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Abstract: The identification of the biogeophysical effects due to land-use, land-cover, and land-
management changes (LULCC) is yet to be clearly understood. A range of factors, such as the
inclusion of an interactive ocean model component, representation of land management, transient
LULCC, and accountability for atmospheric feedback, potentially shifts how models may detect the
impacts of the land surface on the climate system. Previous studies on the biogeophysical effects of
LULCC in South Asia have either neglected one of those factors or are single model results. Therefore,
we analyzed the outputs from 11 models, participants of the Coupled Model Intercomparison Project
in its Sixth Phase (CMIP6), which derived from experiments with and without LULCC and compared
the two simulations with respect to changes in near-surface temperature and total precipitation
means. The CMIP6 simulations, to a certain extent, accounted for the elements previously overlooked.
We examined the grid cells that robustly indicated a climatic impact from LULCC. Additionally, we
investigated the atmospheric feedback and the dominant fluxes with their associated land surface
variables involved in the changes in temperature and precipitation. Our results indicated that the
biogeophysical effects from LULCC favored surface net cooling and surface net drying over the
robust areas at all seasons. The surface net cooling was strongly influenced by the decrease in
available energy and the increase in latent heat and total evapotranspiration. Surface net drying
was highly promoted by local hydrological processes, especially in areas outside the monsoon core.
The study also revealed that non-local sources might influence precipitation in some parts of South
Asia, although this was inconclusive. Our research presented similar results to previous studies but
with different magnitudes, which highlighted the added value of CMIP6-GCMs simulations but also
their pitfalls.

Keywords: land use; land management; land-use modeling; biogeophysical effects; South Asia; CMIP6

1. Introduction

Land Use, Land Cover, and Land Management Changes, hereafter LULCC, can influ-
ence the climate through carbon, energy, and moisture fluxes’ exchange. Changes in land
surface properties that modify the energy and moisture fluxes are called biogeophysical
(BGP) effects. BGP effects are often a neglected element in international climate policies,
primarily due to high uncertainties, scale dependency, and the contentious issue of global
negligibility [1–4]. However, at regional and local scales, BGP effects are notorious [5]
and could be eight times larger than global effects on, for example, lower tropospheric
air temperatures [6]. Hence, the regional identification of BGP effects is indispensable,
especially in vulnerable areas such as South Asia. The vulnerabilities faced by the com-
munities living in this region are not only due to the high dependence on the monsoon
regime for agricultural activities but also due to insecurity with regard to resource and risk
management [7,8]. Accordingly, we thoroughly investigate the BGP effects in South Asia.

A comprehensive assessment of LULCC-induced BGP effects on climate variables,
such as near-surface temperature, should incorporate local and potential non-local effects.
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Local effects include both direct and indirect effects [9]. Local direct effects are represented
by an immediate response of energy and moisture fluxes to a certain change in land
surface characteristics. The indirect effects are the induced response to initiated local
direct effects [9], such as the further increase in latent heat release of 27.8% due to the
increase in precipitation intensity in monsoon regions [10]. The non-local effects express
the potential feedback from LULCC elsewhere such as via teleconnections. The non-local
effects combined with the indirect effects convey the atmospheric feedback [11]. This
feedback can contribute to more than 75% of surface temperature change over 28% of an
area with perturbed land [12], but these effects can also incorporate weather noise [13].
Thus, careful examination of the potential atmospheric feedback is necessary.

Further requirements for a thorough investigation of BGP effects include land manage-
ment or land-use intensification. Ref. [14] confirmed that due to Earth’s limited terrestrial
space, land-use intensification is a more conceivable pathway of change than land cover
expansion. Ref. [15] highlighted the importance of considering land management (irriga-
tion) as a potential climate-effective mitigator by demonstrating its capacity to minimize
regional hot extremes. Another aspect suggested that including annually updated changes
or transient LULCC could reduce biases and significantly improve interannual temperature
and precipitation variability representations [16–18]. In comparison to a prescribed Sea
Surface Temperatures (SSTs) experiment, an interactive ocean model potentially enhances
or dampens the magnitude of BGP effects, although the sign of change may remain the
same [19,20]. Clift and Plumb [21] noted that the temperatures in the Indian Ocean are
vastly dependent on land, ocean, and atmosphere feedback through surface winds. Conse-
quently, an analysis of BGP effects should be able to: (a) account for atmospheric feedback,
(b) include land management as an integral part of the land-use dataset, (c) use a transient
LULCC dataset where interannual transitions are represented, and (d) have an interactive
ocean component.

In most South Asian countries, agricultural expansion and intensification largely
increased during the 20th century [22]. All these changes have been associated with the
decline of forest cover and other naturally vegetated landscapes, especially during the last
few decades [23–28]. Vegetation degradation from crop plantations or shrubland was also
observed with an increasing area of barren land [29]. Despite an overall decrease in natural
vegetated and forested landscapes, there were many areas in Nepal, Bhutan, or Sikkim
experiencing an increase in forest cover due to reforestation programs, effective forest
conservation policies, and enforcement of community forestry and sustainable agroforestry
systems [30–32]. Regarding land management, irrigation has increased steadily since the
1950s in South Asia, markedly in India [33].

Many studies have assessed the BGP effects in South Asian countries through various
methods and different model setups. A few studies looked at the general effect of LULCC
without including irrigation, transient land use, and an interactive ocean [23,25,34–36],
whereas others retrieved their results from fully coupled models [6,24,37–39]. Further
studies looked at the specific effects of irrigation on temperature changes but principally on
rainfall trends. These studies repeatedly pointed out the weakening of summer monsoon
rainfall due to LULCC, which is partially associated with the land surface cooling reducing
thermal gradient between land and ocean [8,35,38,40–42] but also linked to local and remote
hydrological responses [24,36,43,44]. Irrigation in South Asia is responsible for decreasing
land surface temperature through evaporative cooling [45] and weakening of monsoonal
rainfall [46], but it also decreases rainfall in seasons other than summer [42,47]. One singular
study differentiated the effects of other-LULCC types from only irrigation and found that
these two elements have opposing influences [40]. A recent study by [48] compared three
CMIP6-GCMs with active irrigation to those without it and they found cooling trends
mostly from the models with irrigation, especially in South Asia. Nevertheless, all these
studies did not capture the full range of BGP-LULCC effects or were the result of a single-
model analysis. Single-model analyses can partially attribute the changes in temperature
and rainfall to model-dependent interactions [25]. By doing so, one can suspect that the
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quantification and analysis of BGP effects in South Asia were incomplete or potentially
ambiguous through underestimation or overestimation of these effects.

