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Abstract: The efficient reactivity and mobility of dissolved organic matter (DOM) affect biogeochemi-
cal processes. As important components that link aboveground and belowground vertical systems
under the binary 3D structure of karst, fissures provide soil–water–nutrient leakage channels and
storage spaces. However, reports on DOM properties and drivers in fissured soil are extremely
rare. This study characterizes DOM in the fissured soil of different vegetation types under medium-
intensity rocky desertification conditions. Soil samples were characterized via ultraviolet (UV)–visible
absorption spectroscopy and fluorescence excitation–emission matrix–parallel factor analysis. Five
fluorescent fractions were identified. The controlling factors for the optical properties of soil DOM
were determined via the redundancy analysis method. Results showed the following: (1) Dissolved
organic C/soil organic C < 4.68 + 0.49‰, specific UV absorbance (SUVA)254 and SUVA260 exhibited
low overall performance with the vast majority of the humification index (HIX) < 4, most of the
fluorescence index (FI) ≥ 1.7, most of the biological index (BIX) in 0.6 < BIX < 1 and 31.67–41.67% of
protein-like fractions. These data indicate that cleaved soil, except for topsoil, has low DOM content,
weak aromaticity, and low humification; (2) Rainfall intensity, aperture, and near-surface vegetation
type are the major causes of DOM transport and loss; and (3) Most DOM losses are likely to be
protein-like and enhance the loss of soil P. In summary, environmental factors and the characteristics
of fissures determine DOM content and migration, particularly rainfall intensity and vegetation type.
The loss of lighter DOM components will be greater in an area with high karst desertification grade,
strong fissure development, weaker soil aromaticity, and lower humification. These results provide a
clearer basis for optimizing the fissure nutrient element migration scheme in karst areas.

Keywords: DOM; UV; fluorescence; migration; karst; fissure

1. Introduction

Amongst the 17 sustainable development projects set by the United Nations to be
achieved by 2030, 8 are related to the soil environment [1]. Soil plays a mediating and
critical role in ecosystems and human society [2] with extremely low production rates [3].
DOM is the most dynamic and effective component of soil organic matter (SOM), and
its strong reactivity and migration capacity play important roles in soil C cycling [4–6].
DOM can bind to soil particles to become part of the soil’s organic carbon (SOC) pool [7]; it
also promotes soil microbial activity, organic matter decomposition, nutrient transport and
transformation in soil, weathering of minerals, soil-forming processes, and contaminant
transport [8–13]. All these processes are related to DOM’s properties and the characteristics
of the environment.

DOM belongs to natural organic matter, accounting for about 97.1% [14]. It refers to C-
based organic compounds [15] in soil and water bodies that consist of a range of molecules
with different sizes and structures [16] that can pass through 0.1–0.7 µm filter membranes.
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DOM is widely present in soil, water, the atmosphere, and sediments [17,18]. Studies
have shown that DOM is a nonhomogeneous mixture of aliphatic and aromatic polymers
whose composition varies in time and space depending on the source and the exposure to
degradation processes [19–21]. In terrestrial environmental systems, most DOM in the soil is
derived from plants, exogenous organic matter, and microbial components [9,22,23]. Studies
have shown that the source of DOM determines its chemical properties and persistence in
soil [5,24]. Thus, the characteristics of DOM and its sources in soil are particularly critical
for determining DOM’s environmental impact.

