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Abstract: The rail transit system was developed in Chinese large cities to achieve more efficient
and sustainable transport development. However, the extent to which the newly built rail transit
system can facilitate people’s multimodality still lacks evidence, and limited research examines the
interrelationship between trip stages within a single trip. This study aims to explore the interrelations
between trip stage characteristics, socio-demographic attributes, and the built environment. It
examines how rail transit is integrated as part of multimodal trips after it is introduced. The data
are extracted from the Chongqing Urban Resident Travel Survey from 2014, three years after the
new rail transit network was established. It applies an XGBoost model to examine the non-linear
effect. As a result, the separate trip stage characteristics have more of an impact than the general trip
characteristics. The non-linear effects revealed by the machine learning model show changing effects
and thresholds of impact by trip stage characteristics on people’s main mode choice of rail transit.
An optimal radius of facility distribution along the transit lines is suggested accordingly. Synergistic
effects between variables are identified, including by groups of people and land use characteristics.

Keywords: Urban mobility; multimodality; rail transit; travel behaviour; travel mode choice;
machine learning

1. Introduction

With the aim of achieving sustainable transport, rail transit systems were developed as
an important contribution to achieve more effective transport to accommodate mass travel
demand and move towards less car-dependent lifestyles. A prevailing part of previous
research focused on investigating the potential of rail transit to substitute motorized vehi-
cles [1,2]. However, in order to improve sustainable transport, the integration of existing
transport facilities with urban transit systems should play an increasing role in the future,
especially for the so-called ‘multimodal’ trip chain [3]. Multimodality, which is defined
as the flexible use of various modes of transport within a certain time period [4], received
increasing research attention in recent years [5].

The aim of the paper is to examine the specific contribution of rail transit to the
multimodal travel behaviours. It requires an assessment of each stage of the trip to increase
the understanding of how travel patterns are composed in diversified ways. Therefore, it
is useful to distinguish the main trip from the other trip stages, such as the starting and
ending trip, often known as the ‘first mile’ and ‘last mile’ (irrespective of actual distance).
Little previous research quantitatively examines the interrelations of different trip stages
within a single trip. The paper examines the different trip stages in relation to how the
main trip mode is impacted by other interrelated trip characteristics, in which the role of
rail transit in the multimodal trip chain is identified.
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In order to achieve the research aim, the paper addresses the following questions:
First, how the different trip stages are interrelated and contribute to the main trip, which
is further elaborated and explained in relation to socio-demographics and urban settings.
Second, to examine how rail transit combines with other travel modes and forms part of the
multimodal patterns of daily transport behaviours. Third, how the impact varies in a non-
linear relationship with the variables in order to give evidence on planning and policies,
which are aimed at promoting rail transit use and multimodal transport. The analysis
utilizes data extracted from the Chongqing Urban Household Official Travel Survey, 2014.
The data were collected three years after the formation of the early stage of the rail transit
network in the city. XGBoost is utilized to explore the non-linear relationship of the impact
variables with the main trip mode choice. In previous studies, logistic regression was
widely used in category prediction of travel mode choice [6–9]. In this study, it is used as a
baseline to compare the model performance and explanatory power with that of XGBoost
and other machine learning models.

This study hence contributes to the literature in three ways: (1) Concerning multi-
modal trips, it explores how the trip stages are interrelated and the main trip mode choice is
impacted by other trip stage characteristics. The separate trip stages contribute more accu-
racy to the prediction of main trip mode choice than general trip features; (2) the synergistic
effects between variables show how rail transit is embedded into people’s multimodal trips
after a new rail transit network is established; and (3) the non-linear relationships between
travel mode choice and its correlates, revealed by the machine learning models, present
varying predictions with changes of the variables, which contribute to potential spatial
planning requirements and can be reflected in spatial strategies.

The remainder of the paper is organized as follows: The following section discusses
the emerging literature on multimodal travels. This is followed by the applied methodology,
including data and the XGBoost method. The result section describes the nonlinear and syn-
ergistic effects of variables. The conclusions discuss the results and give recommendations
for planning practice.

2. Literature Review

Recent research indicated a growing interest in analysing the variability of behaviour
of the same people, showing a shift from studying behaviour differences between peo-
ple [10,11]. Despite being a concept used for a long time among scholars and practitioners,
multimodality is currently receiving a renewed interest [12,13]. One part of the research
contributes to correlating social or built environment attributes with multimodality, ex-
plaining which groups of people are more likely to be multimodal, why people tend to be
multimodal, and what people experience when they become multimodal [3,14,15]. Further
research provides useful insights into how the multimodal level changes with people’s life
course, such as through moving house or other key events [12,16,17].

2.1. Identify the Role of Rail Transit in Multimodal Travel

There are generally two ways to measure the level of multimodality. One way is to
classify individuals’ multimodal behaviour into nominal categories. This is often based
on the combination of transport modes they use [3,16] or the perception and attitudes
they hold [18]. In this way, the role of a certain kind of transport is exhibited as a single
category or a hybrid one. Molin [3] identified five multimodal travel groups based on the
frequency of mode use in combination, in which the role of rail transit is integrated into the
three groups of car multimodal, bike multimodal, and public transport. The probability of
belonging to a specific multimodal travel group is predicted by the attitudes of travel they
hold. Olafsson [18] combines travel mode and travel purpose together to form five clusters
in order to identify the role of cycling in multimodal transport behaviours.