Therefore, our research addresses the yet incomplete understanding of BGP effects
through a new set of data that (a) make use of transient annual land-use changes; (b) includes,
partially, land management (irrigation); (c) integrates indirect effects; and (d) employs ocean
coupling. Although the new dataset was previously explored [49], it was not assessed
for the already given aspects. We utilized a subset of fully coupled global climate models
(GCMs) from the Coupled Model Intercomparison Project in its Sixth Phase, CMIP6 [50],
and its two endorsed activities, the Land Use Model Intercomparison Project, LUMIP [51],
and the Land Surface, Snow and Soil moisture Model Intercomparison, LS3MIP [52] to
bridge this gap.

We analyzed CMIP6-GCMs outputs from two experiments, with and without LULCC,
since the simulations considered, to a certain extent, the mentioned requirements (aspects
a to d). We looked at the BGP effects from LULCC in South Asia by answering three
research questions: (i) How did the total BGP effects from LULCC affect the annual and
seasonal means of the near-surface temperature at 2 m (TAS) and total precipitation (PR)?
(ii) How strongly does the atmospheric feedback contribute to the total BGP-LULCC
signal? (iii) What is/are the most dominant flux(es) of the BGP-LULCC effect on TAS and
PR changes?

2. Materials and Methods
2.1. Study Area
2.1.1. Climate System

The South Asia region generally involves seven countries: India, Nepal, Pakistan,
Bangladesh, Sri Lanka, Maldives, and Bhutan (Figure 1). The region is marked by an
important and noticeable change in the seasonal pattern of rainfall, characterized by the wet
period of the summer monsoon, associated with up to 80–90% of the annual precipitation,
and dry winters [21]. Seasonal rainfall changes are the result of seasonal reversals of
atmospheric circulation, which are triggered by the differences in temperatures between
both hemispheres and between the land and adjacent oceans [8]. The changes in rainfall
patterns are influenced by seasonal changes in the low-level winds, a south-westerly jet
coming from the Arabian Sea and the Bay of Bengal passing through the Indo-Gangetic
plain [53]; they are also influenced by changes in the upper-tropospheric level winds, the
subtropical easterly jet and the Tibetan Anticyclone [53].
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The development of a pronounced low-pressure heat system over terrestrial South Asia
initiates the shift of the intertropical convergence zone (ITCZ), during northern summer
towards the north of the Equator at approximately 20◦ to 25◦ degrees north, and the
following mechanisms involved in the main monsoon season [54]. The northward shifting
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of the ITCZ creates a thermal contrast of the boundary layer moist static energy between
land and sea [21]. The moist static energy and moist convection, as summer progresses,
shift from the adjacent ocean towards the continent and bring rainfall over the South Asian
region. The rainfall maxima are located around the ITCZ zone, along the coastal areas, and
where orography is markedly present, such as in the western Ghats and the foothills of
the Himalayas [21]. The monsoon onset is then characterized by a sudden and very rapid
change in atmospheric circulation, where warm and moist air gradually progresses toward
the western and northern areas of the region. However, precipitation in this season is not
intermittent and it often weakens as it gets further inland [21].

Undoubtedly, the South Asia monsoon system is a fully coupled ocean-land-atmosphere
system driven by dynamic and thermodynamic processes, which are influenced by large-
scale circulation, mesoscale convective systems, and the fixed orography of the Himalayas,
Tibetan Plateau, and the western Ghats [55]. All of these factors dictate the timing, intensity,
and duration of the monsoon season, which determine the precipitation pattern over the
region [23].

2.1.2. Natural Vegetation

The region is covered by a great diversity of landscapes and ecosystems and a large
range of topography. India, for example, is covered by moist tropical forests on the west
coast, eastern Himalayas, and west of Bengal, dry forests towards the northwest areas,
around the hot Thar desert, and the southeast coasts of Tamil Nadu, as well as montane
subtropical, temperate forests and subalpine forest in the Himalayan areas [54]. Pakistan
(nowadays Pakistan and Bangladesh) is dominated in the lowlands by a tropical thorn,
savanna-like, forest, by dry subtropical forests along the border with Afghanistan and in the
Himalayan foothills, and towards the north covered by more diverse vegetation with the
presence of Himalayan temperate and subalpine forest and alpine scrub and meadows [56].

2.1.3. Agriculture Patterns

The precipitation pattern in South Asia is essential to agricultural productivity and
the economy of these countries, where the high regional variability of rainfall, the marked
seasonal changes, and the somewhat irregular rainfall timing and intensity might put limits
on crop production.

There are two cropping seasons in South Asia, the main season during summer,
commonly known as Kharif, and the winter crops, Rabi [57]. The latter season is heavily
supported by the use of irrigation, as the season is generally dry [57]. Irrigation, which
covers 40% of the total area used for agriculture [58], is inevitable considering that rainfall
is seasonal, irregular and unevenly distributed [54].

2.2. Overview of CMIP6-GCMs
2.2.1. Simulations and Models

We used two simulation experiments, historical (from CMIP6) and hist-noLu (from LU-
MIP/LS3MIP) in the analysis of LULCC-induced BGP effects. The historical and hist-noLu
experiments represented simulations with LULCC and those without LULCC, respectively.
These experiments were identical in their settings (prescribed atmospheric CO2 concentra-
tions, all forcing, GHGs concentration, emission of short-lived species, global gridded land
use, solar, volcanoes, aerosols, and modeled SSTs and sea ice concentrations) with the ex-
ception that land use in hist-noLu was kept constant at the 1850 pre-industrial level. Hereby,
we could compare two almost identical experiments, excepting the land-use feature, and
assign LULCC as the cause of the identified differences. The treatment of constant land use
can differ between models, where some models are driven by annual land-use states and
others by land-use transition (to another category) rates [51].

From each experiment (historical and hist-noLu), we considered the first realization
of 11 fully coupled GCMs participating in the CMIP6 and LUMIP/LS3MIP listed in Ap-
pendix A (Table A1). The analysis was based on one ensemble member of each model,
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taking into consideration that the 11 different models had a distinct number of realizations,
but all models had at least one. Only taking one realization might have complicated the dis-
tinction of the real climate signal from random noise. However, we expected that accessing
changes between similar experimental setups would decrease random variability within a
model. Besides, we investigated the mean over a long period, which could minimize some
of these uncertainties

The historical and hist-noLu simulations began in 1850 and ran until 2014, from which
we investigated the long-term annual and seasonal means between 1950 to 2014. We
chose this period because of the steady increase in irrigation observed since 1950. The
performance of the CMIP6-GCMs in South Asia was evaluated by several studies [30,59–62],
hence, we did not emphasize assessing the model skill but discussed our results given the
reported model skills. In general, CMIP6-GCMs showed cold and wet biases over most of
South Asia.

2.2.2. Assessed Variables

We examined two main climate variables, TAS and PR, and another 15 variables
representing the elements participating in the energy balance and moisture budgets. The
latter variables were included in the assessment of the potential driving forces of LULCC-
induced BGP effects. Table A2, in Appendix A, discloses a complete list of these variables
and their brief definitions. All the variables were retrieved from each experiment, historical
and hist-noLu, and subtracted one from the other to derive a change.

