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Abstract: Natural vegetation on both sides of the Tarim River Basin (TRB) is the only barrier—a
critical ecological niche—between the economic belt in the artificial oasis and the Taklimakan Desert.
To understand the impact of human activities on the TRB, we explored the spatial and temporal
variations in land use/land cover change (LUCC) and landscape pattern evolution from 2000 to
2020. These variations were simulated for 2030 with the 20 years of data using the cellular automata–
Markov model and geographical information system analyses. The results predicted substantial
LUCCs in the lower reaches of the Tarim River (TRlr), with 3400 km2 (20.29%) of the total area
(16,760.94 km2) undergoing changes. Wetland, artificial land, grassland, farmland, and forestland
areas increased by 578.59, 43.90, 339.90, 201.62, and 536.11 km2, respectively, during the period from
2020 to 2030. The only decreases were in the Gobi/other deserts and bare soils (1700.13 km2). We also
determined current and future changes in TRlr landscape pattern indices at the class and landscape
levels. Combined with a field survey and hydrological data, theoretical support for effective land
use management strategies is provided. The findings offer a scientific basis for future ecological
civilization construction and sustainable development in the TRB.

Keywords: land use/land cover change; landscape pattern index; predictive analysis; human–land
relationship; Tarim River

1. Introduction

The Tarim River Basin (TRB) is in the resource-dense area of southern Xinjiang Uygur
Autonomous Region, China. It is an important strategic channel that directly connects
Qinghai and Xinjiang and was an important stop along the ancient Silk Road [1,2]. The TRB
plays a vital role in fostering economic development and expansion throughout Central and
South Asia while also serving as a strategic energy and resource reserve base for China’s
continued progress [2]. Accordingly, ensuring the ecological health of forestland along the
corridor represents the foundation for maintaining the regional ecological security of the
river and ensuring the sustainable development of the oases [3].

Exacerbation of resource limitations, pollution, and ecological deterioration poses
a direct threat to the sustainability of local economies, societal structures, and environ-
mental security. Therefore, it is imperative to devise strategies aimed at ameliorating the
vulnerability of the TRB environment [4,5]. In 2000, to restore and protect the downstream
environment, the Chinese government implemented a comprehensive management sys-
tem for the TRB [6,7]. To strengthen the management and maintenance of ecologically
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fragile areas, it is important to scientifically assess, predict, and maintain their ecological
security [1,3].

Land use/land cover changes (LUCCs) directly reflect the human activities that are
carried out within natural environments [8,9]. Notably, land use characteristics display
significant spatiotemporal characteristics, and time-series data obtained through remote
sensing can provide a foundation for information acquisition and the prediction of future
developmental trends [10,11]. The rapid development of landscape ecology fields related to
LUCC research arose from the integration of modern disciplines, leading to the widespread
application of landscape indices capable of quantitatively analyzing and describing LUCC
patterns [12,13].

Advancements in remote sensing technology have prompted numerous researchers
to propose a range of techniques for monitoring LUCCs and landscape patterns. For in-
stance, El-Tantawi et al. [14] monitored the LUCCs in the western TRB during the period
from 1990 to 2030 using an artificial neural network (ANN). Das et al. [15] evaluated the
spatiotemporal characteristics of ecosystem health in the Kolkata Metropolitan Area by uti-
lizing the normalized difference vegetation index (NDVI), landscape matrices, and LUCC
data from 2000 to 2019. Zhang et al. [16] used the optimal parameter geographic detector
(OPGD) model to quantitatively analyze a range of environmental indicators, including
the NDVI, wetness (WET), normalized differential build-up and bare soil index (NDBSI),
and land surface temperature (LST). They then integrated these indicators to construct
a comprehensive index for evaluating the ecological environment. Siddik et al. [17] ana-
lyzed the relationship between LUCC alterations and groundwater recharge fluctuations in
north-western Bangladesh by assessing the differences between wet and dry seasons and
evaluating the temporal modifications in the period from 2006 to 2016. Li and Geng [18]
used three-phase remote sensing image data of 2000, 2010, and 2020 to investigate the
spatially positive correlations between the spatial aggregation effect and spatial and tem-
poral changes in land use in the Guizhou Plateau Karst Watershed. Furthermore, Mu and
Shen [19] conducted a dynamic assessment of landscape ecological risk within the TRB,
revealing an optimized ecological spatial structure of arid inland rivers, which included the
construction of a multicenter landscape ecological security pattern for the watershed. More-
over, Song et al. [20] analyzed the evolution characteristics of landscape patterns in Wuhan
wetlands using remote sensing image interpretation data spanning from 2000 to 2020 and
computing their landscape pattern index. In addition to these studies, research activities
related to prediction and simulation have been carried out. Hou et al. [21] explored the
contribution of the transition between different land types to the ecological environment
based on LUCCs in the TRB during the period from 1990 to 2019 and those predicted in the
next 10 years.