As an important part of the Earth’s critical zone, the karst critical zone accounts for
12% of the total land area [25]. Amongst the karst critical zones, the epikarst is the product
of intense karstification of the surface in the karst area, it is the first karst development layer
below the surface, a transitional zone connecting the karst dual hydrological structure, the
main space for the storage and migration of surface soil and water, and an important factor
for controlling the development of karst geomorphology and eco-hydrological function [26].
In the context of karst desertification, the special binary three-dimensional spatial structure
of karst areas [27] forms a special erosion mode as subsurface leakage. Subsurface leakage
is the migration of surface soil to subsurface space through karst channels, such as disso-
lution fissures and waterfall holes, under the action of hydraulic transport and chemical
dissolution in karst areas [28]. This phenomenon is the primary means of soil erosion under
karst desertification conditions [29–31], making fissures an integral part of the vertical
system that links aboveground and belowground in key karst zones, becoming one of the
soil–water–nutrient loss channels and storage spaces. Water transport and nutrient trans-
port in fractures are of considerable interest. Studies have concluded that the size of soil
and water leakage along the pore (fissure) space depends on the development of the pore
(fissure) space and the connectivity of the lower part of the fissure [31]. The connectivity
of shallow karst fissures and soil differences exert a strong influence on the permeability
of the surface karst zone [32,33], and the presence of preferential flow in fissured soil
enhances nutrient loss [34]. Researchers [35] have conducted experiments under different
subsurface fissure degrees and rainfall intensities by simulating artificial rainfall, and they
have concluded that overall nutrient loss from sloping farmlands, such as N, P, and K, is
not significantly related to fractality; moreover, rainfall intensity is a key factor, indicating
that subsurface runoff is the primary nutrient loss mode on karst slopes [36]. DOM can be
used as a tracer for understanding the hydrological pathways of soil nutrient transport [37];
it fully participates in the C cycle and enhances soil nutrient transport to the surrounding
surface and groundwater environment [9,38,39]. In addition, subsurface migration and
loss of DOM pose a greater threat to environmental quality and can considerably affect
the transport and toxicity of organic and inorganic contaminants [40,41]. As reported in
Sun [42], high-molecular-weight polycyclic aromatic hydrocarbons (PAHs) are used as
carriers in soil seepage with DOM in the southwestern karst region, and PAHs continue
to dissolve into seepage water when water is transported vertically downward along the
profile, increasing the risk of groundwater contamination. By contrast, the surface of karst
areas is fragmented and heterogeneous, and the distribution and migration factors of DOM
in fractured soil are more variable. Therefore, the spectral information of chromophoric dis-
solved organic matter (CDOM) in DOM is used to reveal the characteristics and migration
factors of DOM in karst fractured soils and provide a theoretical basis for improving the
ecological environment of karst desertification.

We studied the content and spectral characteristics of DOM in typical fractured soils in
the desertification areas in South China Karst, obtained the spectral factors of DOM by using
ultraviolet–visible (UV–Vis) absorption and fluorescence spectroscopy, compared optical
indices, performed parallel factor analysis (PARAFAC) and three-dimensional fluorescence
excitation–emission matrices (3D-EEMs) to analyze the source and characteristics [43–47]
of DOM and explore its migration control factors. The objectives of this study were to:
(1) determine the distribution characteristics of DOM in fissured soils in karst areas; (2)
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identify the drivers of DOM in fissured soil; and (3) assess the environmental impact of
DOM transport in fissured soil.

2. Materials and Methods
2.1. Characteristics of the Study Area

In the mountainous plateau of Guizhou, which represents the general structure of the
karst ecosystem in southern China, the Zhenfeng–Huajiang karst desertification demon-
stration area was selected as the study area (105◦36′30”–105◦46′30” E, 25◦39′13”–25◦41′00”
N) [26,48]. The terrain is undulating, with an altitude of 600–1400 m. The study area
(Figure 1) is a subtropical dry–hot valley climate, with a mean annual precipitation of
1052 mm and a mean annual temperature of 18.4 ◦C. Lithology is mostly limestone, with
serious soil fragmentation, high rock exposure rate, and serious soil erosion, belonging
to medium-intensity karst desertification [49]. Vegetation is largely broad-leaved forests,
mixed coniferous forests, and shrubs. The primary vegetation has been severely damaged,
and secondary vegetation is dominant at present. For details of the study area, refer to [34].
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Figure 1. Locations of the study area and fissure soil sampling sites.

