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Abstract: Previous research suggests that there should be environmental solutions for the emerging
health threats caused by poor air quality, such as particulate matters (PM, including PM2.5 and PM10).
Research related to air quality (measured by PM) using land-use regression and geographically
weighted regression shows some patterns among different environmental contexts which could
reduce the threats from such elements; however, there is little concrete evidence for such threats. To
fill this research gap, this study installed real-time PM sensors at human breathing heights at five
locations in Seoul, South Korea, and recorded the PM values collected between November 2021 and
January 2023. Three-phase time-series analyses were conducted on the collected data. Lower levels of
PM concentration were found in more enclosed spaces. In particular, when a space was surrounded
by vegetation, the air quality significantly increased. The purpose of this study is to explore variations
in air quality, particularly PMs densities, in different types of land use within urban areas such as
Seoul. Greater metropolitan areas such as Seoul have a great number of health problems caused by
air quality. This study’s results contribute to policy and decision-making in urban design to tackle
such problems and to provide spatial guidelines for public health and welfare.

Keywords: environmental context variance; land-use regression; geographically weighted regression;
particulate matter; PM10; PM2.5

1. Introduction

Particulate matter (PM, including PM10 and PM2.5) has a critical impact on humans
because of its small size [1,2]. PM originates from various natural and artificial sources,
including transportation, industrial facilities, and forest fires [3–5]. When humans are
exposed to high concentrations of PM, serious health problems can occur, including asthma,
heart-related diseases, and respiratory tract illnesses [2,6–8]. Many large cities in Asia
suffer from air pollution due to industrialization, and PM poses a major environmental
threat. Major cities, such as Seoul, are facing critical public health issues caused by ambient
PM [9,10]. Epidemiological research related to PM suggests a high correlation between PM
concentration levels and lung and circulatory diseases [11–13].

Although there are many current measures directed at PM sources to reduce concen-
tration levels, there have also been several attempts to minimize PM levels and improve
living conditions through the use of the surroundings, such as green infrastructure [14–16].
As air quality issues, such as PM concentration levels, have emerged, research on the
reduction of PM by green infrastructure has increased [17]. Moreover, some research has
explored measures to reduce both PM10 and PM2.5 using green infrastructure and its
surroundings [18–20].

In epidemiological studies, land-use regression (LUR) models are commonly used
to assess the concentration of pollutants in the air. A recent study [21] employed LUR
models in conjunction with meteorological conditions to assess nitrogen dioxide (NO2)
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and PM concentrations in urban areas in China. This study identified the most important
spatial variables affecting concentrations of NO2 and PM10 as major roads, residential
land, and land for public facilities. Other meteorological factors were considered, such
as temperature, wind speed, cloud cover, and percentage of haze. Another study [22]
used the LUR technique to model the relationship between PM concentration and various
predictors. This study found a strong relationship between seasonal PM concentration,
biomass burning, and meteorological conditions. Unlike other studies that used seasonal
models, this study was based on data for the year, which were more accurate. However,
genetic problems of LUR model studies have emerged.

For larger-scale epidemiological studies, LUR models [23] have been used to model
small-scale spatial variations in air pollution concentrations and to estimate individual
exposure for participants in cohort studies. For 20 study areas across Europe, LUR models
were developed for PM2.5, PM2.5 absorbance, PM10, and PMcoarse based on the measured
annual average concentrations. LUR models were developed using a range of GIS-derived
predictor variables from consistent European datasets. Another study developed [24]
regression models to predict PM in New York City based on the Environmental Protection
Agency’s datasets for the period from 1999 to 2001. In this study, land-use regression
models illustrated various PM2.5 ranges between 61% and 64%. Although LUR models
have been used in several larger-scale epidemiological studies, some issues need to be
addressed. LUR models may have the advantage of predicting data where there are no
measuring sensors; however, there are limits on their ability to reflect practical data with
high accuracy because they do not use actual datasets collected by real-time sensors.

Moreover, for such studies, appropriate land-use classifications need to be imple-
mented prior to collecting datasets in the field. For example, a study [25] investigated
the effects of land use on PM levels in metropolitan cities, including Seoul, South Korea.
Regression models were used to identify PM levels in two different land-use types: resi-
dential/commercial and green space/road. However, this study failed to differentiate the
concentration levels based on land-use types, because the land-use classifications were
too broad.