The above studies provide significant references for the study of landscapes and
ecological security, including studies on LUCCs, the NDVI, the landscape pattern index,
and some comprehensive indicators. However, previous studies have mainly focused on
LUCCs, landscape ecology, or both, but have lacked comprehensive quantitative analysis
and visualization of the dynamic evaluation of LUCC trends and landscape pattern changes,
as well as predictive simulations at different spatial and temporal scales.

The present study used the theory of landscape ecology, remote sensing information
processing, the CA–Markov model, GIS, and geostatistical methods to investigate the lower
reaches of the Tarim River. We aimed to: (i) obtain the LUCC classification diagrams of the
lower reaches of the Tarim River (TRlr) using Landsat satellite imagery from 2000, 2010,
and 2020, along with a digital elevation model (DEM), slope, buffer zone, and similar data,
which were used to simulate the 2030 land use data based on the cellular automata–Markov
(CA–Markov) model; (ii) assess the current and future changes in the overall regional
LUCC; and (iii) examine the spatiotemporal trends of landscape pattern changes in the
TRlr during the period from 2000 to 2030. Combined with a field survey and hydrological
data, the findings provide an in-depth understanding of the human–land relationship and
ecological trends under societal influence, theoretical support for formulating effective
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ecological land use management strategies, and evaluation techniques and methods for the
sustainable development of the TRB.

2. Study Area

The Tarim River mainstream forms in Xiaojiake at the confluence of the Akesu, Yarkant,
and Hotan Rivers and empties into Taitema Lake. It has a total length of 1,321 km, which
can be divided into the upper, middle, and lower reaches [22]. The ecological environment
of this region is extremely fragile [6,23], with an average annual precipitation of only
~51.2 mm and an evaporation demand of 2300–3000 mm. The local water resources include
melt water, forest precipitation, and bedrock fissure waters in the high, middle, and low
mountainous areas, respectively. However, the water supplies to the Tarim River generated
by the latter two are weak because of its location deep within the continent (far from the
ocean) surrounded by high mountains. Accordingly, snowmelt from the surrounding
alpine glaciers is the main water source, which generates near-zero flow after it exits
the mountains.

The study area is a dry-flow area in the TRlr located within an altitude range of
801.50–846.25 m, with the Taitema Lake area representing the lowest point (801.50 m). The
length of the TRlr (Qara to Taitema Lake) is 428 km (Figure 1). Ecological problems in
this region are becoming prominent owing to extended periods of river drying. Land
use problems also manifest as expanding artificial oases in the middle and upper reaches
and shrinking natural oases in the lower reaches. Further issues related to deforestation
and abandoned farmlands are present in the upper and lower reaches, respectively [6,7].
Moreover, large amounts of water have been diverted to the irrigation areas of the oases
in the upper and middle reaches, resulting in an uneven distribution of water resources,
rising groundwater levels, and secondary salinization in the region [24–26]. Intermittent
ecological water transfers were implemented in 2000 to restore the ecological conditions of
the TRlr, which altered the ecology and environment of the dry-flow areas and resulted in
corresponding changes in the LUCC and landscape pattern characteristics [27,28].
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Figure 1. Schematic overview of the study area and the location of the studied landscapes of: (a) 
other land; (b) grassland; (c) farmland; (d) wetland; (e) forestland; (f) wetland; (g) artificial land; (h) 
grassland and wetland; (i) artificial land and wetland; (j) grassland and forestland in the lower 
reaches of the Tarim River (TRlr). 

3. Materials and Methods 
3.1. Data Sources 

The collection of remote sensing imagery data for this study centered on the TRlr, 
including Taitema Lake. A digital elevation model (DEM) of the study area was acquired 
from the geospatial data cloud (https://www.gscloud.cn) (accessed on 10 November 2021) 
at a 30 m spatial resolution. The slope data were extracted in ArcGIS 10.2, and soil, water 
source, vegetation type, road, and protected area zone data were provided by the depart-
ments of the TRB overseeing the respective basin areas. TRlr satellite imagery for 2000, 
2010, and 2020 were obtained from Landsat Thematic Mapper (TM), Landsat Enhanced 
Thematic Mapper Plus (ETM+), and Operational Land Imager (OLI) data, which maintain 
a 30 m resolution. Subsequently, land use types in the study area were categorized with 

Figure 1. Schematic overview of the study area and the location of the studied landscapes of:
(a) other land; (b) grassland; (c) farmland; (d) wetland; (e) forestland; (f) wetland; (g) artificial land;
(h) grassland and wetland; (i) artificial land and wetland; (j) grassland and forestland in the lower
reaches of the Tarim River (TRlr).