To better interpret the results of TAS and PR changes, we analyzed the modifications
that were implemented to land-use and land-cover change for each model. The land-use
change information was taken from the variable ‘fracLut’. The fractional coverage of plant
functional types (PFTs) was normally integrated into land-use tiles and distributed over a
single grid cell. The fracLut variable distributed land use into four main classes: “Primary
and Secondary vegetation” (disturbed and undisturbed natural vegetation, bare ground,
and wetlands), “Cropland”, “Pasture” and “Urban”. Out of the 11 models, CanESM5 and
BCC did not provide their land-use fraction information. The bare soil fractions were
retrieved from the ‘baresoilFrac’ files and represented the percentage of an entire grid cell
that was covered by bare soil.

All variables were single files as model outputs and were analyzed for their annual
and seasonal means. The seasons were represented by winter (DJF), pre-monsoon (MAM),
summer (JJAS), and post-monsoon (ON). The CMIP6 dataset was acquired from the CMIP6
database website at the DKRZ server “https://esgf-data.dkrz.de/search/cmip6-dkrz/
(accessed on 21 November 2022)”. Further information on the above experiments and land
use can be found in the CMIP6, LUMIP and LS3MIP v1.0 reports [50–52].

Before the assessment, TAS files were re-gridded to a common horizontal resolution
of 1.9◦ × 1.9◦ using bilinear interpolation. The smooth nature of temperature data is
fittingly performed with bilinear interpolation [55,59]. PR was resampled using first-order
conservative remapping, which was suitable for discontinuous data, especially in fully
coupled climate models [63]. The fluxes were also accordingly re-gridded when compared
to TAS or PR. The land-use variable was re-gridded using nearest-neighbor interpolation,
which was appropriated for categorical data.

2.3. Procedures
2.3.1. Robustness and Statistical Significance

We produced robust results on account of two measures: (1) Statistical significance of
the differences between the model means of the paired-experiments (historical and hist-noLu)
applied for each model; (2) majority model agreement on the direction of change where at
least 60% of the models (seven out of eleven models) agreed on the same sign of change.

Time series of climate data are serially dependent, thus not accounting for autocorre-
lation imposes a challenge to any statistical test on the significance of a change. For this,
we used the modified Student’s t-test proposed by [64] given that the test accounted for
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autocorrelation. The test has also been proven to be moderately robust against deviations
from a normal distribution [65]. When a particular grid cell passed the modified two-tailed
t-test at a 95% confidence level (i.e., p-value < 0.05) and the majority of individual models
agreed on the direction of change, this grid cell was considered robust. The robust grid
cells within the South Asia region were the cells we further investigated to explain how
TAS and PR respond to LULCC and how tightly these responses correlated to certain fluxes
or land surface variables changes.

2.3.2. Statistical Correlations and the Atmospheric Feedback

We estimated the relationship between the land surface variables and fluxes (inde-
pendent variables) to TAS or PR changes (dependent variables) by applying simple linear
regression. We looked at how fittingly the independent variables explained the variations
in the dependent variables through R2. The R2 values were not expected to be very high
because we were including sample data from different models. Different models translate
into different ways of modeling and hence, heterogeneous results. Some models might be
more sensitive to soil moisture changes, for example, than others. The data input as the
dependent and independent variables consisted of anomalies and were de-trended. Values
from the GFDL-ESM4 model were excluded from the analysis of fluxes considering that
this model did not output all variables of our interest.

The quantification of the atmospheric feedback required further inclusion of experi-
ments, which did not account for atmospheric feedback, the so-called offline simulations.
We used land-only offline experiments, land-hist, and land-noLu, in order to disentangle
the direct effects from the atmospheric feedback of LULCC on TAS. The offline experi-
ments were equivalent to historical and hist-noLu experiments respectively, however, no
atmospheric feedback was allowed. The calculation of the atmospheric feedback strength
was performed by subtracting the fully coupled simulations from the offline simulations,
following [12].

Figure 2 summarizes the methodological steps of the study. In the results section,
the comparison between the two experimental setups is referred to as “changes”, and
the intermodel spread and particularities of a model are referred to as “differences”. In
Section 3.1 of the results we analyze the LULCC simulated by the 11 models and compared
them with real trends of LULCC in South Asia. Sections 3.2–3.4 explore the robust changes
in TAS, the dominant fluxes, and land surface variables important to these changes, and
the atmospheric feedback, respectively. Sections 3.5 and 3.6 present the PR changes and
the fluxes and variables associated with changes in the moisture budget leading to the
potential modifications in PR. Finally, the results are reasoned in the discussion section
where explanations of the identified changes in TAS and PR are given.
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3. Results
3.1. LULCC and the Differences among Models in South Asia

The measure of LULCC was seen through changes in vegetation structure, primar-
ily through the Leaf Area Index (LAI), and natural vegetation distribution by fractional
coverage of PFTs incorporated into fracLut. The outcome from fracLut revealed that in
the robust grid cells of both TAS and PR, LULCC was configured as a mean increase in
cropland and pastures at the expense of primary and secondary vegetation (Figure 3).

The largest decreases in primary and secondary vegetation were exhibited by GFDL
(−7.45%) and MIROC (−9.86%) models, and the peaks of cropland increase were simulated
by CESM2 (+8.16%) and MPI (+7.67%). Pasture increase was not very representative for
all but a few models, especially MIROC, which simulated an +8.57% increase (Figure 4).
Besides, most models did not have a representation of pastures but rather of grasslands,
often being integrated into primary and secondary vegetation. The values on bare areas
were not available for all models, and most models simulated a maximum decrease of
−3.24% (CMCC, CESM2) but one model showed an increase of +5.05% (UKESM).

According to studies on historical changes in land use and land cover in South
Asia [22–28], forest and natural grasslands have decreased between 1950 and 2000 on
account of cropland expansion (somewhat limited) and agricultural intensification (most
prominent), which agrees with the changes in land cover simulated by most CMIP6 models
included here. The spatial pattern of changes shown by most models exhibited a higher
average increase in cropland over central India (Figure 3). One particular model (UKESM1),
however, presented no changes in cropland over central India and western Pakistan. Cen-
tral India is among the areas where cropland has increased or intensified the most since the
1950s [43]. Moreover, the prevailing decrease in bare areas over most parts of South Asia
does not coincide with the increase in land degradation experienced in the past century [29].
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The slight differences observed among the models on how they included LULCC
in their experiments depended mostly on the adopted land-use forcing dataset and how
models translated land-use information into their PFTs’ classes and represented them back
into land cover classes. Since all models claimed to use the same land-use forcing dataset
(LUH2), the differences were the results of varying ways that these models integrated vege-
tation and crop types into their land surface models. Models with large discrepancies from
the LUH2 consistently (Figure S1) overestimated the increase in primary and secondary
vegetation. Assuming that LUH2 already had some embedded uncertainties due to coarse
spatial resolution and the accuracy of the datasets incorporated to derive LUH2, adding
deviations to it further restricted the model’s capacity to accurately represent reality.

