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Abstract: The Meiyu season is a typical rainy season in East Asia that is controlled by summer mon-
soon. Despite extensive research on its impact, it is unclear how urbanization modifies precipitation
during the Meiyu season in the background of the monsoon influence. To address this gap, this study
investigated the effects of urbanization and monsoon on the modification of precipitation during
the Meiyu season (PDM) in the megacity of Shanghai, China. Through homogenization analysis of
the original observational data, we assessed the temporal and spatial variation in PDM in Shanghai
during two stages of urbanization. Our findings revealed that both total precipitation and extreme
daily precipitation during the Meiyu season in Shanghai have significantly increased since 1961. The
spatial heterogeneity of PDM has also enhanced during the rapid urban process that has occurred
since 1986. The long-term trend of increasing precipitation in Shanghai showed a synchronous varia-
tion with the East Asian subtropical summer monsoon (EASM) in 1961–2021. Over the interannual
time scale, the significant positive correlation between PDM and EASM during the slow urbanization
period (Stage 1: 1961–1985) changed to a non-significant correlation during the rapid urbanization
period (Stage 2: 1986–2021), which was associated with the enhanced convective precipitation in
Shanghai during the Meiyu season. Urbanization induced more convective precipitation and further
weakened the association between PDM and EASM over the central city and nearby areas during
Stage 2. The rapid urbanization process also resulted in increased differences in near-surface wind
between urban and non-urban areas, which facilitated more PDM over the central city due to the
urban friction effect and wind shear in Stage 2. Furthermore, our analysis suggests that the increase
in precipitation may be associated with the enhanced coupling of cold air intrusion with the warmer
climate background due to the urban heat effect occurring in Stage 2. These findings contribute to a
better understanding of how urbanization and monsoons affect PDM in East Asian megacities and
serve as a unique reference for climate prediction in this region.

Keywords: urbanization; Meiyu; monsoon; homogenized series; long-term change; interannual variation

1. Introduction

Meiyu is a major rainy season controlled by East Asian summer monsoon [1–3]. It
usually refers to the persistent precipitation in June–July in the Yangtze River–Huaihe River
Basin in China, South and Central Japan, and South Korea [4]. It is also called Baiu in
Japan and Changma in South Korea [5,6]. Different from South Asian summer monsoon
precipitation, the East Asian Meiyu is a product of the interaction between warm summer
monsoon from low latitudes and cold air intrusions from middle to high latitudes [1,3,7–10].
Besides the natural variabilities associated with both the external forcing, including El
Niño–Southern Oscillation (ENSO [11,12]), Atlantic Multidecadal Oscillation (AMO [13]),
Pacific Decadal Oscillation (PDO [14]), and internal processes like Madden-Julian oscillation
(MJO [3,15,16]) as well as North Atlantic Oscillation (NAO [17]), the precipitation during
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East Asian Meiyu season (hereafter referring to June–July) is also impacted by global
warming, urbanization, and aerosol effects [4].

With the expansion of urbanization across the globe, urban-rainfall modification has
been reported in several studies [18–25]. Even though it is well known that urbanization
can affect precipitation, studies varied based on the climate regime and the geographical
locations of different cities [20,26,27]. In North China, the rapid urban expansion in Beijing
was statistically correlated with summer rainfall reduction in the northeastern areas of
the city since 1981 [20]. However, it had a positive effect on the changes in precipitation
in autumn [28]. Obvious rain island effects can also be found in both the frequency of
catastrophic storms above 100 mm [29] and the intensity of low-temperature rain and
snow events in Beijing [30]. For eastern China, a larger precipitation frequency over urban
areas took place in Nanjing and a significant enhancement of precipitation occurred in the
downwind region of the city in the afternoon [31]. The spatial distribution of the storm
frequency in Shanghai and its changing trend presented significant attributes of urban rain-
island during its rapid urbanization process [21]. The heavy rainfall days also increased
due to urbanization in Guangzhou [32]. The increase in precipitation mainly occurred
downwind of the city belt in short-term rainstorm processes in the Yangtze River Delta [33].
Recent studies [24,27] have proved the consistency in spatial distributions of short-duration
heavy precipitation with the heat island centers in megacities (Beijing, Shanghai) or city
clusters [4,34–36]. However, the urban-rainfall modifications in different weather systems
are not clear.