3. Materials and Methods
3.1. Data Sources

The collection of remote sensing imagery data for this study centered on the TRlr,
including Taitema Lake. A digital elevation model (DEM) of the study area was acquired
from the geospatial data cloud (https://www.gscloud.cn) (accessed on 10 November 2021)
at a 30 m spatial resolution. The slope data were extracted in ArcGIS 10.2, and soil, water
source, vegetation type, road, and protected area zone data were provided by the depart-
ments of the TRB overseeing the respective basin areas. TRlr satellite imagery for 2000,
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2010, and 2020 were obtained from Landsat Thematic Mapper (TM), Landsat Enhanced
Thematic Mapper Plus (ETM+), and Operational Land Imager (OLI) data, which maintain
a 30 m resolution. Subsequently, land use types in the study area were categorized with the
support of ENVI.5.3 and ArcGIS, and characteristics of land resources and requirements
were extracted according to existing land use classification principles for accuracy analyses.
Six level-1 land use units were derived, namely grassland, forestland, wetland, farmland,
artificial land, and other land.

The 2000 and 2010 Landsat images were corrected geometrically using the quadratic
polynomial in the image-to-image registration method, with the 2020 images as the base.
The main ground control points (GCPs) were roads, river intersections, building boundaries,
and isolated vegetation points far from roads. At a minimum, 30 evenly distributed
GCPs per plot were used, with the density of the GCP distributions increasing along the
riverbanks. To meet the accuracy requirements when preparing the images, the residual
error was ensured to be within one pixel during registration.

Nine remote sensing images were inlaid to facilitate the preparation of analysis im-
agery. One image occupying the largest proportion of the study area with a good data
quality was selected as the reference image during the inlay process, whereby the colors
of the remaining images were normalized based on this reference image. Subsequently,
the FLAASH (Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes) module in
ENVI was used for atmospheric corrections between two images.

3.2. CA–Markov Model Construction

A cellular automaton (CA) represents a network dynamics model comprising cells
with various spatiotemporal characteristics and domains dependent on intra-cellular and
neighborhood interactions [21,29]. Notably, this model can simulate the spatiotemporal
evolution of complex systems. Comparatively, the Markov model is based on the Markov
stochastic process and describes the changing characteristics of an event over a particular
period. This information is used as the basis to predict the future development trends of
an event. Here, the LUCCs of the study area were simulated using ArcGIS, and the CA–
Markov module was implemented in IDRISI v.-17.0. The accuracy of the 2020 simulation
model was tested prior to simulating the TRlr 2030 LUCC imagery using the processes
described below (Figure 2).
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• Step 1—Data preparation. Land use data mosaicking and clipping, as well as coor-
dinate system and resolution adjustments, were carried out in ArcGIS. Before the
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2000–2010 LUCC images were imported, all raster data were converted into a format
recognizable by IDRISI. These image files, combined with the DEM, slope, and other
data, were converted to ASCII format for reclassification.

• Step 2—Obtaining the transition matrix. CA land use simulations are advantageous
for generating transition potential diagrams that consider spatial structures and neigh-
borhood status. Markov chain analyses can provide a matrix for LUCC transition
zones based on temporal variations. The 2000–2010 transition matrix and conversion
probability of land use types were obtained using the Markov module considering the
base year land use data, in addition to setting the error parameters and interval years.

• Step 3—Constructing a suitability atlas. The transition matrix and conversion proba-
bility of land use types were applied as computational rules in the CA–Markov model.
The suitability of various land use types during the evolutionary process and the
effects between cell neighborhoods were comprehensively considered. Artificial land
and wetland were set as restricted land use types. Buffer zones of various distances (50,
100, 200, and 500 m) were designated as influencing factors along wetland peripheries.
The overall purpose was to conduct an in-depth analysis of land use variation impacts
within the buffer zones based on model predictions. Lastly, the adaptive images of the
various land use types were compiled into an atlas.

• Step 4—CA filter and number of cycles. The number of CA cycles in the model was
set to 10 using the CA–Markov module. Subsequently, a 5 × 5 m neighborhood filter
was used to predict the land use status in 2020.

• Step 5—Model accuracy. The CROSSTAB tool in IDRISI was used to calculate the
kappa coefficient (0.83). Because the kappa coefficient was >0.75, the simulation results
could be regarded as highly consistent with the ground truth data, and thus to have
good reliability.