Another crucial aspect of land surface characteristics was the change in vegetation
structure. An important factor of vegetation structure is the leaf area index (LAI), a
ratio between plant foliage cover to plant ground cover. A reduction in LAI (combined
with tree/plant height) reduces surface roughness and increases aerodynamic resistance,
resulting in lower efficiency to transfer turbulent fluxes. Furthermore, with LAI decrease,
less water can be intercepted by tree canopies and thus become available for evaporation.
Having all that in mind, we performed a simple analysis of the LAI annual cycle and
spatial distribution from the examined CMIP6 models using the model output variable,
LAI, from their historical simulations. We found that LAI peaked for most models around
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September–October (transition of summer to post-monsoon season), which is corroborated
by [49] and represented well the LAI cycle over South Asia (Figure 5). However, spatially
(Figure 6) LAI does not coincide with the changes in vegetation distribution provided by
the fracLut variable (Figure 3) for some models.
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ties due to coarse spatial resolution and the accuracy of the datasets incorporated to derive 
LUH2, adding deviations to it further restricted the model’s capacity to accurately repre-
sent reality. 
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between plant foliage cover to plant ground cover. A reduction in LAI (combined with 
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sulting in lower efficiency to transfer turbulent fluxes. Furthermore, with LAI decrease, 
less water can be intercepted by tree canopies and thus become available for evaporation. 

Figure 4. Quantification of LULCC (historical—hist-noLu). Values represent the mean annual, between
1950 to 2014, averaged over the robust grid cells for TAS. Tas and PR values are very similar. More
details on bare area changes, which fluctuate between the seasons, are available in Figure S2 in the
supplementary material.
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The main reason for the discrepancy between LAI output and fracLut information
lay in the many ways land surface models integrated the PFTs into their land-use cover
tiles and whether LAI was prescribed or not. As an example, the CMCC model had only
two types of land-use tile, urban and vegetated, where the vegetated land-use tile would
remain the same throughout time in both experiments, historical and hist-noLu. Vegetation
changes would only occur within the “vegetated” tile for the PFTs distribution, so LAI
might change regardless of the changes in the “vegetated” cover. The ACCESS, CMCC,
CanESM5, BCC, and partially the CNRM models showed an increase in LAI despite the
clear decrease in primary and secondary vegetation (Figure 3). The models depicting values
of LAI corresponding to its vegetation fraction changes were the MIROC, CESM2, GFDL,
IPSL, UKESM, and partially the CNRM and MPI, all values extracted from annual averages.
Additionally, LAI changes were not only reflected in LULCC but could also be a response
to changes in carbon dioxide and the overall changing climate. Another relevant facet was
the varying ways land surface models resolved LAI, being prescribed or prognostic. If a
model prescribed LAI, then LAI changes would be dissociated from the surface climate
changes experienced by the same model. Moreover, ref. [49] highlighted that LAI was
overestimated by all CMIP6 models and for most places in the world, with overestimation
mainly deriving from non-forested cover. Finally, the interannual cycle of LAI in a model
is highly dependent on the seasonal cycle of crops and the length of the growing season
resolved in the model. The differences in how to retrieve changes in vegetation properties
will ultimately influence the LULCC forcing signal, which might favor a certain direction
of change.

3.2. Model Responses to TAS Changes

Most models (at least 7 out 11) agreed on area average net cooling favored by LULCC
at mean annual and in all four seasons, which showed no clear seasonal pattern. The spatial
distribution of the robust grid cells slightly differed depending on which seasonal mean is
considered (Figure 7).
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However, there were parts of the region with consistently robust results throughout the
years and the seasons, such as the eastern part of Pakistan, and the central-northwestern
and southern tip of India. Winter, pre-monsoon, and post-monsoon seasons were the
seasons with the strongest net cooling changes with mean values of −0.44 ◦C (MPI),
−0.44 ◦C (CMCC), and −0.43 ◦C (MPI), respectively (Figure 7). The net cooling resulting
from the influences of LULCC changes in South Asia was spatially dominant during the
pre-monsoon season. The extent of temperature change during summer was the smallest of
all seasons. Generally, small-scale vegetation changes did not influence the main monsoon
season as much due to the dominance of the ocean forcing during this wet season [38].
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3.3. Changes in the Energy Fluxes

The surface energy balance equation (not shown) consists of fluxes influencing the
radiative and the non-radiative sides of energy exchanges. We looked at 15 different vari-
ables to examine their influences on the radiative and non-radiative exchange of energy
between land and the atmosphere.

3.3.1. Radiative Fluxes

The radiative side of the surface energy balance is broadly represented by the net
radiation (Qnet) that is net shortwave radiation (net SW) summed to net longwave radiation
(net LW). On the one hand, Qnet does not display high R2 values (Figure 8) and is typically
influenced by cloud cover (Cc). Therefore, Qnet and TAS changes are likely not to be
linearly correlated. Qnet responses were highly subject to other factors, such as cloud cover
(Cc), which in turn might shape how changes in Qnet varied with TAS changes. On the
other hand, the available energy (Qa) was the dominant flux in shaping changes in TAS
as Qa was the variable with the highest R2 values (over 60%) for most temporal scales
(Figure 8). The regression coefficient between changes in Qa relative to changes in TAS
was positive in all seasons and the annual mean (Table 1). Qa corresponds to longwave
downwelling flux (LWd) plus net shortwave radiation (net SW). A decrease in Qa means
that less energy is available to warm up the land when the energy used as a source of
heat reduces, hence cooling. Connected to a decrease in Qa, the net longwave radiation
(net LW) was the variable with the second highest R2 values among the radiative fluxes,
especially in summer, when 64.03% of TAS changes could be explained by changes in net
LW (Figure 8). The regression between TAS and net LW was negative, which indicated
that a decrease in TAS was associated with an increase in net LW. The increase in net
LW simply meant that more energy left the system in the form of longwave radiation in
simulations with LULCC. This pattern corroborated with the increase in latent heat (LH),
total evapotranspiration (Esurf), and evapotranspiration from soils (Esoil) simulated by
most models (mean values not shown). Moreover, Cc appeared to be generally uncorrelated
with TAS changes, except during the summer season. As mentioned earlier, R2 values for
NetLW explained a little over 60% of the variations in TAS in the summer season and Cc
was responsible for about 57% of TAS changes. Cc was negatively correlated to TAS, which
indicated that the increase in cloud cover had a cooling effect on the surface by probably
blocking some of the shortwave radiation to reach the surface.
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Table 1. The regression coefficients of the linear relationships described in Figure 8.