2.2. Sample Collection and Processing

The number of fissures, aperture, width, depth, dip angle, and near-surface vegetation
were recorded through a survey of fissures in the study area. The characteristics of fissure
development were clarified under varying topography and environment, and 3 typical
fissures, proximity, and similar development were selected from amongst 65 fissures
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(Table 1). Soil samples were collected in late August 2020 to remove loose soil, roots, and
branches from the fissured soil. The soil was planed away from the outer 15 cm of the
vertical profile and 1–2 cm away from the fissured rock wall. The ring knife was collected
laterally from the in situ soil to measure its physical properties. Soil samples of organic
matter to be measured are collected from 0–50 cm below the surface of the soil, once every
5 cm, and once every 10 cm after more than 50 cm. Sampling was performed at each layer,
and 3 parallel soil samples were mixed for a total of 90 samples. The collected soil samples
were stored in polyethylene (PE) self-sealing bags, transported back to the laboratory,
cooled, and underwent ventilation air-drying.

Table 1. Overview of sampling sites and fissure structure characteristic parameters in the study area.

Type Longitude and
Latitude Altitude (m) Depth

(cm)
Aperture

(cm)
Average

Width (cm)
Dip Angle

(◦) Near-Surface Vegetation

HJ-1 25◦39′23.70” N,
105◦39′23.70” E 739 290 42 37 82 Celtis sinensis and

Cipadessa baccifera

HJ-2 25◦39′24.56” N,
105◦39′23.82” E 739 190 31 25 87

Eriobotrya japonica and
Zanthoxylum
bungeanum

HJ-3 25◦39′26.42” N,
105◦39′23.96” E 739 285 39 32 80 Celtis sinensis and

Lonicera japonica

For details of the physical properties (e.g., volume weight and total porosity) and
mechanical composition of the soil, refer to [34]. The air-dried soil samples were ground
and passed through a 60-mesh sieve. Then, 5 g of soil passed through the 60-mesh sieve was
weighed, and 25 mL of ultra-pure water was added, shaken, and centrifuged to obtain the
supernatant. The supernatant was filtered through a 0.22 µm polyethersulfone membrane
(reducing the role of microbes on the DOM) to obtain the solution to be tested. Dissolved
organic carbon (DOC) concentrations were determined using a total organic carbon (TOC)
analyzer (multi N/C 3100, Analytik Jena, Jena, Germany). All dissolutions to be measured
were uniformly diluted to a DOC concentration of less than 10 mg·L−1 to ensure that
absorbance at ultraviolet 254 nm was less than 0.3, reducing the internal filtering effect
during fluorescence scanning [50]. The UV–Vis absorption spectra of the soil samples
were obtained using a UV–Vis spectrophotometer (SPECORD Plus 200, Analytik Jena,
Germany) with ultra-pure water as the blank set and scanning at 1 nm intervals from
200–800 nm. Fluorescence data from the soil samples were collected using a fluorescence
spectrophotometer (RF-5301PC, Shimadzu, Kyoto, Japan). The excitation wavelengths (Ex)
ranged from 220–500 nm at 5 nm intervals and the emission wavelengths (Em) ranged from
250–600 nm at 1 nm intervals, minus ultra-pure water as a control to eliminate scat-tering.
Additional information is found in Lawaetz and Stedmon [51] and He [44].

2.3. Optical Factor

As shown in Table 2 for the DOM optical indicators used in this study.

2.4. Statistical Analysis

The number of components, type, and fluorescence intensity of CDOM for 90 soil
samples were obtained by MATLAB 2020a (MathWorks Inc., Natick, MA, USA) and DOM-
Fluor 1.7 toolbox analysis. Data were counted using Office (2016 enhanced version) and
one-way ANOVA, significance analysis, and graphical plotting were carried out using
Origin 2021 (OriginLab Inc., Northampton, MA, USA). Relationships between spectral
parameters (Table 2), components, and influencing factors of DOM were analyzed using
Canoco5’s (Ithaca, NY, USA) redundancy analysis (RDA).
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Table 2. Definition and significance of DOM optical indices and parameters used in the present study.