Some studies provided evidences that heavy rainfall over monsoon regions is a sig-
nature of urban-induced rainfall anomalies. For the Indian monsoon region, urban areas
experienced fewer occurrences of light rainfall and significant higher occurrences of in-
tense precipitation compared with nonurban regions during the monsoon season [37]. The
rainfall islands parallel to the urban heat islands were also likely seen as coupled monsoon-
urban induced effects under the weakened synoptic regime evidenced through monsoon
low-level jet over Delhi, India [38]. In East Asian monsoon region, Meiyu is the major rainy
season influenced by large-scale monsoon systems. However, the urban effect on rainfall
during the Meiyu season is not clear and its related studies are rare. Using climate models,
Ma and Zhang [39] studied the impact of urban expansion on large-scale precipitation
by taking Meiyu as an example and showed decreased (increased) Meiyu precipitation
over the Yangtze River (Huaihe River) basin. Quan et al. [40] suggested that precipitation
increased significantly to the south of the Yangtze River due to large-scale urbanization-
induced circulation changes. The results of model simulations are rather divergent and
large uncertainty exists in assessing the urbanization effects due to differences in the choice
of models. Shanghai is located in the lower reach of the Yangtze River Basin of China and
is characterized by a distinct subtropic monsoon climate with Meiyu seasons. Shanghai is
one of the largest megacities in China and has been experiencing rapid urbanization. It is
interesting to evaluate the urbanization-monsoon modification in the PDM by taking the
megacity Shanghai as a typical example.

In the present study, we examine the combined modifications of urbanization and
monsoon in the change of PDM in Shanghai in 1961–2021. The study focuses on the
following three topics: (a) the long-term changes in PDM associated with urbanization;
(b) the monsoon influences associated with the long-term change of the PDM and (c) the
urbanization effects on the changes in PDM during the two urbanization processes. Various
observational and reanalysis products, as well as methods, are described in Section 2. The
urbanization process in Shanghai and the homogenization test of PDM are presented in
Section 3, and the impacts of monsoon and urbanization on variations in PDM are discussed
in Sections 4 and 5, respectively. A summary and discussion are given in Section 6.
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2. Materials and Methods
2.1. Data

Daily precipitation records were collected at Xujiahui (XJH) station from 1874 to 2021
and quality-controlled by Shanghai Meteorological Information Center (SMIC), Shang-
hai Meteorological Bureau. Daily observations, including precipitation, 2 m surface air
temperature (SAT), and 10 m wind in 1961–2021, and the observational hourly precip-
itation in 1981–2021 were adopted from SMIC to investigate the spatial distribution of
meteorological factors in Shanghai. The locations of the 11 basic stations in Shanghai
are shown in Figure 1a. Related metadata of the observation history in Shanghai since
1874 and the Meiyu precipitation data in the Middle and Lower Reaches of the Yangtze
River from 1885 to 2000 [41] were applied to check the homogeneity of the PDM series
in Shanghai. The urbanization factors, including annual population density and paved
road area in Shanghai from 1961 to 2021, were acquired from Shanghai Bureau of Statistics
(https://tjj.sh.gov.cn/tjnj/index.html, accessed on 10 November 2022) to investigate the
urbanization process.
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Figure 1. Locations of observational stations ((a), different colors denote the urbanized years) and
evolution of the urbanization factors including population density (blue line) and paving road area
(red line) (b) in Shanghai in 1961–2021.

Monthly atmospheric and precipitation reanalysis data from 1961 to 2021, with a
2.5◦ × 2.5◦ horizontal resolution, were downloaded from the National Center for Environ-
mental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) Reanaly-
sis (NCEP/NCAR) [42] (https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html,
accessed on 15 December 2022). NCEP reanalysis is not sensitive to urbanization or land-use
effects [43] because surface observations over land are not used in the reanalysis [44]. There-
fore, the precipitation and its associated atmospheric reanalysis from the NCEP/NCAR
were adopted to investigate the impact of urbanization on Meiyu precipitation by compar-
ing it with the surface observations.