The second way is measuring multimodality quantitatively by calculating statistical
indices. In this way, the choice of a specific transport mode is integrated into the calculation
of a certain index indiscriminately with other modes. The number of modes/stage [19], the
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difference in percentage of use between primary and secondary modes [20], Herfindahl–
Hirschman index (HHI) [20], Shannon’s entropy [16,21], etc., are all indices to measure
multimodality. The number of modes and frequency, as indicators which describe the
extent of variability in mode use, are mostly used to calculate above the indices [16,22].
For example, Heinen [22] finds that only when controlling for trip distances, the indices of
multimodality are associated with lower CO2 emissions.

However, previous studies seldom look into a single trip and quantitatively examine
the interrelationship among the travel behaviours of different trip stages. It is useful to
study the characteristics of separate trip stages by distinguishing the main trip from the
other trip stages. In particular, how the characteristics of the starting trip and ending
trip influence the interconnected main trip travel behaviours is inadequately studied.
Furthermore, as an important public investment towards solving traffic congestion and
promoting sustainable transport [23], some research focused on investigating the potential
of rail transit to substitute motorized vehicles in some circumstances [24]. However, the
extent to which the newly built rail transit system can perform as a part and integrate into
people’s travel chains needs further research. How it facilitates people’s multimodal travel
behaviour formation still lacks evidence.

2.2. Predictors of Multimodality

Previous research demonstrated that multimodality is related to several socio-demographic
attributes and built environment elements, such as age, gender, car availability, public
transport access or density [19,20]. Among socio-demographic attributes, the most varying
factor is age. Some studies find that multimodality is disproportionately high among ado-
lescents as well as seniors, especially if retired [4], indicating a U-shaped distribution [3,20].
Meanwhile, the middle-aged segment is strongly dependent on labour and family related
constraints, and therefore relies more often solely on the private car [12], depending of
course on the context. In a typical continental European urban context, ‘older people’ are
found to comprise a segment characterized by multimodal transport use and a less car-
dependent lifestyle [25]. While in the US context, higher age tends to a higher single-mode
usage [26].

Another factor, which shows an ambivalent result, is income. Whereas some studies
find that higher income leads to more multimodality [26], others report the opposite [27] or
no significant relation between income and combined mode choice at all [12]. It is worth
noting that, following the literature, the availability and ownership of specific travel modes
is critical for the formation of certain multimodality, especially that access to a car leads
to monomodal car use in most cases [20]. In terms of the impact from employment, it
was shown that fully employed people are less multimodal than part-time workers or
unemployed persons [4,16,26]. An increase in the number of children also makes a shift to
more multimodality unlikely [3,4,12].

In terms of physical conditions, an improvement to the public transport system in the
neighbourhood increases multimodality, and vice versa. Reduced parking space availability
also increases multimodality [16]. Meanwhile, extensive research showed that urban
land use characteristics are significantly interrelated with travel behaviour [28–30], and
urban settings, such as adjacent to the centre, high population density, and land use mix,
contribute to a higher level of multimodality [12,31,32]. Zhao [33] employed a deep neural
network to identify regional land use characteristics and quantify land use intensity using
ridership data of bicycle sharing. A deep neural network is established and trained based
on the processed ridership features and land use labels.

2.3. Non-Linear Relationships in Multimodal Travels

In the previous literature, it is assumed that the predictors and travel behaviours
follow a pre-defined or parametric relationship. More recent studies began to explore the non-
linear relationships between built environment variables and travel behaviours [34–37]. Most
statistical models predetermine a model structure that requires the input data to satisfy as-
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sumptions, such as random utility maximization theory [38], while many machine learning
methods rely on computers to probe the data for its structure. The machine learning models
allow for forming more flexible model structures to reduce the model’s incompatibility with
the empirical data, which can often lead to higher predictive capability [39]. For example,
Cheng [40] evaluated the relative importance of explanatory variables of the random forest
model to help provide important insights into formulating transport policies. Liu utilized
XGBoost to explore the non-linear association between the built environment and active
travel for walking and shopping at both origins and destinations [41]. Zhao [39] carried
out a comprehensive comparison of the predictive performance and travel behavioural
outputs of logit models with those of machine learning models. The best performing
machine learning model, random forest, has significantly higher predictive accuracy than
multinomial logit and mixed logit models.

Finding the right range or thresholds of variable impact can be cost-effective [42].
Scholars exploited the explanatory power of the non-linear model in finding the changing
impact with the change in a certain range of the variables, which can be especially useful
in providing advice on planning implications [43–45]. Yue and Ma utilized a transformer
prediction model to estimate transfer passenger flow and demonstrate the performance
of deep learning models in multimodal transportation forecasting [46]. However, still few
studies explored the non-linear effect on specific multimodal travel behaviours in relation
to social demographic attributes. The limitation of research in giving a more detailed
inspection on the varying and nuanced impact of the interrelated trip stages, especially the
starting and ending trip, on people’s main mode choice, leads to a lack of clear evidence to
direct planning implication.

This study aims to address the following research gaps: First, it aims to examine
the interrelations among different trip stages within the multimodal trip itself to provide
evidence on how the main mode choice is influenced by the starting and ending trip. Second,
it investigates how the rail transit mode is embedded into the multimodal trips as a part
of, and whether it facilitates, people’s multimodal travel. Thirdly, non-linear relationships
of the variables with the main trip mode are explored with machine learning methods,
as well as synergic effects between travel characteristics and the socio-demographic and
land use attributes. It aims to reveal the varying influence hid behind the averaged
coefficients provided by the commonly used statistical methods. It helps to find the
targeted demographic groups and urban settings, aiming to provide more concise and
practical suggestions to planning implications and policies.