While many studies have used LUR models, some studies have investigated them
further in detail. A previous study [26] employed the morphological factors of buildings
to assess the concentration levels of PM2.5. Together with geographical information, the
results indicated that the building volume density, building coverage ratio, podium layer
frontal area index, and building height were correlated with PM2.5 concentrations. In that
study, the air quality was monitored by PM2.5 street-level measurement on a tram in Hong
Kong. The datasets for wider areas were obtained as the fixed routes of the tram; however,
only four months of datasets were measured.

Furthermore, another study [27] presented a modeling methodology for describing the
air quality of a target year after analyzing the current conditions of a base year in European
urban areas. Significant improvements in the numerical tools and in the information
available from monitoring and emission databases of the modeling area were mentioned
and several points that could contribute to the development of modeling methodologies
were proposed. Additionally, this study stressed acquiring real-time data and providing it
to both regulatory authorities and the general public in order to increase the areal coverage
and the usefulness of air quality data.

Although GWR and LUR research on PM has increased, empirical research based on
solid evidence or practical datasets is limited. Some studies have used case study areas too
broadly to implement LUR models, while others have used meagre statistical datasets and
generically applied GIS; they are limited in terms of their methodology, analysis, collection
of empirical evidence, and demonstration of the continuous impacts of PM.

Therefore, this study aims to explore PM variances in different environmental contexts
within urban areas using real-time data measured directly. To achieve this, this study
employs a case study method. Five real-time weather stations were installed that measured
PM10, PM2.5, temperature, and humidity; the receiving data was recorded at one-minute
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intervals in the period between November 2021 and January 2023. The device itself had
communication capability with a mobile network and was designed and installed for only
this study.

The five different locations were chosen based not only on their openness and con-
cealment, but also on the inclusion of building structures and green infrastructure. After
collecting the recorded datasets from the five locations where the environmental context
was different, a statistical analysis of the longitudinal datasets was performed.

2. Study Areas and Installation of PM Measuring Devices

This study aims to explore the variances in PM concentration levels based on different
land-use and environmental contexts. A case study site in an urban area was selected,
within which five PM measurement devices were installed at five different locations in
order to collect real-time PM concentration levels.

For the determination of the site selection, there are many larger cities in Asia which
suffer from poor air quality, such as Hong Kong, Beijing, and Changsha in China, or New
Delhi in India. However, among these cities with large populations and poor air quality,
Seoul was the only place where real-time monitoring was possible.

Moreover, unlike other major cities, the main source of PM2.5 and PM10 in Seoul
originates from outside the region. In Korea’s major cities, 30% to 50% of PM2.5 is due to
boundary conditions, including from China [28]. Accordingly, Seoul has developed a great
number of countermeasures to address air quality issues, such as publishing urban green
infrastructure manuals and urban planting guidelines for reducing harmful substances in
the area. Therefore, using Seoul for the case study was considered appropriate in order to
measure the environmental settings against PM2.5 and PM10.

In terms of accessibility, the study utilized the main campus of Konkuk Univer-
sity, Seoul, South Korea, to survey the air quality at various environmental context sites
(Figure 1). Customized weather stations which measured PM10, PM2.5, temperature, and
humidity were installed at five locations on the campus. The university is located in
the central-eastern part of Seoul, which is one of the most highly urbanized cities in the
world. It is surrounded by major roads, large residential areas, and commercial skyscrapers.
In particular, Children’s Grand Park, a large open space, is situated to the north. However,
various types of open spaces such as lakes, forests, and playgrounds are scattered across the
campus, providing different types of environmental contexts. The total area was 473,565 m2,
and the total number of buildings used in the modeling was 48. Furthermore, the tallest
building was 61.4 m, whereas the smallest structure was 2.2 m, and the common material
of the buildings was mostly reinforced concrete (Figure 2).

Figure 1. Study site locations (Gwangjin-gu, Seoul, South Korea). The site area is marked with a red
box (473,565 m2).
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Figure 2. Study site (marked with the red box, 473,565 m2) and surroundings.