DOM Quality Index Definition and Significance

SVUA254 and SUVA260 absorbance:
SUVA254/260 = a(λ)/c(DOC)

a(λ) is the UV–Vis absorbance at wavelength
254, 260 (mm) and r is the path-length of the
optical (0.01 m), c(DOC) is the concentration of
extractable DOM (mg·L−1) [52].

E2/E3: a(254)/a(365) or a(250)/a(365)
E2/E4: a(240)/a(420) or a(250)/a(436)

a(240, 250, 254, 365, 420, and 436) is the UV–Vis
absorbance at wavelength λ(mm). E2/E3 is an
indication of the degree of organic matter
humification, with low values indicating low
humification. E2/E4 indicates the source of
organic matter, with higher values being
endogenous and lower values being exogenous
[53,54].

Slope ratio: a(λ) = a(λ400)exp[S(λ400 − λ)] + K
SR = S(275–295)/S(350–400)

S(275–295) and S(350–400) are the spectral slope S
values in each range, respectively, and λ400 is
the reference wavelength [55–57].

Humification index:
HIX = (∑I435–480)/(∑I300–345)

Ex at 254 nm, the ratio of the integral values of
the fluorescence intensity of Em in the range
435–480 and 300–345 nm, reflects the degree of
humification of DOM. HIX < 4 belongs to
biological or aquatic bacterial sources, 4 < HIX
< 6 belong to weakly humified features and
important recent autotrophic sources [58,59].

Fluorescence index:
FI = Em(470/520)

Ex at 370 nm, the ratio of the fluorescence
intensity of Em at 470 and 520 nm reflects the
source of the DOM. Microbial activity is the
main source of DOM for 1.7 < FI < 2.0, and the
contribution of organisms is lower when 1.2 <
FI < 1.5 [60].

Biological index:
BIX = Em(380/430)

Ex at 310 nm, the ratio of fluorescence intensity
at 380 and 520 nm for Em. BIX value reflects the
ratio of albuminoid and biological components.
BIX value reflects the ratio of albuminoid and
biological components. Low biological fraction
(0.6 < BIX < 0.7), DOM of biological or aquatic
bacterial origin (BIX > 1) [59,61].

3. Results
3.1. DOM Overall Feature Parameters

As indicated in Table 3, the average SOC and DOC contents of fissured soil were
17.26 ± 2.7 g·kg−1 and 16.72 ± 8.50 mg·L−1, respectively, indicating that the average
contents of HJ-1 and HJ-3 were significantly lower than those of HJ-2. The trends of
specific UV absorbance (SUVA)254 and SUVA260 were consistent, and the aromatic and
hydrophobic components of DOM in each fissure did not vary considerably, with the
average maximum value at HJ-2. By contrast, E2/E3 and E2/E4 exhibited higher HJ-1
humification than the others and were more endogenous. SR characterizes molecular
weight size and aromatization [55], indicating that the average molecular weight and
aromatization of the three cleavages were similar, with HJ-1 being slightly higher than the
others. The average FI, HIX, and BIX of the three fissures were less different, with all three
fissures showing FI ≥ 1.9, 0.7 < HIX < 1, and BIX < 4, indicating that DOM was a strong
autogenous source feature.
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Table 3. Overall mean values of DOM characteristic parameters in fissured soils.