3. Methodology
3.1. Data
3.1.1. Survey Method

Data are extracted from Chongqing Urban Resident Travel Survey, 2014, which took
place three years after a 4-line network of rail transit was established. It is officially carried
out by the Planning Bureau of Chongqing as part of the nation-wide Resident Travel Survey
in 2014. A stratified probability method is used to sample. In the survey, the central urban
area of Chongqing was divided into 25 transport zones (Figure 1). The sample size of each
zone was based on its population size, representing a 1% sampling of the total population.
The whole survey contained a sample of 80,000 persons, in 28,000 households, in the main
city region. For this study, data were extracted for analysis from zone 1 and zone 2, and
zone 10 and zone 11, to represent the central area of the city. The total sample size is 5110,
belonging to 1926 households, and contains information of 11,729 trips in total. Data were
collected by staff with an electronic tablet equipped with specially designed GPS software
to record people’s location. Respondents were asked to report their commuting information
on an ordinary weekday. Information collected in the survey contains socio-demographic
attributes, travel information, and the original and destination land use characteristics,
which is explained in the following section.
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3.1.2. Variables and Predictors

Table 1 presents the variables used in the study. A total of 11,664 trips are valid
with complete travel information for different trip stages. For this study, the dependent
variable is their main travel mode choice. Independent variables are categorized into
trip characteristics, socio-demographic attributes, and built environment elements. In the
survey, respondents were asked to record their trip stages within one trip. The travel-
related information they recorded includes the starting time, arriving time, total duration,
distance, travel purpose, travel mode, and duration of each trip stage. The questionnaire
provided five trip stages to fill, while nearly most of the respondents (98%) only have three
trip stages. Therefore, in convenience for comparison, the trip stage of the longest duration
is identified as the main trip. The trips before and after the main trip are considered as
the starting and ending trip. Therefore, we kept the three trips for analyses. If both of
the starting and ending trips are vacant, the trip is considered as unimodal. There are
7244 unimodal trips, and the remaining 4400 cases are considered as multimodal trips. We
then categorize the exact starting and arriving time to five different time slots. The total
travel distance is calculated using Euclidian distance with their XY coordinates. These data
are recalled from memory, so the total time duration is slightly different from the added
time of each trip stages. As income amount is difficult to collect directly from people, car
ownership, car consumption plan (aspiration to buy a car), residential property level, and
parking place are collected as substitutes of income. As shown in the descriptive statistical
table, the gender percentage of male is slightly lower than the citywide census data (50.55%
male, 49.45% female). Built environment elements contain land use characteristics of both a
starting and arriving point. It is inferred by relating the geographic coordinates and the
land use codes of planning.
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Table 1. Definitions and descriptive characteristics of variables. Variable description and descriptive
statistics (N = 11,664).

Variable Description Category % Min Max Mean SD

Dependent Variable

MA_mode Travel mode of the
main trip 0 = walk 55.2%

1 = bus 23.6%
2 = rail transit 6.2%

3 = private vehicles 15.0%
Independent Variables

Trip characteristics

TT Travel time of the
whole trip (min) 2 630 31.9 22.3

MA_time Travel time of the
main trip (min) 2 240 22.4 15.6

ST_time Travel time of the
starting trip (min) 0 60 3.1 5.0

ED_time Travel time of the
ending trip (min) 0 44 1.7 3.9

TD

Distance between
the start point and
the ending point of

an outbound
journey, based on
the road network
in the city (km)

0 61 4.4 5.9

ST_mode Travel mode of the
starting trip 0 = walk 30.1%

1 = bus 5.9%
2 = rail transit 1.7%

3 = private vehicles 0.3%
4 = vacant 62.1%

ED_mode Travel mode of the
ending trip 0 = walk 19.0%

1 = bus 1.8%
2 = rail transit 0.8%

3 = private vehicles 0.1%
4 = vacant 78.4%

ST_ct Starting time
categories 1 = before 10:00 am, 40.7%

2 = 10:00 am-12:00 am 7.9%
3 = 12:00 am-15:00 pm 10.7%
4 = 15:00 am-18:00 pm 20.1%

5 = after 18:00 pm 20.5%

AR_category Arriving time
categories 1 = before 10:00 am, 38.9%

2 = 10:00 am-12:00 am 8.4%
3 = 12:00 am-15:00 pm 11.5%
4 = 15:00 am-18:00 pm 14.0%

5 = after 18:00 pm 27.1%
TP Trip purpose 1 = go back home 43.4%

2 = commute to work 30.6%
3 = go to school 4.7%

4 = visiting friends,
dining, recreation,

shopping etc.
18.4%

5 = go to hospital 0.6%
6 = others 2.3%
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Table 1. Cont.