Esurf Esoil Ecan SM SM10 Cc PRconv PR Qnet NetSW NetLW LWd Qa SH LH LAI

Annual −3.19 −1.75 −7.80 0.00 0.00 −0.11 −0.82 −0.94 −0.07 0.11 −0.11 0.07 0.11 0.06 −0.10 −2.89
DJF −1.16 2.91 17.46 0.00 0.00 0.02 −1.29 −0.21 −0.09 0.00 0.00 0.05 0.14 0.07 −0.01 0.08

MAM −2.39 −4.80 −4.31 0.00 0.00 −0.12 −1.73 −1.17 −0.11 0.07 −0.09 −0.02 0.14 0.12 −0.10 −5.55
JJAS −1.83 −1.20 −8.85 0.00 0.00 −0.14 −0.74 −0.59 −0.01 0.10 −0.09 −0.01 0.08 0.07 −0.06 −2.12
ON −3.33 −4.14 −6.90 0.00 0.00 −0.02 1.63 0.82 −0.09 0.01 −0.02 0.08 0.11 0.09 −0.11 −2.78

The values for SM and SM10 are numerically represented by ‘zero’ as they are very small.

Qnet, Qa and their related fluxes return only the radiative effects from LULCC. These
effects may not alone contribute to surface net cooling simulated by models since BGP
effects are often mingled responses, which can easily offset each other. The non-radiative
forces component essentially controls energy through the partition of Qa into sensible heat
(SH) and latent heat (LH).

3.3.2. Non-Radiative Fluxes

The flux with the highest R2 values among the non-radiative fluxes and their associated
variables is latent heat (Figure 8). The latent heat is the heat taken from the surface during
evapotranspiration process. Consequentially, Esurf also displays R2 values similar to or
even higher than those from LH. Esurf accounts for Esoil, transpiration from plants, and
evaporation from canopies (Ecan). One important aspect of the evapotranspiration process
is the amount of water available in the soil to be evaporated. The total soil moisture (SM),
but principally the soil moisture of the upper ten centimeters of the soil layer (SM10) had
the third highest R2 among the non-radiative fluxes and their associated variables (Figure 8).
LAI changes were not strongly associated with TAS changes as they only showed R2 values
ranging between 14.96 in winter to 32.58 annually (Figure 8). Moreover, the low R2 values
might not necessarily indicate that there was no or very weak correlation but rather that
the relationship between the variables is not linear.

3.3.3. Winter Responses

Although there was no clear seasonal pattern in TAS changes, flux changes slightly
differed during the winter season. One particular characteristic of this season was the
lowest R2 values among all temporal scales. Another singularity was that Esoil, Ecan, SM,
SM10, and LAI showed opposite signs of regression coefficients (positive) to the same
variables in the other seasons (generally negative), see Table 1. Those two aspects strongly
suggested that LULCC during winter did not significantly influence the climate and/or
that LULCC influences were shaped by the atmospheric feedback and the background
climate of the season.

In the next section, we further explore how important the atmospheric feedbacks are
to the overall LULCC signal on TAS changes, especially during the winter season.

3.4. Atmospheric Feedback

As mentioned previously, LULCC alter the surface properties causing direct local
and indirect local impacts with possible remote effects. Atmospheric feedback is under-
stood as the combination of indirect and potential remote responses. We derived the
feedback strength by accessing the discrepancies between coupled and offline simulations
(see methods). There were six offline simulations available from CMIP6-GCMs models.
The following numbers were all median values from CMIP6-GCMs which simulates net
cooling responses.

Atmospheric feedbacks were responsible for nearly 23% of the surface cooling over
78% of the robust-grid cells at annual means. These feedbacks were even stronger during
the winter season (27.28%) covering an area of nearly 70% of the robust grid cells (Table 2).
During pre-monsoon and summer seasons, the non-local responses were the weakest and
only impacted in roughly half of the robust grid cells. The R2 measures during summer were
the highest for most of the examined variables, which may indicate how variations in TAS
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during this season were more of a local nature, even though TAS changes in summer were
the smallest (Figure 7). During the post-monsoon season, the interactions of land surface
changes with the atmosphere were largely spread over the robust cooling grid cells (89%),
controlling about 22% of TAS cooling. The atmospheric feedback could attenuate direct local
impacts; consequently, the accountability of the atmospheric feedback is indispensable [11].
It is important to emphasize that the presented results were the median values aiming for
simplicity. However, the spread among models should be acknowledged following that
the differences between models were quite large for some seasons, which contributed to
the overall intermodel spread [9]. The intermodel spread of the feedback strength is shown
in the supplementary material (Figure S3).

Table 2. Strength of atmospheric feedback (%). The values represent the robust cooling areas and
strength refers only to cooling. The unit of area is in % relative to the total robust grid cells respective
to the temporal scale.

Model Annual DJF MAM JJAS ON

Strength (%) Area Strength (%) Area Strength (%) Area Strength (%) Area Strength (%) Area

CESM2 21.38 23 30.12 69 15.41 36 19.91 32
CNRM 15.43 93 9.82 63 18.73 89 17.44 91

IPSL 11.05 54
UKESM 13.60 60 10.74 53 16.68 88
CMCC 32.89 68 29.27 70 28.71 84 19.06 68 27.63 79

MPI 24.10 88 27.28 97 21.46 54 4.62 27 26.38 90
Median-Value 22.74 78 27.28 69 18.43 57 18.73 53 21.91 89

3.5. Model Responses to PR Changes

Changes in precipitation had a much larger spread than changes in TAS, resulting
in very few grid cells with robust values. Overall models, including the only one with
irrigation representation (CESM2), tended to agree on drier parts of South Asia as the
main response to LULCC in all seasons, but especially during summer and post-monsoon
seasons, over the central-east coast and the southwest tip of India, respectively. The peak
changes were (−) 0.88 mm/day (MIROC) and (−) 0.83 mm/day (UKESM) in summer
and (−) 0.62 mm/day (CanESM5) in the post-monsoon season (Figure 9). Models also
agreed on wetting over one of the parched areas of South Asia, northwest of Pakistan. The
wetting agreement only happened during the post-monsoon season with a peak of (+)
0.2 mm/day (CNRM), which was not a very large change (Figure 9). The pre-monsoon
season did not show any robust results in the study area for precipitation changes. The
percentages of decrease or increase in PR, calculated in mm/year, are shown in Figure 10.
This figure suggests that the highest percentages of increase (median values) were seen
during the post-monsoon over the wet-agreement areas, followed by dry-agreement during
the same season.