https://tjj.sh.gov.cn/tjnj/index.html
https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html
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2.2. Methods

Homogenization tests of precipitation datasets may be more reliable than the originals
for urbanization impact analysis [45]. In the homogenization analysis of the PDM series, the
extended version of Penalized Maximal F-test (PMF [46]), i.e., the “PMFred” algorithm [47]
in the RHtestV5 software package was adopted to detect the possible change points without
a reference series. Since Meiyu is a phenomenon influenced by the large-scale monsoon
circulation, the Meiyu data in the Middle and Lower Reaches of the Yangtze River [41] was
adopted as a reference series to check the homogeneity of Meiyu precipitation in Shanghai
using the Penalized Maximal T-test (PMT) [48] in the RHtestV5 software package. All
homogeneity tests in this study were analyzed at the 0.05 significance level.

Both impervious land cover [49,50] and population density were used to identify
urban stations in order to decrease the uncertainty due to a single criterion. Following
Liang and Ding [24] and Ma et al. [51], the urban stations were defined as having population
densities above 3000 km−2 and an impervious fraction ≥0.5 in their surroundings, with a
circular area of 10 km2 (i.e., a radius of 1.785 km).

East Asian Subtropical Summer Monsoon Index (ESMI) was computed to investigate
the impact of the summer monsoon on PDM. It was calculated as the anomaly of the
difference in meridional moisture transport between South China and North China [52].
Positive (negative) ESMI corresponds to a strong (weak) subtropical summer monsoon.
The ESMI had a significantly positive correlation with the summer rainfall over the middle
and lower reaches of the Yangtze River, especially during the Meiyu season. According
to Liang et al. [3], the correlation coefficient between the ESMI and PDM over the middle
and lower reaches of the Yangtze River was 0.62 above the 0.01 significance level in the last
40 years (1979–2018).

Ensemble Empirical Mode Decomposition (EEMD [53]) was adopted to obtain the
components of PDM over different time scales. EEMD is adaptive and derives optimal
frequencies for decomposing data from the data itself, which provides a natural filter to
separate components of different timescales [54]. The specific steps can be referred to
Liang et al. [55].

Spatially normalized precipitation was used to investigate the spatial differences in
the precipitation in Shanghai. It is calculated as follows [21]:

psn,i = (pi − pa)/σs, (1)

where i denotes the number of the observational station; pi and psn,i are the original and the
spatially normalized precipitation respectively; pa and σs represent the spatial average and
the standard deviation of precipitation at multi-stations respectively.

3. Urbanization Process in Shanghai and Precipitation Homogenization Test
3.1. Urbanization History in Shanghai

As a coastal megacity in the estuary of the Yangtze River Delta, Shanghai has experi-
enced rapid urbanization since the 1980s. Figure 1a shows the start years when the different
observational stations in Shanghai were identified to be urbanized based on population
densities ≥ 3000 km−2 and impervious fractions ≥ 0.5. This suggests that urbanization
has gradually expanded from the central city (XJH station) to the near suburbs since 1986.
There were six urban stations and five nonurban stations in Shanghai in 2021. Pudong
(PD) station was the second station urbanized in 2000, followed by Minhang (MH) and
Baoshan (BS) in 2008, and Jiading (JD) and Songjiang (SJ) in 2010 and 2021, respectively.
Therefore, the urbanization period in Shanghai since 1961 may be divided into the slow
urbanization period (1961–1985, hereafter referred to as Stage 1) and the rapid urbanization
period (1986–2021, hereafter referred to as Stage 2).

Urbanization is accompanied by increased population density, areas of built roads,
etc. As can be seen in Figure 1b, both the population density and the area of paved road in
Shanghai has increased steeply since the middle 1980s. The population density and the area
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of paved roads have been accelerated at 14.9 × 102/km2/year and 89.4 × 106 m2/year,
respectively in Stage 2 (1986–2021), in sharp contrast to the slow urbanization period
(Stage 1, i.e., 1961–1985).