Variable Description Category % Min Max Mean SD

Socio-demographic attributes

Age
Age of the

respondent in
years

6 94 39.30 15.64

H_size

Number of
members in the

respondent’s
household

1 8 3.11 0.95

Child_No

Number of young
child (below 18) in
the respondent’s

household

0 2 0.21 0.42

Car_own
Number of

household -owned
cars

0 2 0.33 0.52

Gender 1 = male 47.6%
2 = female 52.4%

Occupation 1 = student 9.5%
2 = company employees 25.3%

3 = service staff 15.6%
4 = civil servant 7.9%

5 = industrial workers 4.9%
6 = retired people 16.9%

7 = free-lanced workers 11.3%
8 = others 8.6%

Hukou 1 = local hukou holders 73.3%
2 = outbound resident
who do not have local

hukou
26.7%

Car_plan Household car
consumption plan

1 = plan to buy car
before 2015 5.5%

2 = plan to buy cars
between 2016 and 2020
(five years after the rail

transit system
established)

25.5%

3 = no plan to buy cars
before 2020 69.0%

Parking

Whether or not
respondent’s

household has a
parking place of

their own

1 = no 69.5%

2 = yes 30.5%

RP_level

Including upscale
new residential
buildings, town

houses, and villas

1 = poor condition/old
properties/public rental

properties
22.8%

2 = ordinary
properties/gated

communities
74.9%

3 = luxury properties 2.3%
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Table 1. Cont.

Variable Description Category % Min Max Mean SD

Build environment elements

O_land Origin land use
coding 1 = residential land 45.3%

D_land Destination land
coding 2 = office land 12.7%

3 = commercial land 17.8%
4 = education land 7.6%
5 = hospital land 1.5%
6 = industrial and

storage land 2.1%

7 = transportation land 0.5%
8 = others 12.5%

The thresholds of multimodal travel behaviour are defined as the frequency of using
two or more modes, illustrated by Buehler and Hamre [26] by using data from the US
National Travel Survey [12]. Walking is excluded in some studies on multimodality [27],
but included in other studies, as it plays a major role in the transport system [16]. In
some studies, walking is identified together with cycling as active travel [12,20]. However,
because of the mountain topology of Chongqing, very few people take cycling (less than
1%), but walk instead. Therefore, we keep walking as one travel mode category.

Before proceeding with the statistical analysis, we first use Pearson’s correlation coeffi-
cient metric to detect multicollinearity among the all dependent and independent variables.
Multicollinearity describes the state where the independent variables exhibit a strong rela-
tionship with each other. It will negatively impact the interpretation of the predictors and
lead to a large change in feature importance scores. We assume that any features with a
correlation coefficient exceeding 0.80 are suspected of causing multicollinearity following
the previous research [47,48]. By computing correlation coefficient, we identify that parking
availability and car ownership, starting time category, and arriving time category have
strong relationships. By comparing the correlation coefficient with other variables, we
delete parking availability and arriving time category. We used the Grubbs test [49] to detect
outliers of response variables in the dataset and winsorized the outliers by replacing them
with the maximum non-outliers. These measures are consistent with the literature [50].

3.2. Modelling Approach

Random forest (RF) was widely used as a machine learning method in previous
research [40,51]. Gradient boosting decision trees (GBDT) use ensemble decision trees
as RF [43]. However, the main difference between random forest and gradient boosting
trees is how the models are trained and how they output decisions. RF is built in the way
that each decision tree is used as a parallel estimator. The trees are trained independently.
As output, the individual predictions are aggregated into a collective one, recognizing a
majority vote of all decision trees for a classification task or the mean value for a regression
one. In contrast to RF, GBDT uses a boosting technique to create an ensemble learner, while
decision trees are connected sequentially with one tree built at a time. Each tree fits to the
residuals from the previous one. In this way, it gradually increases the overall accuracy
and robustness of the mode. However, the focus of new trees becomes the detail after some
point and the cause of overfitting. Unlike RF, the number of trees in Gradient tree boosting
is of crucial importance in terms of overfitting. Therefore, it is critical to find the key point
after which each addition covers a detail or noise in the training data.

XGBoost is an improved method of gradient tree boosting proposed by Chen and
Guestrin [52] and was utilized in transport behaviour analysis [41]. It has the advantage
especially in dealing with sparsity in the dataset and quicker model calculation. An
approximate tree-boosting algorithm is used to efficiently find split points on weighted
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data. Parallel and distributed computing enables quicker model exploration. A sparsity-
aware algorithm for parallel tree learning is introduced to deal with the sparsity in the
dataset. It is pretty much useful for the dataset of this study, because for most part of the
data, the starting and ending trips are vacant as unimodal trips.

In order to explain the mathematics in XGBoost, it is useful to begin with introducing
the regular functions of gradient boosting [53]. Let D represent a dataset with a total of n sam-
ples, and each sample has a feature dimension of m, O = {(xi, yi)}(|O| = n, xi ∈ Rm, yi ∈ R).
Representing the number of trees, K additive functions are used to predict the output in a
tree ensemble model:

ŷi =
K

∑
k=1

fk(xi), fk ∈ F (1)

where F =
{

f (x) = ωq(x)

}(
q : Rm → T, ω ∈ RT), fk is a function in the functional space

of regression trees F . T is the number of leaves in the tree. Each fk corresponds to an
independent tree structure q and leaf weights ω, q gives the decision rules in the trees and
classify it into the leaves, and ωi represents the score on the i-th leaf. The continuous scores
in the corresponding leaves are summed up to calculate the final prediction.