The above steps were repeated using the 2010–2020 data. Subsequently, the same number
of cycles and neighbourhood filters were set to simulate the predicted 2030 LUCC diagrams.

3.3. Landscape Pattern Index

The landscape pattern index quantitatively expresses the changing characteristics of
the landscape pattern while reflecting landscape fragmentation, proximity, diversity, and
convergence [30–32]. ArcMap was used to convert the vector map of land uses into a raster
layer with a precision level of 30 × 30 m before the latter was input into FRAGSTATS v.4.2.
Nine landscape indices were then selected to accurately reflect the situation of the TRlr
and according to the research needs, namely number of patches (NP), patch density (PD),
and mean patch size (AREA_MN) at the type level, and Shannon diversity index (SHDI),
Shannon evenness index (SHEI), largest patch index (LPI), landscape shape index (LSI),
landscape division index (DIVISION), and landscape contagion index (CONTAG) at the
landscape level. All landscape pattern indices and their ecological significances are shown
in Table 1.

Table 1. Landscape pattern indices and their ecological significance.

Index Type Index Name Abbreviation Level Ecological Significance

Area index
Mean patch size AREA_MN C/L Degree of contagion or division of each patch

type in the landscape

Largest patch index
(proportion of overall patch) LPI C/L Dominant landscape type and level of human

disturbance

Vergence index

Patch density PD C/L Degree of contagion and division within a
particular landscape type

Number of patches NP C/L Complexity of the landscape spatial structure

Landscape contagion index CONTAG L Contagion and division tendencies of different
patch types in the landscape

Landscape division index DIVISION C/L Distance between patches
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Table 1. Cont.

Index Type Index Name Abbreviation Level Ecological Significance

Shape index Landscape shape
index LSI C/L Migration characteristics of species and energy

flow in landscape pattern

Diversity index
Shannon diversity index SHDI L Abundance of landscape

Shannon evenness index SHEI L Proportion of landscape affected by the
dominant patch type

Notes: C = class level; L = landscape level.

4. Results
4.1. Simulations and Predictions of TRlr LUCCs
4.1.1. Predicted 2030 LUCC Diagram for TRlr

The model predicted the changes in the TRlr landscape patterns in 2030 (Figure 3)
and showed that other land (unused) would become the predominant land use type in
the region, with an area of 7548.56 km2 (accounting for 45.04% of the total area). Forests
were predicted to represent the second largest land use type and were distributed widely
across all reaches of the Tarim River, accounting for ~33.53% (5619.50 km2) of the total
area. Wetland was the third largest predicted land use type, predominantly comprising
rivers, reservoirs, and lakes, and covering an area of 1358.34 km2 (accounting for 8.10%
of the total area). Notably, the wetland area in the TRlr was predicted to increase in 2030.
Farmland and grassland were the next largest in size, covering areas of 1066.88 km2 (6.37%)
and 1038.21 km2 (6.19%), respectively. Farmland, in both planar and banded forms, was
distributed primarily in the upper and lower reaches, whereas grassland was concentrated
in the lower reaches. Artificial land was dominated by mines and construction land,
covering a total area of 129.45 km2 (0.77%) scattered in the middle and lower reaches,
indicating that the predicted artificial land area increased more than in the years of 2000,
2010 and 2020.
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4.1.2. Analysis of Predicted Land Use Trends

The TRlr LUCC transition matrixes for 2020 and 2030 were calculated for further
analysis (Table 2). The results predicted substantial LUCCs in the TRlr, with 3400 km2

(20.29%) of the total area (16,760.94 km2) undergoing changes. Wetland, artificial land,
grassland, farmland, and forestland areas increased by 578.59, 43.90, 339.90, 201.62, and
536.11 km2 (74.20, 51.31, 48.68, 23.30, and 10.55%), respectively, whereas only the areas
of the Gobi/other deserts and bare soils (both classified as other land) decreased (by
1700.13 km2, i.e., 18.38%).

Table 2. LUCC transition matrix of the lower reaches of the Tarim River (TRlr) for 2020–2030 (km2).

