 *** (0.001) 0.032 *** (0.001) 0.029 *** (0.001)

Coef., coefficient; SE, standard error; *** p < 0.01.
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Table 3 shows the effect of visually perceived sky openness and built environment
characteristics on cycling behaviour along the urban greenway om weekends and on
weekdays. The regression results show that openness is positively correlated with cycling
behaviour on weekends but negatively correlated with cycling behaviour on weekdays.
In terms of the covariates, the regression results in Table 3 are similar to those in Table 2,
with land-use mix, greenway width, building density, and number of parks and plazas
all positively associated with cycling behaviour and NDVI and greenway connectivity
negatively correlated with cycling behaviour on weekends and on weekdays.

Table 3. The regression model results with regard to street-view openness.

Cycling Frequency
at Weekend

Cycling Frequency
on Weekdays

Cycling Frequency
in a Week

Coef. (SE) Coef. (SE) Coef. (SE)
Visual space indicators

Openness 0.005 *** (0.001) −0.011 *** (0.001) −0.003 ** (0.001)
Covariates

NDVI −0.169 *** (0.001) −0.192 *** (0.001) −0.179 *** (0.001)
Land-use mix 1.620 *** (0.022) 1.996 *** (0.032) 1.747 *** (0.018)

Greenway connectivity −0.342 *** (0.010) −0.531 *** (0.012) −0.419 *** (0.008)
Greenway width 0.349 *** (0.012) 0.109 *** (0.016) 0.255 *** (0.010)
Building density 1.311 *** (0.057) 1.203 *** (0.066) 1.199 *** (0.043)

Number of parks and plazas 0.033 *** (0.001) 0.037 *** (0.001) 0.034 *** (0.001)

Coef., coefficient; SE, standard error; ** p < 0.05; *** p < 0.01.

Table 4 illustrates the effect of visual enclosure and built environment characteristics
on cycling behaviour around the urban greenway on weekends and on weekdays. The
results show that enclosure was positively associated with cycling behaviour. In terms of
the covariates, the regression results in Table 4 are similar to those in Table 2. Land-use
mix, greenway width, building density, and the number of parks and plazas were all
positively correlated with cycling behaviour at different times, while NDVI and greenway
connectivity were negatively related to cycling behaviour on weekends and on weekdays.

Table 4. The regression model results with regard to street-view enclosure.

Cycling Frequency
at Weekend

Cycling Frequency
on Weekdays

Cycling Frequency
in a Week

Coef. (SE) Coef. (SE) Coef. (SE)
Visual space indicators

Enclosure 0.016 *** (0.001) 0.016 *** (0.001) 0.017 *** (0.001)
Covariates

NDVI −0.163 *** (0.001) −0.190 *** (0.001) −0.175 *** (0.001)
Land-use mix 1.806 *** (0.024) 2.098 *** (0.033) 1.898 *** (0.019)

Greenway connectivity −0.343 *** (0.01) −0.527 *** (0.012) −0.417 *** (0.008)
Greenway width 0.377 *** (0.012) 0.109 *** (0.016) 0.273 *** (0.009)
Building density 0.696 *** (0.063) 0.857 *** (0.072) 0.689 *** (0.047)

Number of parks and plazas 0.030 *** (0.001) 0.034 *** (0.001) 0.032 *** (0.001)

Coef., coefficient; SE, standard error; *** p < 0.01.

4. Discussion
4.1. The Association between Visual Space and Cycling Behaviour

In this paper, our results suggest that the greenness and enclosure of the greenway
were positively associated with cycling behaviour on weekdays and the weekend. The
openness of the sky within the greenway environment had a positive effect on cycling
during the weekend but a negative influence during the weekdays.

The positive correlation between greenness and cycling behaviour can be explained
by the fact that greenness provides a pleasant and comfortable cycling environment. On
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the one hand, the presence of urban greenery has an emotional and/or psychological value.
Greenery can improve the aesthetic perception of the built environment [10,112]. It has
been shown that residents give higher aesthetic ratings to urban environments containing
more trees [113]. Moreover, greenness can also enhance mental health and improve the
mood of urban residents [44,70]. Numerous studies have observed a positive correlation
between psychological well-being and visible greenery [82,104,105]. In addition, greenness
provides a pleasant environment and can reduce air pollution. The combined effect of
shade and evapotranspiration from trees has been shown to reduce surface air temperatures
in urban areas and decrease the effects of “urban heat islands” [114,115]. Street trees can
therefore provide a safer, more thermally comfortable travel environment [114,116]. Not
only that, but greenness also plays a role in reducing air pollution. Urban street trees can
absorb air pollution and improve walkability [58]. Wu et al. [73] found that an increase in
vertically distributed street greenery was effective at reducing air pollution in streets in
the summertime.