To measure how well the model fits the training data, the objective function to be
optimized is given by Equation (2):

obj = ∑n
i=1 l

(
yi, ŷ(t)i

)
+ ∑t

i=1 ω( fi). (2)

Formally, let ŷ(t)i be the prediction of the i-th instance at the t-th iteration, the function
is composed of two terms. The first term l, a differentiable convex loss function, measures
the difference between the prediction ŷi and the target yi. The second term ω( fi), as an
additional regularization term, helps to smooth the final learnt weights to avoid over-fitting.
It is what is improved by XGBoost [52]. The complexity penalized by the regularization
term is defined as:

ω( f ) = γT +
1
2

λ
T

∑
j=1

ω2
j (3)

ft is added in Equation (3) to minimize the following objective:

obj = ∑n
i=1 l

(
yi, ŷ(t−1)

i + ft(xi)
)
+ ω( ft) + constant. (4)

We take the Taylor expansion of the loss function up to the second order, and the
objective value with the t-th tree is rewritten as:

obj(t) ≈
n
∑

i=1

[
giωq(xi)

+ 1
2 hiω

2
q(xi)

]
+γT + 1

2 λ
T
∑

j=1
ω2

j

≈
T
∑

j=1

[(
∑

i∈Ij

gi

)
wi +

1
2

(
∑

i∈Ij

hi + λ

)
ω2

j

]
+ γT

(5)

where Ij = {i|q(xi) = j} is the set of indices of data points assigned to the j-th leaf. For a
fixed structure q(x), the optimal weight ω∗j of leaf j can be computed as

ω*
j = −

∑i∈Ij
gi

∑i∈Ij
hi + λ

(6)

and the corresponding optimal value is:

obj* = −1
2∑T

j=1

(
∑i∈Ij

gi

)2

∑i∈Ij
hi + λ

+ γT. (7)
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The quality of a tree structure q can therefore be measured by Equation (7). order
to decide when to stop splitting a leaf into two leaves, a loss reduction function is given.
Assume that IL and IR are the instance sets of left and right nodes after the split, I = IL ∪ IR,

Gain =
1
2

 (∑i∈IL
gi
)2

∑i∈IL
hi + λ

+

(
∑i∈IR

gi
)2

∑i∈IR
hi + λ

−

(
∑i∈Ij

gi

)2

∑i∈Ij
hi + λ

− γ. (8)

If the gain is smaller than zero, we would do better not to add that branch. This
formula can be used in practice for evaluating the split candidates to search for an optimal
split. An approximate algorithm is introduced in XGBoost in aiding to do so efficiently.

To overcome the interpretability weakness of machine learning models, a variety of
machine learning interpretation tools were utilized, including variable importance and
partial dependence plots [39,53,54]. The importance of a feature for an entire dataset can
be measured as the standard deviation of the partial dependence plot. This study utilizes
the partial dependence-based variable importance measure proposed by Greenwell [55].
These measures are consistent with the methods used in the literature [56,57], conductive
to comparing the results across different models. The partial dependence plot shows
the marginal effect that one or two features have on the predicted outcome of a machine
learning model [53]. It can show whether the relationship between the target and a feature
is linear, monotonic, or more complex. The partial dependence function for regression is
defined as:

f̂s(xs) = EXc

[
f̂ (xs, Xc)

]
=
∫

f̂ (xs, Xc)dP(Xc). (9)

The xs are the features for which the partial dependence function should be plotted
and Xc are the other features used in the machine learning model f̂ , which are here treated
as random variables. Partial dependence works by marginalizing the machine learning
model output over the distribution of the features in set C, so that the function shows the
relationship between the features in set S we are interested in and the predicted outcome.
For classification, partial dependence plots measure the influence of a variable xs on the
log odds or probability of choosing a specific travel mode after accounting for the average
effects of all other variables, which is the task of this study [53].

4. Results
4.1. Baseline Model

We carried out analysis on the whole dataset, in order to have a comprehensive picture
on people’s mode choice. A logistic regression test is carried out first in order to set a
baseline of the model prediction (Table 2). The chi-square value for the whole model is
highly significant, with a Cox and Snell R square value of 0.785. Looking at the likelihood
test for each variable, they are all past the 0.05 significant test except for the two variables of
residential property level and car consumption plan. However, though the X-standardized
B value or Exp (B) of logistic regression test can present the direction of impact of each
parameter on the estimated variable, it can only give an average parameter prediction.
Therefore, we resort to partial dependence plots to exhibit the influence varying with the
change in the input variables.
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Table 2. Logistic regression test.

Effect
Likelihood Ratio

Chi-Square df Sig.

Constant 0.00 0
TD 985.73 3 0.000

ST_mode 4417.19 12 0.000
ST_time 121.09 3 0.000

MA_time 223.97 3 0.000
TT 12.57 3 0.006

ED_time 18.65 3 0.000
ED_mode 545.85 12 0.000

ST_ct 47.10 12 0.000
TP 29.43 15 0.014

Car_own 1212.12 3 0.000
Age 378,193.07 3 0.000

Gender 151.24 3 0.000
H_size 41.17 3 0.000

Occupation 148.50 21 0.000
Child_No 23.21 3 0.000

Hukou 19.83 3 0.000
RP_level 11.30 6 0.079
Car_plan 11.19 6 0.083
D_land 63.14 21 0.000
O_land 61.69 21 0.000

4.2. Model Comparison

The machine learning model is interpreted with variable importance measures and
partial dependence plots. Five different machine learning models are carried out on the
dataset. They are AdaBoost, decision trees, random forest, and XGBoost. Table 3 shows the
relative importance (RI) of variables for different models. RI for logistic regression is also
calculated for comparison. Table 3 exhibits that generally, ML models have higher model
performance than logistic regression, with a higher F1 score, recall, and precision value. In
particular, XGBoost has the highest F1 score, of 0.848, among all the models.