2.1. Air Quality Stations (Installation of PM Measuring Devices)

The PM measuring device was designed and produced in conjunction with a pri-
vate company called ‘Aircock (Seoul, South Korea)’, who specialize in weather station
manufacturing. Only air quality measuring devices approved by the Korean Ministry of
Environment are allowed to be used in public areas, and this device was also certified by
the Korea Testing & Research Institute (KTR) and Korea Conformity Laboratories (KCL).
The device was named ‘Smart Aircock outdoor type 1’, and it was designed to measure a
flow rate of 0.1 L per minute for the collection of PM10, PM2.5, temperature, and humidity.
The method used by this device was light scattering; when 0.1 L of air flow per minute
enters the sensor through the inlet, the PM and laser meet and cause light scattering. Using
this generated light scattering, the size and number concentration of PM particles were
determined and the PM concentrations were calculated [29]. The data measured using this
process was then transmitted to the mobile device, and converted into a comma-separated
value (CSV) file.

As Figure 3 indicates, it has dimensions of 40 cm × 30 cm × 15 cm, weighs 2.5 kg, and
has electrical inputs of 100–240 VAC 50/60 Hz 0.5 A Max. The device was installed either
mounted on the outside of a wall or fixed to a post at human height level to measure the
most relevant readings for daily urban life. Four of the five devices were fixed on stainless
steel posts, and one device was mounted on a concrete wall structure.

Figure 3. Air with a flow rate of 0.1 L per minute enters the sensor through the inlet and generates
light scattering, which identifies the size and number concentration of PM particles and calculates
the PM concentration.
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Normally, automated weather stations (AWS) are placed on higher ground, such as
building roofs, to obtain steady readings and accessibility. However, such locations do not
reflect the daily lives of the general public in urban areas. Therefore, unlike common AWS
in other studies, this research attempts to collect credible and realistic data for ordinary
urban life; the sensors were placed between 1650 mm and 1900 mm, which is the breathing
height range for most people fall (Figure 4).

Figure 4. Illustration of PM measuring heights.

2.2. Environmentally Variable Contextual Settings

As previously described, the case study site was a university campus in Seoul. Within
the campus, five locations were selected based not only on environmental contexts, but
also on their openness and concealment (Figure 5).

Figure 5. Real-time PM measuring locations.

These locations were chosen for their various spatial context settings. The five locations
included forest areas heavily surrounded by woodlands, residential boundaries as buffer
spaces within residential blocks, sports complexes as open and leisure spaces, building
fronts, and lakesides as open and exposed contexts (Table 1).
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Table 1. Characteristics of PM measuring locations.

No. Location Spatial Context Image

1 Urban Forest
21,090 m2 Heavy woodlands, Conifers and

pine trees, enclosed space, minimum number
of amenities, low use rate
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2 Residential Buffer Zone
Semi-enclosed space, artificial structures,

concrete, stucco blocks, little vegetation, low
use rate

3 Sports Complex
25,700 m2 of open and recreational area, hard
paved (concrete, tarmac), mesh fences, small

structures, high use rate

4 Building Front
Semi-enclosed setting, building structures,
trees, some amenities, paved with concrete

blocks, high use rate

5 Lakeside
Main landmark, exposed open space with

water feature (51,280 m2), surrounded by trees
and shrubs, high use rate

First, the urban forest area is surrounded by heavy woodlands, mostly pine trees.
Approximately 70 percent of the forest consists of conifers and around 30 percent of the
trees are deciduous. The total area is approximately 21,090 m2, and there are a minimum
number of amenities, such as footpaths, benches, and exercise machines. The footpaths
are hard, paved with concrete blocks, and generally this location is not heavily used by
university students.

Second, the residential buffer zone is situated between the university campus grounds
and the residential blocks which are generally spread around the campus. The campus
boundaries are fenced with metal railings about 1.5 m heigh and of which are visually
transparent. There is little vegetation, including shrubs and conifers. Artificial structures,
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such as concrete and stucco blocks, are dominant in this area. This is not an amenity area,
and it is not used by not many people on campus.