Grassland Farmland Forestland Other Land Artificial
Land Wetland Total in 2020

Grassland 686.07 7.56 0.18 0.00 3.33 1.16 698.30

Farmland 2.14 841.89 0.03 0.02 19.59 1.60 865.26

Forestland 120.86 195.14 4602.30 0.26 2.43 162.41 5083.39

Other land 227.23 20.39 1015.55 7548.27 22.26 414.99 9248.69

Artificial land 0.05 0.72 0.08 0.01 81.81 2.90 85.55

Wetland 1.85 1.19 1.37 0.00 0.04 775.29 779.74

Total in 2030 1038.21 1066.88 5619.50 7548.56 129.45 1358.34 16,760.94

Area of change 339.90 201.62 536.11 −1700.13 43.90 578.59 0.00

Rate of change (%) 48.68 23.30 10.55 −18.38 51.31 74.20 0.00

Other land was predicted to be converted into wetland, artificial land, grassland,
farmland, and forestland. The wetland area increased by 578.59 km2 (74.20%) because of
conversion of other land (71.72%) and forestland (28.07%). The rapid expansion (51.31%) of
artificial land—such as construction lands, transportation lands, and mines—was predicted
to result from the conversion of other land (50.70%) and farmland (44.62%). The increase
in grassland area by 339.90 km2 (48.68%) was ascribed to the conversion of other land
(66.85%) and forestland (35.56%). Comparatively, farmland increased by 23.30%, of which
96.78% was converted from forested land. The increase of 536.11 km2 (10.55%) in forestland
was entirely because of the conversion from other land, completely compensating for the
forestland area converted into wetland, grassland, and farmland.

4.2. Spatiotemporal Characteristics of LUCCs

The classification results of the TRlr LUCCs by land use types in 2000, 2010, 2020, and
2030 (predicted) were obtained following the interpretation of remote sensing data, and
predictions based on these data. Subsequently, the LUCC spatial distribution characteristics
and the corresponding land area of the changes were determined through statistical analy-
ses. Both banks of the TRlr are covered predominantly by forests, with sporadic grassland
and farmland (Figure 4). Some wetlands are also present, such as lakes, reservoirs, and
ponds. Artificial land at the farmland peripheries is used for construction, transportation,
and mining. The composition of the various LUCC types is shown in Figure 5.

The LUCCs for 2000–2020 and 2030 (predicted) are compared in Figure 5. Forestland
occupied the largest area (5619.50 km2) under the predicted situation in 2030, and the
second largest area in 2020 (5083.45 km2). The grassland area was predicted to be the
second largest in 2030 (1038.21 km2); however, it was the smallest in 2010 (493.09 km2).
The farmland areas increased continuously in 2000, 2010, and 2020 and were predicted
to increase further by 2030 (517.11, 690.67, 865.27, and 1066.88 km2, respectively). The
predicted area of farmland in 2030 increased by 549.77 km2, i.e., more than double that
in 2000. The magnitude of the increase in the wetland area was the greatest, whereby the
predicted area in 2030 increased by 1138.05 km2 (more than 6-fold) compared to that in
2000. The artificial land area was predicted to increase from 34.72 km2 in 2000 to 129.45 km2

in 2030, representing a 272.83% increase. The area of other land (Gobi/other deserts and
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bare soils) was predicted to decrease by 2834.92 km2 in 2030 compared to that in 2000,
representing a 27.30% reduction.
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4.3. Evolutionary Characteristics of TRlr Landscape Pattern Indices
4.3.1. Class-level Analysis of Landscape Pattern Indices

The TRlr landscape pattern changes at the class level are shown in Table 3. The
NP of other land was the largest, and that of the remaining land uses decreased in the
following order: grassland > forest > wetland > farmland > artificial land. The PD of
other land was much higher than that of the remaining land use types, whose PD de-
creased in the following order: grassland > wetland > farmland > forestland. Compara-
tively, the PD of artificial land was the lowest. The AREA_MN decreased in the order of
forestland > farmland > other land > artificial land > grassland > wetland.

Table 3. Values of landscape pattern indices of the lower reaches of the Tarim River (TRlr) at the land
use type level. NP—number of patches; PD—patch density; AREA_MN—mean patch size.

Index Year Wetland Farmland Artificial
Land Forestland Grassland Other

Land

NP

2000 620 1194 791 321 1281 542

2010 523 259 241 558 388 316

2020 471 249 267 434 152 164

2030 525 371 195 1429 990 8109

PD

2000 0.04 0.07 0.05 0.0192 0.0764 0.0323

2010 0.03 0.02 0.01 0.0333 0.0231 0.0189

2020 0.03 0.01 0.02 0.0259 0.0091 0.0098

2030 0.01 0.01 0.01 0.0243 0.0169 0.1382

AREA_MN

2000 108 43.1 624 3234.723 17.2144 6.3591

2010 70.4 267 32.5 872.8395 127.1125 3246.939

2020 166 3714 262 1171.325 569.327 52.1473

2030 259 289 66.5 394.1325 105.2774 93.2205

Analyses of the trends in NP, PD, and AREA_MN for 2000–2020 and 2030 (predicted)
showed a decrease in the number and density of various land use type patches. Except for
that of other land, the AREA_MN of the remaining land use types increased, indicating a
weakening degree of division and higher continuity. The AREA_MN of farmland, grassland,
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and wetland continued to increase, indicating that the ecological landscape patterns became
more aggregated and stable.