The ranking of the most significant variables among all the models are generally
similar, with the first seven trip characteristic variables (except for starting time category
and travel purpose) filled within the top 10. The greatest contribution is consistent with
previous research of Liu [41]. For XGBoost, travel characteristic variables collectively
contributed to approximately 74% of the predictive power for the main mode choice. Trip
distance, starting trip mode, starting trip time, and main trip time have much greater
predictive power than other variables, with 66% loading in total. Socio-demographic
attributes only contribute to 25%, among which, car ownership is the most important
predictor of the main mode choice. However, because of the inaccessibility of most of the
built environment data, the built environment elements of origin and destination land use
only contribute to less than 1% in total.

4.3. Nonlinear Associations between Predictors and Travel Mode Choice

The one variable PDP plots show the nonlinear effect of trip stage characteristics on
the probability of choosing each category of the main mode.
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Table 3. Comparison of relative importance (RI) of predictors and predictive accuracy of models.

Predictor
Variables

XGBT Random Forest Decision Tree AdaBoost Logistic
Regression

RI Rank RI Rank RI Rank RI Rank RI Rank

Trip characteristics
TD 26.56% 1 20.17% 2 20.80% 1 5.23% 6 16.39% 2

ST_mode 21.18% 2 20.81% 1 19.92% 2 12.99% 4 15.22% 3
ST_time 10.05% 4 8.06% 5 9.61% 5 0.79% 13 6.67% 5

MA_time 8.59% 5 8.58% 4 8.00% 6 17.87% 2 11.38% 4
TT 2.61% 7 4.76% 6 14.03% 4 2.01% 9 2.39% 11

ED_time 2.60% 8 4.09% 7 6.32% 7 2.73% 8 4.08% 7
ED_mode 1.95% 9 3.29% 8 0.76% 10 12.00% 5 4.12% 6

ST_ct 0.56% 13 1.00% 16 0.25% 12 0.49% 15 1.22% 16
TT 0.13% 19 0.99% 17 0.00% 18 0.26% 18 1.48% 15

Socio-demographic attributes
Car_own 17.35% 3 15.57% 3 14.21% 3 4.07% 7 19.53% 1

Age 4.58% 6 2.95% 9 4.40% 8 18.35% 1 2.82% 8
Gender 0.90% 10 1.34% 12 0.00% 20 0.27% 17 1.09% 17
H_size 0.71% 11 0.84% 18 0.00% 16 17.23% 3 2.49% 10

Occupation 0.60% 12 1.62% 11 1.01% 9 1.60% 11 2.36% 12
Child_No 0.55% 14 1.64% 10 0.00% 17 0.00% 19 2.78% 9

Hukou 0.23% 17 0.50% 19 0.02% 15 0.27% 16 0.46% 20
RP_level 0.16% 18 1.03% 15 0.53% 11 0.00% 20 0.55% 18
Car_plan 0.11% 20 0.36% 20 0.07% 14 0.63% 14 0.47% 19

Build environment elements
D_land 0.32% 15 1.32% 13 0.00% 19 1.44% 12 2.18% 14
O_land 0.24% 16 1.09% 14 0.08% 13 1.78% 10 2.31% 13

F1 score 0.848 0.791 0.753 0.726 0.696
Recall 0.829 0.762 0.744 0.721 0.684

Precision 0.874 0.858 0.772 0.733 0.757

4.3.1. Trip Distance

Trip distance takes the most importance in all the variables. The impact from trip
distance is disparate across different modes in Figure 2. When trip distance increases from
0 to 10 km, the probability of taking transit (Figure 2c) increases about 20 percent and then
remains stable. However, that of taking private vehicles (Figure 2d) increases about 30
percent when trip distance experiences the same changes, while that of walking (Figure 2a)
decreases 40 percent. However, the probability of taking the bus (Figure 2b) only shows an
indiscernible change when trip distance changes. It suggests that 10 km is the threshold
that people’s interest in choosing transit increases if they travel longer, beyond which the
incentive to take transit for a longer trip is not so effective.

4.3.2. Travel Modes of the Starting Trip Stages

The travel mode of the starting trip takes about 21% of the relative importance and
ranks the second in all the variables. However, looking at the PDP plots in Figure 3, the
variance in main mode choice mostly results from the same variable of walking. If people
take walking as the starting trip mode, their probability of taking bus, transit, and private
vehicles as their main trip mode is much higher than other modes as the starting trip mode.
In contrast, the ending trip mode does not exhibit such a variance in influencing people’s
main mode choice (for saving place it is not presented here). It means there is not much
evidence of the interrelations between mode choice of different trip stages, except when
walking is the starting trip mode.
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4.3.3. Duration of Different Trip Stages

The relative importance of the starting trip (10.05%) and main trip (8.59%) duration is
higher than the whole trip duration (2.61%) (Table 3). Furthermore, the probability of main
mode choice is impacted much more by the starting trip than the ending trip (2.6%). For the
mode of bus (Figure 4b), the probability increases about 20% when the starting trip duration
increases from 0 to 12 min and then decreases. In contrast, the probability of taking private
vehicles (Figure 4d) decreases about 15 percent when the starting trip duration experiences
the same change and remains stable after that. However, for the mode of transit (Figure 4c),
the impact is not so obvious, which slightly decreases when the starting trip duration
increases from 0 to 12 min, and then steadily increases. It means that when the starting trip
duration increases within a certain range, 12 min in this case, it increases the probability of
taking bus. However, it shows the increased probability is compensated by the decrease in
probability of taking transit or private vehicles. While the time exceeds this threshold range,
people are more likely to resort to transit. It suggests that for those who choose transit as
the main travel mode, they are more willing to spend longer time for the starting trip. As to
the interrelation with main trip time (Figure 5), there exhibits a threshold of 15 min for the
main trip time, within which probability of travel by transit (Figure 5c) increases with time
duration increases, and a threshold of 20 min above which the probability does not change
accordingly. The probability of taking a bus (Figure 5b) experiences similar but inverse
changes while it decreases first and then increases when exceeding the same threshold of
15 min. However, the probability of taking private vehicles (Figure 5d) does not change
much with the main time duration. This trend also suggests a network effect of people’s
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main trip mode choice. It indicates that the increased transit usage might be attracted from
bus and walking rather than from the private vehicles.