3.6. Changes in the Elements of the Moisture Budget

Changes in the elements of the moisture budget over dry-agreement areas were more
often than not indicated by surface drying that further limits local precipitation recycling.
Overall, SM10 and PRconv decreased in all seasons (not shown) and they were the two
variables with the highest R2 values in all temporal means (Figure 11). The importance of
the relationship between PR changes and SM10 and PRconv suggests that the decrease in
PR is linked to the elements participating in the local hydrological cycle. The other related
variables, such as Esurf, Esoil, Ecan, and SM, were not strongly associated with changes in
PR as they were subjected to other factors, such as temperature. TAS explained at least half
of the variations in PR during the summer season (Figure 11).
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Esurf, Esoil, LH allied to SM10 and PRconv were highly responsible for the changes in
PR during the post-monsoon season for the wet-agreement areas. The mean values derived
from all models in the post-monsoon season (not shown) denoted an overall increase in
the availability of water in the soil, higher rates of evapotranspiration, and thus recycled
precipitation in the simulations with LULCC. The regression coefficients between land
surface variables and PR changes remained positive throughout the seasons and for all
variables, except for TAS (Table 3).
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Table 3. Same as Table 1 but the values are for the correlation with PR changes.

Esurf Esoil Ecan SM SM10 Cc Wv PRconv LH LAI TAS

Annual 1.80 1.38 1.38 0.00 0.00 0.08 0.21 1.20 0.06 1.38 −0.57
DJF 1.28 1.28 12.69 0.00 0.00 0.11 0.45 2.51 0.04 −0.01 −0.10

MAM 2.52 2.32 6.45 0.00 0.00 0.15 0.36 1.22 0.08 2.51 −0.99
JJAS 1.78 2.22 6.41 0.00 0.00 0.15 0.40 1.21 0.05 0.58 −1.52
ON 1.77 1.95 10.98 0.00 0.00 0.03 0.11 1.77 0.06 0.04 −0.04

The values for SM and SM10 are numerically represented by ‘zero’ as they are very small.

The third-order polynomial regression model failed to improve R2 values of the
relationships between fluxes and PR changes, as compared to the R2 results from simple
linear regression (not shown). Similar to TAS changes, PR changes during winter were not
associated with changes in the land surface variables due to LULCC. The winter season
was the one with the lowest R2 values.
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4. Discussion
4.1. TAS Changes

The outcomes from TAS changes indicate that the net signal of TAS to LULCC was very
sensitive to Qa and associated net LW followed by LH and affiliated Esurf. Ref. [3] pointed
out that, contrary to common belief, albedo changes were not the main biogeophysical
effect from LULCC detected at the local scale. The surface cooling observed by most models
was the result of both evaporative cooling and loss of energy through the reduction of Qnet
and Qa.

Although LAI changes are not strongly associated with TAS changes, usually the
increment in LAI enhances surface roughness leading to a decrease in wind speed and an
increase in the efficiency of both evaporation and convection. Through enhancing evapora-
tive efficiency, the changes in the elements involved in the internal feedback of moisture
recycling may ultimately control precipitation, which may further intensify evapotranspi-
ration and surface cooling. Therefore, LAI might not linearly correlate with TAS changes,
but LAI changes can influence LH exchange and ultimately TAS changes. Essentially, LH
response is rather sensitive to changes in vegetation types and their different parameters
and depends on the level of detail in vegetation incorporated by the land surface model.
Additionally, as mentioned before (Section 3.1), LAI does not entirely correspond to the
land cover distribution changes exhibited by fracLut, nor might the fluxes do so.

LH increase is a clear and common cause of surface cooling; however, LH is not
exclusively influenced by the water being evaporated at the interface between land and
the atmosphere above. LH is also subjected to other variables such as precipitation. Zeng
and Zhang [10] have determined that precipitation in the monsoon regions might partially
explain increasing trends in LH. This latter linkage is especially troubling considering that
many CMIP6-GCMS in South Asia are showing wet bias for several reasons, with the high
sensitivity of convective precipitation in these models being one of them. The direct link
between the LULCC signal and some poorly-resolved atmospheric processes in CMIP6-
GCMs weakens the reliability of understanding BGP effects in South Asia from these
models. Furthermore, convection processes are routinely parameterized in GCMs, making
the interpretation of land surface effects on cloud formation rather more complicated.
Nonetheless, deforested or degraded areas typically demonstrate a diminished Esurf and
LH, as crops and grasses are less efficient than trees in transferring energy to the atmosphere
combined with the increase in resistance of air to turbulent transport.

Concerning winter responses, the opposite sign of the regression coefficients observed
from Esurf, Esoil, Ecan, LH and LAI in comparison to the same variables in the other
seasons suggested that LULCC might weakly interact with the atmosphere above or be
shaped by atmospheric feedback and the background climate. Some of the causes which
explain the independence of the atmosphere from LULCC during the winter season are the
natural vegetation cycle and the atmospheric forces present during this season. Winter is
naturally outside of the main vegetation growing period, along with the lower incidence
of radiation, making albedo changes from vegetation changes less powerful [4] unless
snow-albedo processes are involved. Since snow cover is not present in the CMIP6-GCMs
in South Asia (not shown), the snow-albedo effect is excluded, and thus winter cooling
from it. The surface cooling observed in this season is likely a response to a decrease in
Qnet and Qa, and is partially strengthened by atmospheric feedback and the season’s
climatic background.

Ref. [6] related the decrease in TAS (0.2 to 0.4 ◦C) in South Asia to a large decrease
in LH, but only during spring and post-monsoon seasons, whereas our studies explored
the other monsoon seasons and found a similar proportion of TAS reduction as seen in
their study. Although [6] was based on single-model results and did not include transient
LU-changes, the model is fully coupled, which potentially influences the similarities in the
magnitude of TAS changes between their study and ours.

Admitting that only one model includes irrigation representation (CESM2), most
models simulate robust surface net cooling in the region. The robust surface net cooling
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is observed by other studies as well [40,45,46], although all have included, in some way,
irrigation in their modeling exercise. The distinction here is in the magnitude of the TAS
changes from the CMIP6-GCMs and the previous studies. Ref. [40] denoted a cooling
of 1–1.5 ◦C, especially over heavily irrigated areas in South Asia, whereas the range of
responses observed here was between 0.01–0.44 ◦C, including the single-model with a
representation of irrigation. Ref, [48] only detected surface net cooling over the northwest
portions of the South Asia region, whereas the rest of the region experienced surface net
warming. Puma and Cook [45] identified cooling ten times larger, over the northwest parts
of the Indian subcontinent, than the surface net cooling reported in this study.