Type SOC (g·kg−1) DOC (mg·L−1) SUVA254 SUVA260 E2/E3 E2/E4 SR FI BIX HIX

HJ-1 14.85 ± 6.8 15.34 ± 10.39 0.33 ± 0.08 0.31 ± 0.08 5.08 ± 1.21 12.9 ± 2.62 1.06 ± 0.22 1.99 ± 0.40 0.82 ± 0.13 1.59 ± 0.68
HJ-2 19.35 ± 8.6 18.94 ± 6.92 0.37 ± 0.12 0.35 ± 0.11 4.25 ± 1.09 11.51 ± 1.99 0.90 ± 0.16 2.03 ± 0.36 0.77 ± 0.12 1.63 ± 0.74
HJ-3 17.57 ± 8.2 16.50 ± 6.97 0.34 ± 0.07 0.32 ± 0.07 4.38 ± 0.60 12.06 ± 1.89 0.96 ± 0.08 2.03 ± 0.21 0.77 ± 0.15 1.56 ± 0.60

Mean 17.26 ± 2.7 16.72 ± 8.50 0.34 ± 0.09 0.33 ± 0.09 4.62 ± 1.07 12.23 ± 2.28 0.98 ± 0.18 2.02 ± 0.33 0.79 ± 0.14 1.59 ± 0.67

Note: The unit for SUVA254 and SUVA260 is L·mg C−1·m−1. Values are presented as mean ± SD.

3.2. Characteristics of DOC Content and Optical Factors of DOM in Fissured Soils

The DOC content of the upper layer fluctuated significantly, whilst that of the lower
layer gradually decreased and stabilized (Figure 2b). However, the variation of SUVA254
and SUVA260 in HJ-1 and HJ-2 (Figure 2c,d) exhibited significant fluctuations at 35–40 cm
and 50–60 cm, respectively, indicating that the aromaticity, humification, and hydrophobic
components of soil in this layer were stronger than those of the surrounding (in response to
the SR value of this layer in Figure 3a), and the middle and lower layers were more stable.
HJ-3 demonstrated a strong response to the trend of its DOM, whilst the responses of HJ-1
and HJ-2 were poorer. The SR values of HJ-1 and HJ-2 were more different than that of HJ-3
in shallow and deep soils, whilst both tended to be relatively stable and more aromatic
with the higher molecular weight of DOM in the middle layer. The variations of E2/E3 and
E2/E4 (Figure 3b,c) were more consistent, but more differences were found in deep soil,
indicating that the bottom DOM of HJ-1 and HJ-2 was less humified and more endogenous.
HIX < 4 (Figure 4a) constitutes the vast majority, and the vast majority of the lower and
middle DOM are of biogenic origin (endogenous and low humification). BIX is higher
within the range of 0.7–1 (Figure 4b), indicating an extremely low authigenic source of
DOM in the surface layer, and the middle and lower layers belong to the medium-intensity
authigenic feature. FI ≥ 1.9 was the majority (Figure 4c), indicating that DOM was mostly
of microbial origin with minimal influence from terrestrial sources (FI < 1.4).
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3.3. Component Differences of DOM

Five fluorescent fractions (Figure A2) were derived for DOM in all three fissured
soil samples through the EEMs–PARAFAC method. The maximum wavelengths of their
fluorescence peaks were identified (Table 4), yielding C1, C2, and C5 as humic acid-like, and
C3 and C4 as protein-like. Selection and comparison revealed that C1 and C5 were similar
to the traditional fulvic acid A peaks (Ex: 237–260/275; Em: 400–500/<500 nm) [62,63].
C2 was identified as the traditional humic-like M peak (Ex: 290–325; Em: 370–430) [62,64].
C3 and C4 are similar to protein-like peaks (Ex: <240/275; Em: 330–368/340) [64], and
C3, C4, and C5 are more evidently redshifted, implying an increase in molecular weight.
As shown in Figure 5, all three clefts exhibit greater humic-like than protein-like peaks,
with the largest proportion of the C1 component and the smallest proportion of the C5
component. The fluorescence intensity of all the peaks of HJ-2 is stronger than those of
the others.

Table 4. Types of DOM fluorescent fractions in fissured soil.