1 
 

 
Figure 3. Partial dependence plots of the starting trip mode for the main trip mode.

4.4. Synergistic Effects between Variables
4.4.1. Synergistic Effects between Age and Trip Stage Characteristics

The two variable PDP plots (Figure 6) reveal the synergistic effect of age when interacts
with the changes of separate trip stage characteristics. From the 2 variable PDP plot we
can see that the highest probability of taking transit (Figure 6a) accumulates at the twenties
when travelling for about 10 kms. With travel distance increases from 5 km to 10 km,
which is the radius of the central urban area, the probability steeply increases. It means the
adolescences more likely utilize rail transit as their main travel mode, as the probability
increases much faster than older people. Similar pattern is exhibited in the mode of
private vehicles (Figure 6b), while the highest probability of age is around thirties, which
indicates that the middle-aged people more likely choose private vehicles when travel
distance increases.

The synergistic effect between age and the starting trip mode varies for the mode
choice of rail transit (Figure 6c) and cars. However, the synergistic effect is not distinct
for walking and taking bus (for saving space not exhibited here). Especially for people
who take a walk for the starting trip, their probability of taking transit as main mode
decreases almost 10% (from 0.16 to 0.06) when age increases from early twenties to fifties.
For other modes to and from the transit station, the probability decreases only about 4%
as age has the same change. It suggests the walking environment of the last mile between
origination/destination and transit station is very important especially for those aged to
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take transit. The synergistic effect with the starting trip time (Figure 6d) shows people
between 25 and 45 have the highest probability of taking private vehicles. The probability
decreases more slowly than elder people even when the starting trip gets longer. It means
the habit cultivated by the middle aged is not so easy to change.
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The probability of taking transit decreases when main trip time increases above 15 min
(Figure 6e). However, the speed of decrease is distinct among different ages. The probability
of the elderly to taking transit is decreasing from a relatively lower probability to a much
lower level than the younger people, especially the early twenties, with a faster speed. The
probability of fifties decreases from 0.125 to almost 0 (12.5 percent) when the main trip time
increases from 15 min to 30 min, while that of the early twenties only decreases from 0.15
to 0.075 (7.5 percent) when the main trip time experiences the same change. It means when
the main trip duration surpasses a certain threshold and gets longer, the older people are
more likely give up transit. Meanwhile, when it is compared with the pattern of probability
of taking bus (Figure 6f), the probability of people above sixties to take bus increases faster
than the younger people. It means the older people are more inclined to give up transit
and shift to take bus when the main trip time increases. It may because that the bus service
provides more comfort riding experience for longer trip, a cheaper ticket price, and is more
accessible from the origin point.
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4.4.2. Synergistic Effects between Other Socio-Demographic Attributes and Trip Stage
Characteristics

To be concise, we mainly focus on an explanation of the synergistic effects of main trip
time with other socio-demographic and attributes on the main mode choice, while there are
synergistic effects existing between other travel characteristics and socio-demographic variables.

The synergistic effect of main trip time and car ownership categories shows the
variance in transit use probability mainly comes from those who don’t have cars (Figure 7c).
The probability of the non-car owners to choose transit increases faster than those who have
cars when the main trip time changes. However, the probability of choosing private vehicles
(Figure 7d) for different groups is comparatively stable when the main time changes, that
people who owns cars have higher probability choosing private vehicles and those who
owns more than one car especially higher. Meanwhile, the probability of walking decreases
faster and that of taking bus increases more slowly for those car owners compared to
non-car owners when the main trip time experience the same change. It indicates that
when main trip time changes, those people who don’t have cars are more likely to switch
to the use of transit, while those car owners keep inertia in their established driving habit
or more likely to give up public transport and resort private vehicles.
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As main trip time increases from 0 to 15 min, for the groups of company employees
and those who are retired, their probability of taking transit (Figure 6g) is higher than other
groups. Correspondingly, the probability of taking bus for these two groups of people is
also the lowest when the main trip time experienced the same change. Time is the main
concern of these two groups and they are likely to be attracted from bus use (Figure 6h).
However, their choice of transit is still subject to a duration threshold of 15 min to 20 min.
The company employees are more time strict, while the retired may balance the cost and
comfort the system provides.

For synergistic effect with household size, the most distinct disparity exists in the
3-person family (family with a child), which takes about 50% percent in the dataset. When
the main trip time increases from 0 to 15 mins, the probability of taking transit (Figure 7e)
increases from 0.06 to 0.15. However, for single or 2-person household, the probability only
increases from 0.03 to 0.09 when the main trip time experience the same change. It maybe
because of the comfort to travel with child, the reasonable cost, and the ride experience the
system provides for a typical household with a child. A correspondingly similar change is
shown for bus trips (Figure 7f), where the probability of taking bus of the 3-person family
experience the similar decrease in probability when the main trip time experience the same
change. It means when the trip time increases, the probability of the three-person family
than other households are more likely to resort to transit use and abandon the bus.