The predicted 2030 data showed that the NP of other land, forestland, grassland,
wetland, and farmland increased compared to that in 2020. The AREA_MN of farmland,
artificial land, forestland, and grassland decreased, indicating a greater degree of divi-
sion over the 10-year predictive period. Nevertheless, the changes were relatively stable
compared to the multi-year changes observed since 2000.

4.3.2. Landscape-Level Analysis of Landscape Pattern Indices

Landscape pattern indices were used to analyze the study area and reveal the charac-
teristic variations between patches. The convergence, diversity, and shape index values are
shown in Table 4.

The NP values were the highest in 2000 and 2010 and lower in 2020. Further, the degree
of landscape division decreased in 2020. The 2020 LPI (18.81) was lower than that in 2000
and 2010, reflecting the dominant landscape type. Additionally, the human disturbance
level in 2020 was lower than that in 2000 and 2010.

Table 4. Landscape pattern indices of the lower reaches of the Tarim River (TRlr) at the landscape
level. LPI—largest patch index; LSI—landscape shape index; CONTAG—landscape contagion
index; DIVISION—landscape division index; SHDI—Shannon diversity index; SHEI—Shannon
evenness index.

Year NP LPI LSI CONTAG DIVISION SHDI SHEI

2000 4749 45.56 28.72 71.08 0.73 0.96 0.54

2010 2285 44.97 27.35 70.00 0.75 1.00 0.56

2020 1737 18.81 33.48 65.59 0.91 1.15 0.64

2030 11,625 44.55 27.09 73.96 0.73 0.97 0.50

In addition to playing an important role in the study of landscape function, such as
species migration and energy flow, LSI can be employed to reveal the landscape pattern
characteristics. The LSIs of 2000, 2010, and 2020 were 28.72, 27.53, and 33.48, respectively.
CONTAG refers to landscape contagion and is an index that shows whether the landscape
components are aggregated or distributed across multiple elements. The CONTAG values
are higher when a particular patch type maintains absolute dominance and aggregation.
Here, the values for 2000 and 2010 were high, reaching the minimum (65.59) in 2020. The
result indicated that the aggregation of any patch type with an advantage was lower in
2020 compared to the previous two decades (Figure 6a–c).

The DIVISION index reflects the distances between patches, landscape distribution,
connectivity, and resistance to disturbances. The DIVISION values for 2000 and 2010 were
similar, and the value for 2020 was the highest (0.91); thus, the more aggregated the various
patches were in 2020, the higher the landscape contagion and the greater its ability to resist
disturbances. The SHDI and SHEI reflect the diversity and evenness of the landscape,
respectively, and had higher values in 2020 than in 2000 and 2010. This finding indicated
that the patch types had increased over the last 20 years, and the number of landscape
components had also increased. Here, the larger the SHEI values, the less severely that the
landscape was affected by one or several dominant patches.

The NP value increased substantially in the forecasted landscape pattern indices for
2030, with the degree of landscape fragmentation predicted increasing in the 10-year period
from 2020 to 2030, and the resulting landscape spatial structure becoming more complex
and diversified. The LPI was also expected to increase more than the 2020 values, with
increases in the dominant landscape type and human disturbance level. Comparatively,
the predicted LSI in 2030 was lower than that in 2020 and more like that in 2000 and 2010.
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The predicted CONTAG in 2030 was higher than that in 2020, indicating a stronger degree
of aggregation and an extension of the dominant patch type in the landscape (Figure 6).

The predicted 2030 DIVISION value was lower than that in 2020, with an expected
reduction in the intra-patch distance. This situation reflected a more fragmented landscape
distribution, lower contiguity, and a weaker ability to resist disturbances. The predicted
SHDI and SHEI values for 2030 were also lower than those in 2020, indicating that the
abundance of the landscape is likely to decline over this 10-year period. Accordingly, the
impacts of the dominant patch would be enhanced.
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5. Discussion
5.1. Landscape Pattern Trends in the Period of 2000–2020

The People’s Government of the Xinjiang Uygur Autonomous Region implemented
the “Emergency Ecological Water Conveyance Project” in the TRlr in 2000. A total of
21 ecological water conveyances were completed in the following two decades, totaling
~8.43 billion m3. The water conservancy head reached Taitema Lake numerous times to
form a large waterbody area, and double-channel water delivery was realized on multiple
occasions [19,33,34]. Long-term monitoring data indicated that the groundwater level
in the TRlr within 1 km of the mainstream rose from the original 8–12 m to <4 m [26].
Consequently, the ecological benefits improved significantly [13,28]. Continuous water
delivery ended the 30-year history of sustained interrupted flow in the TRlr and effectively
alleviated the passive situation of severe ecological degradation in the TRB. Furthermore,
such large-scale and intermittent artificial water delivery projects are rare, both in China
and worldwide [1,13,23].