Other studies [24,35,38] simulated an opposite sign of change in TAS to the ones
shown here. Ref. [40], when comparing the effect of LULCC with and without irrigation,
claimed that LULCC without irrigation induced warming. The responses between models
with irrigation representation and without it are not very different in our CMIP6-GCMs
analysis. Moreover, our results do not reveal great differences in cooling between CESM2
(the only model with irrigation representation) and the other CMIP6-GCMs as observed
in [48]. Surface cooling, in our case, was denoted by the combination of multiple effects
causing net cooling. Excepting [48], the studies above did not consider an interactive ocean,
or were the result of a single model analysis, or even indicated idealized land-use scenarios.
Therefore, those studies contradict the current results and open questions on whether
the distinct responses were caused by the high convective sensitivity of CMIP6-GCMs or
by omitting one or more of the three aspects already introduced. In addition, the coarse
resolution of CMIP6-GCMs complicated the appropriated representation of valley-scale
processes that influence the distribution of temperature and precipitation in the highly
topographical areas of South Asia, the Himalayan region.

Nonetheless, the CMIP6-GCMs analyses had one distinct advantage over most of the
previous studies, which went beyond the robustness of the results (multimodel analysis).
The CMIP6-GCMs were fully coupled models and accounted for potential atmospheric
feedback acting on top of the local responses.

4.2. PR Changes

The changes in the elements participating in the local hydrological cycle were the
main contributor to surface drying, due to LULCC, although these changes were not the
only cause. SM and PRconv were highly correlated with PR changes, yet the high R2

values were not fully able to explain variations in PR, leaving an open gap. One possible
contributor to PR changes, discussed in other studies [8,35,38,40–42], was the large-scale
change in temperature over the land surface, which could in principle have affected the
thermal sea-land contrast. Lower temperatures over land diminished the thermal contrast
between land and sea, eventually causing weaker winter or summer monsoon rainfall and
lesser PR in the respective seasons. The trend of TAS indicated that for the majority of the
models, temperature over land decreases (not shown). Despite the plausible relationship
between TAS and PR changes, the simple assessment of the mean changes in temperature
was not enough to conclude with certainty that land-sea thermal contrast was a cause of
surface drying. Moreover, how large would the magnitude of the LULCC have to be to
significantly impact the thermal forces is unknown. The results illustrated that there were
forces beyond the local moisture interactions simultaneously working on drying over South
Asia. Perhaps, the drying values presented here could have been even larger, in magnitude,
considering the wet biases and the poorly reproduced ocean coupling relationship seen by
most CMIP6-GCMs in South Asia.

The spatial pattern of influences corroborated with the local land-atmosphere moisture
and the oceanic moisture and high advective humidity transport with the reversal of winds
in summer. The summer and post-monsoon robust grid cells were located in areas highly
affected by the main monsoon precipitation regime, whereas the grid cells in the winter
season and the wet-agreement grid cells were further away or just at the edge of the core
monsoon areas. The spatial pattern of the dry-agreement robust grid cells supported the
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findings from [36] which demonstrated that in the south, western and southeastern parts
of India, regional precipitation recycling ratios were not strong during summer monsoon
but might slightly increase in the post-monsoon season. Ref. [42] concluded that changes
in land surface properties, such as an increase in moisture input through irrigation, were
particularly powerful in South Asia due to stronger soil moisture sensitivity in climatic
transition zones.

The post-monsoon season especially favored a high recycling ratio condition because
of the increased soil moisture (climatologically wet sea) and increased vegetation cover
(mature vegetation), leading to enhanced evapotranspiration. Besides, evapotranspiration
is not only influenced by soil moisture and vegetation cover but also by atmospheric
conditions. Therefore, in dry regime areas, where most wet-agreement grid cells are located,
it was reasonable to observe exacerbated evapotranspiration rates. To draw a parallel,
ref. [43] found a much larger increase in evapotranspiration rates in the Indian monsoon
belt during the dry season when additional soil moisture (irrigation) was applied. Even so,
wet agreement over a particularly dry area of Pakistan (Figure 9), around the Baluchistan
region, seemed rather unlikely for two reasons. First, the Normalized Difference Vegetation
Index (NDVI) trends in southwest Asia, according to [29], had somewhat decreased in
the recent past due to long-term vegetation degradation, especially in croplands and
shrublands. Second, the wet bias caused by, among other reasons, the high sensitivity to
convection processes, reduced the reliability of the results in an otherwise dry area by either
suggesting ambiguous effects or amplified ones. As seen in Figure 10, the percentage of
increase in PR over the wet-agreement areas was the largest.

The results from our research corroborate previous studies on surface drying in South
Asia due to LULCC [9,24,25,34,38,40–42,44–46]. Ref. [34] found a decrease in the Indian
region from past analysis of summer PR of about 47% and mainly attributed to local land-
atmosphere interactions. These results are much larger than the ones found here, on average
a 3.34% decrease in summer rainfall in the past analysis (1950–2014). Ref. [38] evidenced
an even larger reduction in PR of 60% during the post-monsoon season. Ref. [46] also
found a larger range of summer PR changes (around 1.5 mm/day) than our study (average
of 0.22 mm/day). Ref. [41] attributed a 7.4% decrease in early summer precipitation to
irrigation in the Indian subcontinent, which was the closest to our mean values (3.34%). The
differences in the magnitude of PR changes between the studies confirmed how difficult
it is to properly resolve processes involved in controlling rainfall in monsoon regions.
Nonetheless, the importance of the local land-atmospheric feedback in shaping rainfall in
these regions was supported by our study and previous ones. Our results did not allow
us to conclusively attribute the differences in rainfall changes to potential remote effects
via teleconnections or to the use of an interactive ocean. However, they suggest that those
aspects did have an impact on the final LULCC-induced effect on precipitation changes.

5. Conclusions

This paper aimed to identify the BGP effects of LULCC on the climate in South Asia.
The research identified the annual and seasonal mean changes in near-surface temperature
and total precipitation over the region by assessing 11 CMIP6-GCMs models. Even though
previous studies have already shown how irrigation and other LULCC could modulate
climate in the region, the current study highlighted the full range of the BGP effects from
LULCC by including requirements that were previously overlooked. The multimodel
analyses from CMIP6-GCMs showed that the LULCC promoted robust surface net cooling
and surface net drying in particular parts of South Asia at all seasons, and wetting in
Northwest Pakistan.

LH, Esurf, and Qa represented the dominant flux and variables to surface cooling by
driving changes in TAS. The PR decrease was a result primarily attributed to changes in the
local hydrological recycling processes but was also intimately connected to forces beyond
the local changes.
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Atmospheric feedback contribution to cooling was particularly stronger during winter
and spatially dominant during post-monsoon season. The findings from CMIP6-GCMs
were comparable in terms of PR and TAS changes between the single model with irrigation
representation (CESM2) and the other models without irrigation. This outcome might
reveal that, when summing all the BGP interactions, the net effect from other LULCC may
be masked by irrigation, atmospheric feedback, or even by the combination of both. There-
fore, more models with the representation of irrigation must be included for a definitive
assessment of full BGP effects when land management is part of the definition of land-use
and land-cover changes.