Third, the sports complex is an open and recreational area that contains one artificial
turf football pitch, two basketball courts, two tennis grounds, and a multi-use games
area. Each sports ground is fenced with powder-coated mesh fences which are visually
transparent. The area is approximately 25,700 m2 and generally paved with hard materials
such as concrete and tarmac. Small structures such as toilets, sports stands, and changing
facilities exist. However, the area is mainly exposed and heavily used for recreation and
sports activities.

Fourth, the building front is a typical landscaped area with semi-enclosed settings.
Used as a porch area, it comprises a mixture of artificial building structures, including
trees and shrubs, and some amenities such as benches and bending machines. The loca-
tion is used extensively by students and staff going in and out of the buildings and the
location is well linked to other buildings and open space. Additional street furniture and
landscape facilities including footpaths, benches, and pergolas. It is a well-paved area with
concrete blocks.

Finally, the lake is situated in the heart of the campus. Many people walk along the
lake. As a main landmark, usage is very high and the lake itself is approximately 51,280 m2.
It is a highly exposed and open area; however, unlike location 3, which is a sports complex,
it contains not only large water features, but is also surrounded by trees and shrubs. The
footpaths are paved with concrete blocks and the main tree species are Himalaya Ciders
and Cherries planted in order to enhance visual attractions.

It is not always easy to categorize environmental contexts because they may contain
enormous complexities. This research attempts to examine five environmentally different
areas to collect PM data and to identify differences in land-use properties. Although the
locations are differentiated with respect to qualitative values such as openness/enclosed,
surface material, built-up structures, and vegetation, this research uses a quantitative
value to categorize the characteristics of the individual locations. Sky view factors (SVFs),
theoretically measured based on the three-dimensional(3D) modeling program ENVI-met,
were added to measure the visibility of the sky as quantitative differences in the next section.

3. Data and Methodology

This study employed a case study method to collect real-time PM concentration
levels from five environmentally different context locations. To simulate different urban
settings, a university campus in Seoul was chosen, and within the campus, five qualitatively
varied locations were pinned (Table 1). The qualitative values used for the sites included
openness/enclosed, surface materials, built-up structures, and vegetation conditions. The
measuring instrument “Smart Aircock outdoor type 1” measured a flow rate of 0.1 L per
minute, stored the data every minute, and transmitted it to a mobile device to convert it
into a CSV file. Additionally, we added quantitative measures as verification factors for the
qualitative, real-time data. Three-dimensional modeling was conducted using ENVI-met
software and, as a result, the SVF was introduced to analyze the environmental properties
of each location.

3.1. Sky View Factors and ENVI-Met 3D Modeling

The sky view factor (SVF) has been commonly implemented as a critical parameter in
climate research and in planning practices in urban areas [30]. The SVF is the ratio of the
visible sky area of a point in space to the total sky area. It provides the relationship between
the visible sky area and the covered surroundings, such as street trees or buildings. The
spatial value of urban canopies varies with the x-, y-, and z-measures of the structures that
define them. Therefore, the concept of SVF emerged in the 1980s to allow urban and road
climatologists to develop relationships between energy and heat exchanges [31–33]. SVFs
can be defined as a measure of the degree to which the sky is obscured by the surroundings
at any given point [31].
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This study employed ENVI-met software, which is a three-dimensional microclimate
tool containing soil, vegetation, and heat exchange modeling capabilities [34]. The software
allows users to create climatic conditions for modeling elements such as major vegetation,
soil, and buildings [35]. In another study, ENVI-met was utilized to analyze the impact
of roads, buildings, green areas, and other open spaces on climate conditions such as
temperature and humidity [36].

To measure the concealment and openness of each location, SVFs were calculated. For
the SVFs’ configuration, ENVI-met modeling was conducted for the building height and
land-use properties of the campus area. Original modeling was initiated with Rhino 6 and
Grasshopper packages using a series of grid cells measuring 18 m × 18 m × 3 m and the
entire size of the model was 50 m × 65 m × 300 m. Surface textures were added afterwards,
for instance, concrete for the buildings, water for the lake, asphalt for the roads, concrete for
the car parks, and other open spaces. However, texturing is not critical for measuring SVFs.

Once the modeling of the sites was completed, SVFs from ENVI-met could be extracted
to take the geographical context into account.