Type Maximum
Wavelength HJ-1 HJ-2 HJ-3 Description of the Source

C1
Exmax 255 255 255

A peak, terrestrial humic [62]. High molecular weight and
aromatic humus, widely distributed, highest in wetland and

forest environments [65].Emmax 461 471 452

C2
Exmax 305 305 305 M peak, marine humic [64], Low molecular weight, similar in

marine, wastewater, wetlands, and farmland [63,66].Emmax 415 428 403

C3
Exmax 255 245 250 T peak, protein-like peaks, and microbial by-product-like

substances are related [64,67,68].Emmax 369 366 369

C4
Exmax 280 285 280

B peak, protein-like Complexine [64], leachate production
mainly by microorganisms, phytoplankton, and higher plants

[20,63].Emmax 336 334 328

C5 Exmax 290 290 285
A and C peak, terrestrial humus [63].
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Figure 5. Intensity (a) and percentage (b) of fluorescence 5 components of DOM in fissured soils.
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3.4. Factors That Affect DOM Migration

To highlight the effect of each factor on DOM migration in fissured soil, Conoco’s
RDA and Pearson correlation coefficients were calculated amongst parameters of interest.
Environmental factors included near-surface vegetation (NSV), fracture width (FW), frac-
ture dip angle (DA), depth (De), and aperture (Ape). Soil environmental factors were pH,
volumetric weight (VW), total porosity (TPs), and electrical conductivity (EC). Soil quality
factors were total P (TP), total N (TN), SOC isotope (Is), and DOC/SOC. As a soil quality
standard, DOC/SOC measures the total variability of soil C pools in karst systems [69]. A
conclusion could be drawn from Figure 6 that environmental factors exerted a significant
effect on DOM characteristics in fissured soil, particularly De, NSV, and Ape. pH had
minimal effect, whilst a significant correlation was observed between nutrient elements
(TP, TN, and Is) and DOM characteristic indicators. SUVA254 was positively correlated
with the aromaticity and hydrophobicity of DOM [4,70], whilst SUVA260 was positively
correlated with the concentration of hydrophobic components of DOM [71]. SUVA254,
SUVA260, and DOC were highly correlated with all five components (Figure 6a), allowing
better characterization of DOM. De was significantly and negatively correlated with the
five components (Figure 6a). NSV significantly affected the protein-like and low-humic
fractions of DOM with a positive correlation (p≤ 0.05) and a significant negative correlation
with E2/E3 (p ≤ 0.01) and SR (p ≤ 0.05). As shown in Figure 7, RDA in Axis 1 was 80.9%
and in Axis 2 was 11.31%.
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4. Discussion
4.1. Characterization of SOC and DOM Content in Fissured Soil

DOM, as the most active part of SOM, is the major energy substrate of soil and it
exerts an important effect on the organic C pool [72]. The shallow SOC and DOC contents
of fissured soil in the study area (Figure 2a,b) were generally consistent with those of
other studies of the same type [73,74], although SOC was significantly higher in the study
area than in non-karst areas [47,75,76], whilst DOC was significantly lower in the study
area than in non-karst areas [77]. With deeper depth, SOC and DOC contents gradually
decreased and stabilized [78,79]. Therefore, a large amount of SOC storage is found in the
study area, but the special binary 3D structure of the karst region has large DOM mobility
and low storage capacity.

A significant correlation (Figure 6, p < 0.001) and a linear relationship (Figure 8) was
observed between C3, C4, and C1, C2, C5, and the linear relationship between C1, C2,
and C5 (R1

2 = 0.85, R2
2 = 0.76) was significantly stronger than that between C3, C4, and
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C5 (R3
2 = 0.38, R4