4.4.3. Synergistic Effects between Land Use and Trip Stage Characteristics

The synergic effects between land use and main trip time are not so distinguished.
Trips from business/office land, and transport land exhibit a higher probability of choosing
transit (Figure 7g) when the main trip time increases to 15 mins. Correspondingly, the
probabilities to take bus (Figure 7h) from these two kinds of land use reach the lowest level
when the main trip time experience the same change. However, the probability of walk
and private vehicles remains stable (for saving space not exhibited here). It also indicates
there is a reciprocal effect between rail transit and bus. The similar reciprocal effect is also
found with destination land use, though not so obvious as original land use, trips to schools
and commercial centres have higher probability of choosing transit (not exhibited here for
space reasons).

5. Conclusions

As with newly introduced public transport in some urban areas, the rail transit devel-
opment aims to broaden the mobility options and support sustainable transport. Investment
promoting rail transit use needs to be based on a better understanding of the complex
interrelation between social demographic attributes and travel characteristics, in order
to promote multimodal travel behaviours for more efficient use of urban transport. The
novelty of this paper lies in identifying the role of the rail transit system in multimodality
by correlating the main mode choice with characteristics of separate trip stages. The vary-
ing non-linear and synergistic effects revealed by the machine learning models provides
detailed interpretations of impacts with the change in the variables, which contributes
to more adaptive planning strategies. This paper contributes to the research field in the
following aspects.

Firstly, with the insight into the multimodal travel behaviours, we explored how the
main trip mode is impacted by other interrelated trip stages. As a result, the separate trip
stage characteristics have more of an impact than the general trip characteristics, in that the
starting/ending and main trip time has a higher relative importance in predicting the main
mode choice. It demonstrates that research in differentiating different trip stages reveals
more intrinsic interrelation than treating the trip as a whole in travel behaviour analysis.

Secondly, the non-linear effects revealed by the machine learning models show varying
impact on people’s main mode choice, in which the role of rail transit is identified in
multimodal travels. The ML model provides more accurate estimates than traditional
models. The impact of variables on travel mode choice is more effective at a certain range
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of these variables than other ranges of these variables. There are thresholds of variable
impact by trip stage duration and travel distance on main mode choice, within which
the probability of choosing certain travel modes is increased, while beyond which the
probability is stable or decreased. For instance, the threshold of main trip duration impact
suggests an optimal 15–20 min radius of allocation of functional utilities accessible by
transit. The results have implications for spatial planning. It emphasizes the importance of
accessibility to utilities within a certain time duration from the residential areas along the
transit lines, which is about 7–10 stations.

Thirdly, the synergistic effects between variables revealed by ML models provide
more effective suggestions on the targeted groups of people and land use characteristics,
which should be concerned by the planning strategies [58]. For example, the synergistic
effect between the starting trip mode, the main trip time, and age suggests the importance
of creating walkable environments and an increasing accessibility level of the first/last
mile connection to the transit stations, particularly for the transit use of the elderly. It
adds more detailed information on the travel behaviour of the aged to the literature, that
their multimodal choice varies with the change in trip stage characteristics [25,59]. In
general, company employees and the retired, non-car owners, and three-person families
are more likely to switch to the use of transit when the main trip time increases and the
travel distance expands within a certain threshold. They are the groups of people who are
willing to integrate the new rail transit system into their trips to expand their activities. The
varying relationship with occupation and car ownership adds more detailed evidence to
the literature [4,16,20,26]. The evidence of the three-person family indicates that the birth of
a child means the role of transit is embedded into people’s multimodal travels in multiple
ways, which provides contradicting evidence to the previous literature [3,4,12]. Therefore,
planning practice and policies may take into consideration of the needs of these groups.

Meanwhile, there is a reciprocal effect between public transport modes of rail transit
and bus mode choice. The land use characteristics exhibit a marginal, but still apparent,
impact. Trips from business/office land, transport land, and trips to schools and busi-
ness/office land exhibit a higher probability of choosing transit when main trip time and
travel distance increases within the thresholds. This suggests that if transit stations are
planned on these sites, people are more likely to be attracted to use transit. However,
the increased transit ridership is largely compensated by the decreased use of bus. A
similar reciprocal effect is also found in the synergistic effect of travel characteristics with
occupation and household size. This indicates that the increased transit usage might be
attracted from bus and walking rather than from private vehicles. There is a network effect
between public transport modes of people’s main trip.

This paper has some limitations. A citywide travel survey is only carried out pe-
riodically in Chinese cities. At present, the only accessible dataset for research is from
2014. Nevertheless, the results can be considered as an assessment of the effect of a newly
established transit system. Further research will seek to access more recent data available,
and potentially carry out analysis in comparison. Furthermore, because of data accessibility,
data of more built environment elements are not available in this study, such as density,
diversity, etc., which makes a low relative importance for the model prediction. Further
research could include more detailed built environment data for a more complete picture
of the impact on multimodality.

Rail transit systems are developed with significant investment in aiming to accom-
modate mass travel demands and sustainable transportation. However, the goal can be
achieved only when integrated planning is implemented, including transportation planning.
This requires synergistic land use and urban design strategies, such as facility allocation
along the lines, walkable environments, and convenient connections to the stations, as well
as specific policies for the targeted population groups. Otherwise, the mode choice might
be attracted from other public transport modes rather than the private vehicles.
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