According to the SVF values modeled using ENVI-met (Figure 6), each location has
a quantitative sky visibility value, which could be an indication of the concealment and
openness of the individual locations.

Figure 6. Calculated sky view factors of the site (the numbers represent each location of sensors).

3.2. Time-Series Longitudinal Analysis of PM Concentration Levels

Together with the quantitative values from the SVFs, the qualitative environmental
contexts were taken into account to reflect the properties and characteristics of the five
locations (Tables 1 and 2). Then, the statistical software RStudio (version 3.3.0+) was
used to perform a longitudinal analysis of PM concentration levels in comparison to
the geographically weighted five locations. Within Rstudio, visualization works were
performed using ggplot2 (version 3.4.0) packages.
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Table 2. Sky view factor values from ENVI-met 3D models.

Location Names SVFs (%) Note

1 Urban Forest 0.50–0.60 Vegetation was not entirely modeled.

2 Residential Buffer Zone 0.10–0.20

3 Sports Complex - Is not calculated. *

4 Building Front 0.80–0.90

5 Lakeside - Is not calculated. *
* SVF values in open spaces with no built-in structures were not calculated.

The real-time data collected was too large to handle a period of more than one year;
therefore, a resampling process was conducted using the Pandas software library in Python
(version 3.11).

4. Results and Discussion

This research employed a case study of a university campus in an urban area. Five
environmentally different locations within the campus were chosen to install PM-measuring
devices and collect real-time PM concentration levels recorded at one-minute intervals
between November 2021 and January 2023. In terms of the data availability, only the
datasets from November 2021 to November 2022 were usable for all five locations.

In order to identify the severity of the measured PM concentrations, a comparison
between the WHO’s air quality standards and the measured data was performed first.

The World Health Organization (WHO) provides air quality guidelines (AQG) to help
governments improve citizens’ health by reducing air pollution [37]. Table 3 indicates the
comparison of this research’s annual mean, maximum, and minimum PM (PM10 and PM2.5)
concentration values against the annual and 24-hour averaging PM concentrations from
the recommended 2021 AQG levels. Comparing the annual average values, the measured
values at all the locations were higher than the WHO’s AQG levels. In particular, the PM
values at the lakeside location exceeded the WHO’s AQG levels the most; the values at the
urban forest location also exceeded the WHO’s AQG levels, but they were the closest to the
WHO’s AQG levels.

Table 3. Comparison of measured PM concentration values and WHO 2021 air quality guidelines
(AQG, highlighted in gray).

Location
WHO 2021 AQGs
(Annual Average,

mg/m3)

Annual Average
(mg/m3) *

WHO 2021 AQGs
(24-Hour Average,

mg/m3)

MAX (24-Hour
Average, mg/m3) **

MIN (24-Hour
Average, mg/m3) ***

PM10 PM2.5 PM10 PM2.5 PM10 PM2.5 PM10 PM2.5 PM10 PM2.5

Urban Forest 18 13 68 50 4 3
Residential Buffer 21 16 121 96 3 2
Sports Complex 32 24 178 136 3 2
Building Front 33 23 124 103 1 0.3

Lakeside

15 5

41 34

45 15

85 72 1 0.4

* Annual average PM value during study period (13 months). ** Average daily (24 h) maximum PM value during
study period. ***Average daily (24 h) minimum PM value during study period.

For the 24-hour average values, the daily average maximum values during the study
period at all locations exceeded the WHO’s AQG levels. Even in the urban forest location,
which showed the lowest values, the PM2.5 concentration was well above the WHO’s
AQG levels. However, the daily average minimum values were lower than the WHO’s
AQG levels at all locations and were the lowest at the building front location. Except for
the minimum values, the urban forest location had the lowest values both for the annual
average and the maximum values.

With the measured data, the researchers initially started to visualize the every minute
measurement of PM10 and PM2.5 in a time-series format for the collected datasets between
November 2021 and November 2022. However, this could not be illustrated effectively
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because of the density of the data. Therefore, this research used resampling tools in order
to obtain the daily average values from the minutely collected data and to illustrate the five
locations, as shown in Figure 7.

Figure 7. Time-series analysis of PM10 and PM2.5 concentration levels at the five locations.