2 = 0.32). This finding suggests a transformative relationship between
the DOM components of fissured soil. Proteins in soil organic matter are easily broken
down by microorganisms into monomers, which, in turn, collect in the soil to form humus
through microbial activity [80]. Therefore, C3 and C4 may be converted into C2 (medium
molecular weight, Table 4) and then into C1 and C5 (larger molecular weight, more stable),
because soil microorganisms preferentially utilize unstable components (e.g., tryptophan
and tyrosine); when the content of unstable components (C3 and C4) is low, microorganisms
may utilize the more stable C1, C2, and C5 [81]. The average protein content of fissured
soil in the study area was 36.78% ± 0.05% (Figure 6), which was 115–143% higher than that
of the surface layer of agricultural soil in Gao [77], including Heilongjiang, Jilin, Liaoning,
Shaanxi, Shanxi, Hebei, Tianjin, Henan, Shandong, Chongqing, Hunan, Anhui, Jiangsu,
Jiangxi, Gansu, Xinjiang, Inner Mongolia, and Yunnan Province. This finding indicates
that amino acids or degraded peptides are more abundant in the fissured soil DOM in the
study area, which may be attributed to humus in a subtropical environment contributing
to the enrichment of protein substances [82]. Thus, the decomposition rate of protein-like
substances or the content of incompletely degraded peptides was relatively high in the
fissured soil of the study area [77].
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As shown in Figures 4 and A1, the surface soil exhibits a low authigenic phenomenon
via external influence, whilst the middle and lower soil DOM are overwhelming from
authigenic or microbial sources with a low degree of humification [58]. The higher content
of DOM-like proteins in fissured soil is due to the higher material circulation capacity and
reduced conversion of protein-like substances into humus during the rainy season. The
low DOM content of karst areas reduces microbial activity [23], slows down the effective
utilization of protein-like substances, and weakens the mineralization and utilization of
low-molecular-weight organic matter [47] by the soil, making losing these nutrients through
fissures easier.

4.2. Drivers That Influence Changes in DOM Components in Fissured Soil

In the study area, the DOM of fissured soils is likely to be strongly influenced by
environmental and vegetation factors. The overview of the study area noted that its
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average annual rainfall is 1052 mm, which will seriously affect the distribution of DOM [83].
Rainfall intensity affects the migration of DOM in fissured soils. A previous study [34]
showed that DOC distribution in fissured soil in the study area was significantly influenced
by hydrological transport: (1) The performance of δD and δ18O enrichment in the study area
indicates that rainfall to soil water undergoes the transport process of rainfall→ penetrating
rainfall→ rock wall flow→ apoplastic material→ soil water when rainfall intensity is
moderate (24 h rainfall: 10.0–24.9 mm). In excess of 35 mm rainfall (heavy rainfall), only
the lower and middle layers of fissured soil will respond; and (2) Changes occur in DOC
before the rainy season (January–May) and after the rainy season (June–September) with
an average reduction rate of 21.14%. As important water-conducting channels in karst
areas, fissures provide the link between atmospheric precipitation, surface water, soil water,
and surface and underground rivers, playing an important role in water transport in karst
areas [84]. It can lead to aggravated DOM loss.

Through previous studies [49] and field surveys [34,85,86], the study area is heavily
karst desertification and is of medium intensity (up to 70% rock exposure). This is not
conducive to DOM accumulation. The higher the rate of rock exposure, the more easily
soil is washed away; this condition is not conducive to the accumulation of aromatic
and hydrophobic substances in soil [86]. Although exposed rocks will enrich the water
and nutrients of nearby soil, excessive water input during heavy rainfall leads to severe
erosion and soil seepage, reducing the bearing capacity of soil [87]. As the degree of
fissure opening, the Ape directly influences the infiltration and transport of soil water and
nutrients, affecting the accumulation rate of the soil, gravel, and other fillers. This explains
the greater loss of the lighter components of its DOM as the Ape increases (Figure 6).

In accordance with Figure 6, NSV significantly affected the C2, C3, and C4 fractions of
DOM. This result related to the physiological and biochemical effects of vegetation roots
and soil microbial activity, because the intervention of vegetation significantly promotes
fast-acting nutrients in the cleaved area, making the fast-acting nutrient content of the soil
in the cleaved area significantly higher than that in the non-cleaved area [88]. Consequently,
the percentage of protein-like substances in the DOM of cleaved soil in the study area was
higher. Vegetation within fissures changed from herbaceous to tree; hence, differences in
their soil nutrient status were found. Organic matter tended to increase and gradually
decreased significantly with an increase in soil depth. The organic matter and TN content
of the soil surface layer were significantly higher than those of the lower layer [89]. The
differences in DOM characteristics [90,91] were caused by differences in organic matter
input and root secretions from different plant sources. The reasons for the differences in the
DOM fraction content of cleaved soil caused by different overlying plants were explained.