Throughout the period of 2000 to 2020, other land types—mainly Gobi/other deserts
and bare soils—accounted for nearly 50% of the TRlr LUCC types; however, this land use
type presented a decadal decrease. In each data period, the proportions of forestland were
relatively high, accounting for 29.45%, 29.06%, and 30.33% in 2000, 2010, and 2020, respec-
tively, followed by farmland, grassland, and wetland, whereas artificial land accounted for
the lowest proportion. The number and density of patches of the various land use types
decreased during the period from 2000 to 2020, whereas the AREA_MN increased for all
land use types, except for other land. The area of AREA_MN exhibited a ranking order
of forest > farmland > other > artificial > grassland > wetland, indicating that the overall
ecological landscape pattern became more aggregated and stable.

The LUCC and landscape pattern changes for forestland, grassland, and wetland
displayed an increasing trend during the period from 2000 to 2020; however, human–
water system interactions across the TRlr constantly changed during this period. Notably,
the development and utilization of water resources must be adapted to these changes,
and specific measures should be taken to improve the coordination of the human–water
relationship and ensure that these key point and region compositions continue to play a
supporting role in socioeconomic development.

5.2. Predicted Landscape Pattern Trends

In this study, a CA–Markov model and GIS spatial analysis techniques were used as a
novel method for extracting time-series LUCC information across various land use types
and landscape pattern changes. Chinese and international researchers have conducted nu-
merous empirical analyses of the evaluation and prediction of landscape ecological security,
achieving realistic results [35]. Moreover, spatial analyses could be carried out with other
related elements to establish a high-precision, intelligent, and universal data foundation to
serve as a basis for large-scale reproduction and prediction of LUCC trajectories.

The total land area predicted to change amounted to ~3400 km2, accounting for 20.29%
of the total study area. Specifically, the wetland, artificial land, grassland, farmland, and
forestland areas increased by 74.20, 51.31, 48.68, 23.30, and 10.55%, respectively. The only
exception was the area of other land (including Gobi/other deserts and bare soils), which
decreased by 18.38%. In general, other land was predicted to shift to more functional uses,
indicating a robust developmental trend of LUCCs across the TRlr.

Comparatively, the landscape patterns in 2030 predicted that the NP of other land,
forestland, grassland, wetland, and farmland would increase, whereas the mean patch
sizes of farmland, artificial land, forestland, and grassland would decrease. Further, the
degree of fragmentation was predicted to increase, with the landscape spatial structure
becoming more complex and diversified. LPI would increase in 2030, indicating increases
in the growth of the dominant land use type and the human disturbance level. On the other
hand, LSI was predicted to decrease in 2030, whereas CONTAG values were predicted
to increase compared to those in 2020. These predictions indicated a trend of increase
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in the aggregation and extension of different patch types across the landscape in 2030.
The decrease in DIVISION values suggested reductions in the distance between patches,
manifested in terms of a more dispersed landscape distribution as well as reduced contagion
and a weaker ability to resist disturbances. The SHDI and SHEI values were also predicted
to decrease in 2030 compared to those in 2020. The SHDI reflected the abundance of the
landscape and indicated a lower abundance of patch types in 2030. Alternatively, the lower
SHEI values suggested that the landscape was more affected by one or several dominant
patches [36,37].

Landscape abundance was predicted to decrease by 2030, whereas the influence of
the most dominant patches in the landscape was predicted to increase. The predictions
indicated that the TRlr landscape would suffer further from marked fragmentation and
worsening degrees of patch isolation. This finding is consistent with other landscape
patterns observed in the TRB [19,22,38]. Specifically, landscape pattern risks were predicted
to increase between 2020 and 2030, which would be primarily manifested in the Gobi/other
deserts, bare soils, and the Taitema Lake Basin located downstream, as well as the buffers
and transition zones on both riverbanks.