According to Figure 7, the differences between PM10 and PM2.5 were minimal. There
were also exceptional pattern values such as the PM levels in April at the sports complex
location; however, this could have been a localized event caused by the intensive sports and
leisure activities on the university campus during the spring. Moreover, the PM measuring
sensors were sensitive because they were installed at human breathing heights, which were
in the range of 1650 mm to 1900 mm from the ground level in the study (Figure 4).

For the scale of the time-series analysis shown in Figure 7, it is not easy to compara-
tively analyze the numerical values of the individual locations; however, an overall trend
can be drawn. For example, throughout the year between November 2021 and November
2022, regardless of seasonal changes, the urban forest location was low in PM concentration
levels. Comparing the lakeside and building front locations, higher levels of PM10 and
PM2.5 were consistently observed at the lakeside location.

To investigate the geographical differences among the five locations in detail, a resam-
pling of PM10 and PM2.5 was repeated from daily to monthly average values, as illustrated
in Figure 8.

Unlike Figure 7, which was based on hourly datasets, Figure 8 illustrates a clear
comparable value of the PM concentration levels at each location. First, there is not much
difference between the PM10 and PM2.5 levels, which is similar to the results shown in
Figure 7. However, each location showed a clear hierarchical pattern in the concentration
levels, except for the sports complex, whose changes varied. The PM levels at the lakeside
were constantly high, followed by the building front. The residential buffer zones and urban
forests showed similar patterns of lower PM concentrations, but the urban forests were
marginally lower than the residential buffer zones. With the exception of the sports complex
location, these results illustrate that openness/enclosure is the main factor affecting PM
concentration levels. According to Figure 8, the concentration level of PM was high in
the spring and low in the autumn at the sports complex location. Therefore, it can be
concluded that more exposed locations have denser levels of PM concentration, which
include the lakeside, building front, residential buffer zone, and urban forest in that order,
excepting the sports complex location. Physical structures or any obstacles could block
PM penetration; in particular, vegetation and pine tree forests, in this case, seemed to be
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effective in filtering PM infiltrations. These results also corresponded to the SVF values for
each location.

Figure 8. Time-series analysis of PM10 and PM2.5 concentration levels at the five locations using
monthly average values.

Additionally, this research investigated the PM levels for each location in March 2022,
when the overall PM concentrations were the highest within the year. This is illustrated
in Figure 9, which was created using the daily average values of PM10 and PM2.5 by
resampling from the original measured data from the individual real-time sensors.

Figure 9. Time-series analysis of PM10 and PM2.5 concentration levels at the five locations in
March 2022.
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In Figure 9, the daily average values from the collected data are presented in a scatter-
plot for the duration of March 2022. Then, LOESS (weighted scatterplot smoothing) was
implemented to provide an overall impression of the trends without fitting parametric mod-
els to allow for flexibility in understanding the overall tendencies. By doing so, this analysis
effectively explored the trends in PM level changes in the specific environmental contexts.

In this analysis (Figure 9), the spatial hierarchy based on the environmental context
was demonstrated more clearly than the results in Figures 7 and 8, which were yearly time-
series analyses. However, it needs to be mentioned that the PM10 and PM2.5 concentration
levels at the sports complex location behaved unpredictably, showing patterns similar
to those in Figures 7 and 8. Therefore, apart from the sports complex location, the PM
concentration levels at the four locations illustrated certain patterns and hierarchies. First,
there could be two main groups: those with higher and lower PM levels. The higher group
is composed of the lakeside and building-front locations. The measured PM levels in the
higher group were recorded to be approximately 10 to 30 mg/m3 higher than in the lower
group, which includes the residential buffer zones and the urban forest locations. Then, the
PM level gap between the lakeside and building front locations within the higher group
was continuously steady at approximately 10 mg/m3. The measured PM levels in the lower
group, the residential buffer zone and the urban forest locations, were relatively similar.
The differences between the residential buffer zone and the urban forest were quite narrow,
ranging from 0 to 6 mg/m3.

In summary, the urban forest location showed the lowest level of PM concentrations,
and the residential buffer zone location had the next highest PM levels by a narrow margin.
The third highest PM levels were observed at the building front location, with an average
gap of 20 mg/m3. Finally, the highest PM level was at the lakeside location, which was
approximately 10 mg/m3 higher in general.