Our findings overall agreed with previous studies on the direction of change. However,
the magnitude of changes may differ from one to another due to various reasons. The
most probable of these are, on the one hand, the CMIP6-GCMs’ coarse resolution and
wet/cold biases, and on the other hand, the fact that previous studies have disregarded
the atmospheric feedback contribution, the interaction with the ocean component, the
interannual land-use transitions, and even the inclusion of land management into the
characterization of LULCC.

Nevertheless, there were still limitations to this study. The coarse nature of GCMs
prevented detailed information on specific land processes especially that linked to PRconv.
The mechanisms involved in complex topographical areas were not well-resolved in those
GCMs, hence further studies are necessary for these regions. A similar experimental setup
but with high resolution and systematic inclusion of irrigation would benefit in closing
some of the gaps from the CMIP6-GCMs. Knowing that high-resolution simulation runs are
usually too costly, an alternative was the use of satellite images to infer potential changes
in climate variables by comparing areas with similar background climates and contrasting
vegetation. Moreover, the analysis of model responses did not allow us to conclude on the
complete causes of the decrease in rainfall, particularly the summer precipitation. Even so,
the findings encompassed 11 different models and were calculated over a long temporal
scale (65 years), both increasing the robustness of a signal.

LULCC may alleviate warming in South Asia, but these changes could also enhance
eminent drying in the region. That could pose further dependency, in some areas, on
irrigation and continuous drying. Besides, LULCC affect other biophysical niches, beyond
the climate system, which can inflict additional constraints on sustainability. An increase in
irrigation, for example, may not only be necessary for the frame of food security policies
but may exaggerate water scarcity and water conflicts. A careful and complete examination
should be considered when planning and managing land and its potential in adaptation
plans for reducing climate-related vulnerabilities in South Asia.
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Appendix A

Table A1. CMIP6-GCMs model description.

No. CMIP6 Model
Name

Land Surface
Model

Country
Horizontal
Resolution

(Lon. by Lat.
in Degrees)

Reference
Land Use Representation Vegetation Structure

Irrigation Cropland Pasture LAI Vegetation
Distribution

1 ACCESS-ESM1-5
(ACCESS) CABLE 2.4 Australia 1.9◦ × 1.2◦ [66] no yes no prognostic prescribed

2 BCC-CSM2-MR
(BCC) BCC-AVIM 2.0 China 1.1◦ × 1.1◦ [67] no Not

included
Not

included prescribed prescribed

3 CanESM5
(CanESM5)

CLASS 3.6-
CTEM 1.2;
Physics—

CLASS 3.6
Biogeochemistr-

y—CTEM 1.2

Canada 2.8◦ × 2.8◦ [68] (Not
output)

Not
included

Not
included

Not
included prescribed

4 CESM2 CLM 5.0 USA 1.3◦ × 0.9◦ [69] yes yes no prognostic prescribed

5 CMCC-ESM2
(CMCC) CLM 4.5 Italy 1.3◦ × 0.9◦ Not

available no no no prognostic prescribed

6 CNRM-ESM2-1
(CNRM) ISBA-CTRIP France 1.4◦ × 1.4◦ [70] no yes no prognostic prescribed

7 GFDL-ESM4
(GFDL) GFDL-LM 4.1 USA 1.3◦ × 1◦ [71] no yes yes prognostic prescribed

8 IPSL-CM6A-LR
(IPSL) ORCHIDEE v2.0 France 2.5◦ × 1.3◦ [72] no yes no prognostic prescribed

9 MIROC-ES2L
(MIROC)

MATSIRO 6.0
+VISIT-e v1 Japan 2.8◦ × 2.8◦ [73,74] no yes yes prognostic prescribed

10 MPI-ESM1-2-LR
(MPI) JSBACH 3.2 Germany 1.9◦ × 1.9◦ [75] no yes yes prognostic Simulated

11 UKESM1-0-LL
(UKESM) JULES-ES-1.0 UK 1.9◦ × 1.3◦ [76] (Not

output) yes yes Not
included simulated

12 LUH2 (Land Use
forcing dataset)

GLM 2 (Global
Land-Use Model) - 0.25◦ × 0.25◦ [77] yes yes yes -

Table A2. List of fluxes and other variables from CMIP6-GCMs.

Variable Name CMIP6 Variable Code Unit Description

Near-surface air temperature tas
(TAS) Kelvin Near-surface air temperature usually at 2 m.

Precipitation flux pr
(PR) Kg m2-s−1 Precipitation flux including both liquid and solid

phases.

Convective precipitation flux prc (PRconv) Kg m2-s−1 Convective precipitation at surface. It includes both
liquid and solid phases.

Soil Moisture upper 10 cm mrsos (SM) kg m2
The mass of water in all phases in a thin surface
layer integrated over the uppermost 10 cm of the soil
layer.
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Table A2. Cont.

Variable Name CMIP6 Variable Code Unit Description

Total Soil Moisture mrso (SM10) kg m2 The mass per unit of area (summed over all soil
layers) of water in all phases.

Water Evaporation flux
from canopy evspsblveg (Esoil) Kg m2-s−1

The canopy evaporation and sublimation (if present
in the model). It may include dew formation as a
negative flux.

Water evapotranspiration flux evspsbl (Esurf) Kg m2-s−1
Evapotranspiration at the surface. The flux of water
into the atmosphere due to conversion of both liquid
and solid phases to vapor.

Water evaporation flux
from soil evspsblveg (Esoil) Kg m2-s−1 Water evaporation flux from soil including

sublimation.

Surface Upward latent
heat flux

hfls
(LH) W m2

Surface upward latent heat flux. Surface means the
lower boundary of the atmosphere and “upward”
indicates a vector component that is positive when
directed upward. The surface latent heat flux is the
exchange of heat between the surface and the air on
account of evaporation.

Surface upward sensible
heat flux

hfss
(SH) W m2

The surface sensible heat flux, also called turbulent
heat flux, is the exchange of heat between the
surface and the air by the motion of air.

Atmosphere mass content of
water vapor

prw
(WV) kg m2 Water vapor path vertically integrated through the

atmospheric column.

Leaf area index lai
(LAI) Unitless

A ratio obtained by dividing the total upper leaf
surface area of vegetation by the horizontal surface
area of the land on which it grows.

Surface downwelling
shortwave flux in air rsds W m2 Surface solar irradiance for UV calculations.

Surface upwelling
shortwave flux rsus W m2 Shortwave radiation from below.

Surface downwelling
longwave flux in air rlds W m2 Longwave radiation from above.

Surface upwelling
longwave flux in air rlus W m2 Longwave radiation from below.

Cloud area fraction clt
(Cc) %

Total cloud area fraction for the whole atmospheric
column, as seen from the surface or the top of the
atmosphere. It includes both large-scale and
convective clouds.
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