5.3. Measures and Suggestions

The TRB should be regarded as a complex system at the interface of nature, human
society, and economy. Accordingly, an overall perspective should be adopted to analyze the
relationships and interactions between regional socioeconomics, natural ecology, and water
resources within the basin, in addition to exploring the causes of ecological degradation
within the area [39–41]. To this end, identifying the specific LUCC dynamics and patterns
provides the key foundation for strengthening federal scientific supervision, promoting
sustainable and socioeconomically beneficial land use, and alleviating human–land conflicts
and other ecological issues [42–44]. After accounting for the implementation of water
delivery and the existing problems in the TRlr, we propose the following suggestions:

1. According to our analysis of the spatiotemporal trends of LUCCs in the period of
2000–2030, attention should be paid to the key locations of ecological protection, and
projects for comprehensive improvement of river channels should be implemented,
mainly in the region of Daxihaizi Reservoir, Alagan, and Tikanlik. Certain land use
types such as forestland, grassland, and wetland should be given more attention to
promote the future expansion of the local vegetation area into the key locations.

2. Ecological water transmission should be scientific, efficient, and economical. The
buffer zones at different distances from the central wetland (50, 100, 200, and 500 m) as
influencing factors indicated that vegetation restoration occurs mainly in areas such as
those near river channels, lakes, and ponds. Therefore, river construction maintenance
and targeted water transmission methods maximize and optimize water transmission
benefits and configuration [4,45]. To adjust the volume of river overflow, intensity of
interference, and water transmission time, factors such as river overflow, linear water
transmission, double river channels, and surface water transmission should be used
to avoid the concentrated dissipation of river water in natural conditions.

3. The ecological monitoring network system should be improved by integrating the
advanced Internet of Things, remote sensing, and big data technologies to achieve
“space–ground integration”. This system could theoretically allow the dynamic
monitoring of surface water, groundwater, land use, natural vegetation, wild animals,
desertification, and salinization, thereby providing early warning and forecasting of
major ecological disasters.

4. Furthermore, the natural vegetation on both sides of the TRB, such as Populus eu-
phratica forests and desert shrubs, covers a relatively minor landscape area [46–48].
However, it plays a key role in supporting the landscape ecological processes and func-
tions and would be affected severely if these vital landscape elements changed [49–51].
Meanwhile, it is the only barrier between the economic belt in the artificial oasis and
the Taklimakan Desert [52,53]. Hence, ecological restoration of the TRlr will be a
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long-term and gradual process. Such monitoring and predictions of TRlr can im-
prove ecological security, provide scientific guidance for the optimal dispatch of water
resources, and enhance ecological water use plans. Despite promising results, the
performance of predictions of LUCCs and landscape pattern analysis in the future
remains unclear as the influencing factors, such as climate, human management, and
government policies, remain unchanged. Therefore, further studies are needed to
analyze these factors more deeply and comprehensively and to take them into account
in future predictions. This may include examining perspectives related to climate
change, land management, ecological protection policies, and other relevant factors.

6. Conclusions

Based on remote sensing data for 2000–2020 and data simulated for 2030 using the
CA–Markov model, the LUCCs and landscape pattern changes in the TRlr were analyzed
and the impacts of those changes on the environment were discussed. In the TRlr, compared
to the LUCCs of 2020, the LUCCs of 2030 predicted that a total of 3400 km2 (20.29%) of the
total area (16,760.94 km2) would undergo changes. The areas of wetland, artificial land,
grassland, farmland, and forestland were predicted to increase by 578.59, 43.90, 339.90,
201.62, and 536.11 km2 (74.20, 51.31, 48.68, 23.30, and 10.55%), respectively. Only the areas
of the Gobi/other deserts and bare soils (both classified under other land) were predicted
to decrease by 1,700.13 km2, (18.38%).

To determine the evolutionary characteristics of the TRlr landscape pattern indices
at the class and landscape levels, we analyzed the trends in NP, PD, and AREA_MN for
2000–2020 and 2030 at the class level. The number and density of various land use patches
decreased, and the mean patch sizes of the remaining land uses increased, except for other
land. At the landscape level, our predictions showed that in 2030, LPI would increase,
CONTAG values would increase compared to those in 2020, and SHDI and SHEI values
would decrease compared to those in 2020. These landscape pattern indices were used to
analyze the study area and reveal the characteristic variations between patches.

The findings of this study can serve as a basis for proposing several corresponding
measures. Furthermore, we provided a discussion on the relationships between land
development and the ecological environment in the context of efficient socioeconomic
development and through scientific analyses, including the spatiotemporal evolution of
land use patterns and land structure changes. The results of this study can promote
coordinated and environmentally sustainable socioeconomic development within the TRB.
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