This research has sought to explain why PM concentration levels vary exceptionally
at the sports complex location. This research concluded that due to extensive sports and
leisure events, there were temporal rises and falls in the PM concentration levels that
affected overall air quality. In particular, because the PM sensor was installed at the human
breathing level, the sensitivity was increased.

According to Figures 7–9, the more enclosed a location is, the lower the PM10 and
PM2.5 concentrations are. In particular, the location enclosed by the forest, where the
majority of the species were conifers and pine trees, was demonstrated to have better
air quality, based on PM10 and PM2.5 levels, as compared to built-up structures such as
reinforced concrete buildings.

In addition, SVFs were implemented to express the variances among the environmental
contexts quantitatively. The SVF readings strongly corresponded with the overall research
results; however, the SVF values were not all fit at some locations because the SVFs were
calculated mainly using artificially built-up structures. The exclusion of localized vegetation
and detailed elements caused some discrepancies between the SVF values and the actual
environmental contexts. These discrepancies mean that the SVF values do not reflect what
is really happening in those locations.

5. Conclusions

Since the beginning of industrialization and urbanization, the world has suffered from
large numbers of air pollutants in urban areas. Recent threats from PM10 and PM2.5 have
emerged because of their size and potential to create serious health problems, including
asthma, heart-related diseases, and respiratory diseases. Despite the recognized importance
of research using the GWR or LUR models for PM concentration levels in urban areas, there
is little research that uses actual measured data, such as real-time data collection.

Therefore, the purpose of this study was to explore variations in air quality, particularly
PM densities, in different land-use types within urban areas. A case study method was
employed to determine the aims and purposes of the study. Real-time sensors that checked
the PM10 and PM2.5 concentration levels at a height of approximately 1700 mm were
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installed at five locations with different environmental characteristics. Recorded PM10 and
PM2.5 levels in human breath were collected for the five locations in the period between
November 2021 and January 2023. The five locations were an urban forest, residential
buffer zone, sports complex, building front, and lakeside. The research tried to emulate
common spaces in urban areas, differentiating between openness/enclosure, amount of
green infrastructure, and land usage.

Three time-series analysis steps were performed. First, the collected data of the PM10
and PM2.5 concentration levels recorded every minute were resampled into daily average
values and then visualized for the five locations in the period between November 2021
and November 2022. Second, the collected PM10 and PM2.5 concentration levels were
resampled into monthly average values and then visualized to better understand the
pattern of changes at each location. Finally, data from March 2022, which was the worst
month, were visualized to provide a detailed analysis.

Based on the analysis of a three-phase time-series and SVF calculation, the more a
space is enclosed, the lower the level of PM10 and PM2.5 concentration detected overall.
In particular, the space surrounded by a conifer forest showed better air quality than
spaces enclosed by reinforced concrete buildings. Some discrepancies seen at the sports
complex could be explained by the overly sensitive PM sensors which were installed at
human breathing levels, as well as the intensive sports and leisure activities conducted
there. Therefore, the research concluded that physical structures and obstacles could affect
the concentration levels of PM10 and PM2.5. In particular, when the physical structures
comprised a group of trees or forests, this had a positive effect on reducing the concentration
levels of PM10 and PM2.5.

In addition to these findings, similar follow-up studies that will take into account more
diverse environmental contexts, such as the denser urban fabric, including high-traffic
roads and high-rise buildings, are expected to contribute to policy and decision-making
processes in landscape architecture and urban design. Moreover, these studies could serve
as spatial guidelines for public health and welfare within urban life. The methodology
implemented in this study attempted to consider a both qualitative and quantitative
analysis of the classification of environmental variances, in which surrounding contexts
and SVFs were employed. However, analyzing the environment in a quantitative way is
ambiguous. Consequently, SVFs were not as effective as the study initially anticipated.
Hence, new methods to provide accurate quantitative classifications of the environment
need to be conducted in future studies; for example, if a specific measurement is used such
as SVFs, the SVFs also need to contain vegetation rather than only artificial structures such
as building blocks.
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