4.3. Indicative Significance of DOM Distribution in Fractured Soil

The migration of the DOM has caused a change in the environment. A correlation
exists between DOC and various nutrients, such as N, P, and K in soil (Figure 6), particularly
P. DOC increases the mobility of P to occur as Ca–Mg–P rather than as the more insoluble
hydroxyapatite [92]. DOC can increase the use of P by plants (crops), and the increased
mobility of P makes leaching easier [88]. The higher Ca2+ and Mg2+ contents in karst areas
enhance the mobility of P more easily, possibly increasing damage to surface water and
groundwater.

Soil properties can alter the extent of DOM loss. Numerous studies [93,94] have shown
that conductivity can determine the concentration of nutrients, salt-based ions, and other
solutes in soil, along with the content and migration processes of solutes. Soil EC in the
study area was significantly higher during the rainy season than during the non-rainy
season [34]. VW was significantly higher in deeper soil than in the surface layer, and soil
porosity decreased with depth (Figure 6), which might be the result of rainfall migrating
water-carrying nutrients and other salt-based ions from fissured soil. This finding is also
in line with the fact that low bulk weight, high porosity, and sand and powder content
improve the permeability of the soil and facilitate soil water transport [34]. If fissure flow is



Land 2023, 12, 887 13 of 19

present in the soil, it can increase the loss of soluble nutrients in the soil [37]. In addition,
the irregularity of rocks in karst areas causes differentiation in the infiltration of rainfall at
different rock–soil interfaces [95], resulting in inconsistent nutrient migration and degree of
loss in different fissures; this finding is related to soil properties and water transport effects.

In summary, DOM plays an important role in the soil–water system as a major source
of C and nutrients [96,97]. The risk of loss of fissured soil DOM is greater in the study
area. This finding is largely related to rainfall intensity, near-surface plant type, degree of
fissure development, and soil condition. Research on the effects of vegetation types and soil
microorganisms on DOM should be deepened, and more DOM characteristics in fissured
soils of karst areas should be analyzed to improve the karst desertification environment. The
transport distribution of DOM not only exerts an important effect on the C cycle but also on the
transport of nutrients. The biogeochemical cycling and transport of DOM with heavy metals
and persistent organic pollutants cannot be disregarded [98–102]. Considering that fissures are
amongst the leakage channels and storage spaces of soil–water–nutrients in karst areas, DOM
should be the focus of research.

5. Conclusions

The source, distribution, and influencing factors of DOM in karstic fissured soils were
obtained in this study, leading to three conclusions: (1) The DOM of the fissured soils in
the study area, with the exception of the surface layer, which is subject to higher values
of external environmental influences, has a lower DOM content of the middle and lower
layers, and is less aromatic and less humified than the surface layer; (2) Rainfall intensity
in karst areas severely controls the distribution and loss of DOM in rift soil. Under the
synergistic influences of higher rock exposure rates and NSV, more protein-like fractions
may be preferentially lost. In addition, fissure morphology and soil properties affect DOM
loss to some extent; and (3) DOM loss in fissured soil not only affects soil nutrient loss but
also increases soil P mobility, particularly in karst areas.

Therefore, areas with high karst desertification intensity, strong fissure development,
weak aromaticity, and low humification of DOM in fissured soil, along with the preferential
loss of low-molecular-weight components of DOM and the downward migration of other
nutrients and solutes, severely affect soil quality and water ecosystems, providing a basis for
understanding the optical properties of DOM in karstic fissured soil and influencing factors.
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