In this paper, it was discovered that greater enclosure of visual space could promote
cycling behaviour. This is because well-enclosed spaces tend to provide a higher level
of safety and thus encourage more physical activity [117,118]. An enclosed street gives
the impression of safety [82,117], whereas a broad structure creates a sense of vacancy
and inactivity [53,119,120]. A study by Ma et al. [121] found that as central urban areas
tend to be more enclosed, residents in urban centres had a greater sense of safety [122].
Moreover, a greater level of enclosure can also provide a more thermally comfortable urban
environment. Because trees and buildings intercept solar radiation and cast shadows, they
may affect the microclimate and the physiological equivalent temperature (PET) [123]. A
low level of sky visibility and dense green cover have been shown to reduce the PET at
ground level [124].

The results of this study further suggested that people prefer a larger area of sky
for cycling during weekends, while they favour a smaller area of sky openness during
weekdays. This may be due to differences in the purpose of their cycle rides. On the one
hand, people prefer to cycle for recreational activities on weekends [22,83], when they
are more concerned with visual perception and the cycling experience. The openness of
streets has been shown to increase the attractiveness of streetscapes and enhance people’s
comfort at public events [53]. This phenomenon can be explained by the fact that sunny
weather increases serotonin levels, the brain’s happiness-enhancing neurotransmitters,
thereby improving mood [125], for example, by reducing sadness [126], tiredness, and
sluggishness [127] and increasing optimism and concentration [128]. It has been found that
the number of cyclists increases threefold in summer compared to winter [129]. A study by
Böcker et al. [130] in the Netherlands also showed that dry, calm, sunny, and warm but not-
too-hot (up to 25 ◦C) weather enhances positive effects such as happiness and enthusiasm
and therefore promotes cycling behaviour. On the other hand, when people cycle mainly
for weekday commuting [131], they are more concerned with cycling efficiency and comfort.
Cyclists are more likely to be exposed to current weather conditions [132] and are therefore
more sensitive to climate. Hot weather not only affects human comfort and health but also
inhibits mood and active travel [123]. In a study set in Singapore, Meng et al. [5] found that
cycling behaviour was more likely to occur in scenarios where temperatures were relatively
low. Higher air temperatures may not be conductive to cycling [17,130,133].

4.2. Other Built Environment Factors

The results of this study suggest that NDVI and the actual amount of greenery per-
ceived within a visual space do not have a consistent influence on cycling behaviour. There
may be two reasons for this phenomenon. On the one hand, NDVI and visual greenery
are observed from different perspectives. NDVI, which is calculated from remote sensing
images taken by satellites from high altitudes, may not accurately represent the presence of
vegetation that is obscured by tree canopies or structures such as overpasses or buildings.
In contrast, street-view images, which provide a ground-level perspective, can accurately
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measure greenery that is perceived within the actual environment [134]. On the other
hand, they also use different scopes of measurement. Whereas visual greenness calculated
from street-view images focuses on road greenness, NDVI measures the vegetation cover
of a whole site, such as a park, farmland, hill, etc. However, not all places are suitable
for cycling. Cycling usually occurs on streets or cycle paths [10,22]. As a result, cycling
behaviour is more likely to be affected by visual greenness than by NDVI.

Our findings show that land-use mix, greenway width, building density, and the num-
ber of parks and plazas are all positively associated with cycling behaviour. This is because
areas with a high land-use mix have more urban functions and a variety of travel purposes
and are thus likely to promote cycling behaviour [17,92]. Moreover, wider greenways offer
a better natural environment to support physical activity [21], and the role of urban parks
in promoting physical activity has been confirmed by several studies [112,135]. In addition,
greater building density is associated with higher activity levels [72,136] and therefore
promotes physical activity [99,137]. However, greenway connectivity was negatively as-
sociated with cycling behaviour. This may be because the complexity of traffic activity
around intersections may be detrimental to cycling safety. It has been noted that cyclists
are more likely to use cycle lanes if they do not need to cross busy streets [138].

4.3. Implications for Urban Design and Planning

As a study designed to examine the effects of urban greenways within the built
environment, the findings may provide some insights into the planning and construction of
future greenways. Firstly, the visual greenness and enclosure of spaces are likely to have a
positive relationship with cycling behaviour, and the number of parks and plazas in an area
may also promote cycling. To create environmentally sustainable, bicycle-friendly cities and
to further promote active travel behaviour such as cycling, urban planners and designers
need to improve the quality, not just the quantity, of green space within greenways. An
Australian study reported that the quality rather than the quantity of community green
space improved residents’ psychological well-being [139]. Lu [112] also found that the
quality of street greenery can promote physical activity. Therefore, not only is it necessary
to build more greenways and parks, but there is also a need for high-quality, tree-lined
cycling environments. Examples include increasing the diversity of plants, adding vertical
greenery [140], and planting more lush trees.

Secondly, the relationship between sky openness and cycling behaviour is influenced
by weather conditions and subjective emotions, and people generally prefer sunny but
not-too-hot weather. Therefore, designers should consider how to increase sunlight and
reduce the perceived temperature of an environment. On the one hand, policies such as
tree planting to increase shade cover can improve thermal conditions to encourage active
travel [123]; on the other hand, increasing the greenway width not only promotes cycling
but also increases the sunlit area of the greenway in general, thus improving the overall
brightness of the environment by creating more light reflectivity.

Last but not least, this study shows that high levels of greenway connectivity inhibit
cycling behaviour. This may be because areas with complex traffic conditions can decrease
cycling safety. Due to concerns about traffic safety, the lack of a good cycle path system may
limit cycling activity [10]. This highlights the need for planners and designers to create more
systematic and safe cycle paths [141]. Urban planners could improve cycling conditions by
increasing the number of routes and lanes and by linking large green spaces, parks and
squares, and other cycling infrastructure together to develop a network of cycle paths.

4.4. Strengths and Limitations

This study has several strengths. Firstly, we utilised bike-sharing location data to
measure cycling behaviour by calculating the number of bicycle trips made within the
study area, while the extensive sample size ensured the reliability of the findings. Secondly,
in addition to analysing visual greenery using street-view image data, the study also
considered two visual indicators: openness and enclosure, which allowed for a more
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nuanced understanding of the built environment at a human scale. Thirdly, we further
compared the relationship between cycling behaviour and the built environment consisting
of urban greenways during different periods (weekdays and weekends) using the bike-
sharing data, which included both location information and the start and end times of
each trip.

Although street-view images can provide a fresh perspective on the built environment,
they still have some limitations. Firstly, the time at which the street-view images are
captured is inconsistent. BSV data are not taken at the same time every day, making it
challenging to analyse the urban environment over a fixed period. However, greenery
and buildings vary gradually, and as the study area is located in southern China, the
subtropical climate means that most vegetation is evergreen or semi-evergreen. Therefore,
the measurement of visual space indicators is still reliable. Secondly, the street-view images
may not fully simulate the human perspective while riding a bicycle. BSVs are mainly
taken by car and, only in a few cases, by bicycle. This means that BSVs are mainly captured
on motorways rather than cycle lanes or side roads. Although BSV captures a 360◦ view
of the surrounding area, the perspective of cars and bicycles differs slightly and may thus
result in different perceptions of the urban environment. Thirdly, for data availability
reasons, demographic and socio-economic information, cycling purpose, and individual
cycling data were not included in this study. Furthermore, as the cycling data do not
contain user travel routes, it is not possible to accurately measure bike traffic and the built
environment characteristics of the journey just from the start and end points. Finally, despite
selecting travel times and locations to avoid the influence of other demands on cycling
behaviour, we are unable to entirely measure cycling behaviour that is solely affected by
the greenway environment.

5. Conclusions

In this study, we investigated the association between the built environment, partic-
ularly greenways, and cycling behaviour from a human-scale perspective. By analysing
bike-sharing data and streetscape image data using machine learning techniques and a
multivariate Poisson regression model, the study found that greenness and enclosure of
greenways are positively associated with cycling behaviour, with openness promoting
cycling on weekends but having the opposite effect on weekdays. The study also revealed
that satellite-based measurements of urban greenery, such as NDVI, may not reflect human-
scale perceptions effectively. The findings have important implications for policymakers
and urban planners seeking to promote green transportation and bicycle-friendly cities.
They need to consider the visual space of the cycling environment and improve its comfort
and safety. Additionally, our study highlights the potential of street-view data in further
research on the relationship between urban perceptions, sustainable cities, and transport.
Nevertheless, our study’s limits need to be acknowledged. The inability to track user travel
routes and the potential influence of external factors limit the accuracy of measuring bike
traffic and the impact of the built environment on cycling behaviour. Therefore, further
research is necessary to expand our understanding of the complex interactions.
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