3.2. Homogenization Test of Precipitation Series

The PMF test, without a reference series, was used to test homogenization in the
PDM series at XJH since the records began in 1874. As shown in Figure 2a, no change
point was identified in the precipitation series at XJH during the Meiyu season. Since
Meiyu over the middle and lower reaches of the Yangtze River is a large-scale phenomenon
influenced by the Asian monsoon system, Meiyu precipitation over the middle and lower
reaches of the Yangtze River was also used as a reference series of Meiyu precipitation at
XJH. No change point of the Meiyu precipitation series at XJH was identified based on
the PMT test by using the reference series (Figure 2b). Therefore, it can be inferred that
the precipitation series at XJH during the Meiyu season may be homogeneous based on a
century scale. In addition to XJH, similar results were obtained from homogenization tests
carried out on the observational precipitation series data collected at the other 10 stations
since 1961. By taking the average precipitation series of the 11 stations in Shanghai as an
example, no change point was identified based on the PMF test (Figure 2c). Therefore, the
original precipitation observations in Shanghai during the Meiyu season can be viewed
as homogeneous.
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Figure 2. Homogenization test of precipitation series: (a) anomalies of normal transformed PDM at
XJH in 1874–2021 (Red line denotes the regression fit using the PMF test); (b) anomalies of normal
transformed Meiyu precipitation series at XJH in 1885–2001 with reference series of Meiyu precipita-
tion over the Yangtze River (Red line denotes the regression fit using the PMT test); (c) anomalies of
normal transformed average PDM of 11 stations in Shanghai during the 1961–2021 period (Red line
denotes the regression fit using the PMF test).
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4. Long-Term Changes in PDM Associated with Urbanization

Figure 3 shows the variation in total precipitation and extreme daily precipitation at
XJH during the Meiyu seasons in 1874–2021. The annual extreme daily precipitation is
defined as the average of the 5% heaviest daily records during the Meiyu season in every
year. It can be clearly seen that both total precipitation and extreme daily precipitation
exhibited significant (above 0.01 significance level) increasing trends from 1961, while
no distinct trends were observed in 1874–1960. The trends of increase in both the total
precipitation and extreme daily precipitation at XJH since 1961 are consistent with the trend
of increased warming at XJH [55], which is associated with the increase in water vapor
based on the Clausius-Clapeyron Equation [56].
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Figure 3. Variation in the total precipitation (a) and extreme daily precipitation (b) at XJH during the
Meiyu seasons of 1874–2021 (Dashed lines are the corresponding linear trends).

In order to investigate the spatial differences in the Meiyu rainfall in Shanghai,
Figure 4a,b shows the average PDM during the two urbanization stages in Shanghai.
Compared with Stage 1 (the slow urban process, Figure 4a), the increase in PDM varies
from 71 mm to 111.8 mm in Shanghai during the rapid urban process (Stage 2, Figure 4b).
Meanwhile, the spatial distribution of the PDM transformed from the south-north mode
in Stage 1 to the distinct urban island mode in Stage 2. The spatial standard deviation of
PDM exhibited a trend of significant (above 0.01 significance level) increase accompanying
the increase in PDM in Shanghai (Figure 4c). On average, the spatial standard deviation
increased by about 52% in Stage 2 compared with Stage 1. In other words, spatial hetero-
geneity in PDM increased with the strengthening of PDM during the rapid urban process,
with more PDM concentrated in the central urban city.

Further analysis found that the increase in strong convection events (i.e., hourly
precipitation greater than 20 mm) contributed to the PDM during Stage 2. As shown in
Figure 5a,b, two strong convection events per year usually occurred in Stage 2, with an
increase of 50% compared with that in Stage 1. For the spatial distribution (Figure 5c,d),
the large value regions of both the frequency and the normalized precipitation of strong
convection events transferred from the southeast part of Shanghai in Stage 1 to the central
city including XJH and PD stations in Stage 2. In other words, the strong convections during
the Meiyu season also exhibited distinct characteristics of urban rain island distribution
during the rapid urbanization process.
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5. Influence of Monsoon on PDM during Two Different Urbanization Processes

Meiyu over the Yangtze River, including in Shanghai, is strongly influenced by the
East Asian subtropical summer monsoon (EASM). What is the impact of the EASM on
the PDM in accompanying the development of urbanization in Shanghai? EEMD was
adopted to isolate variabilities in the PDM and EASM index (EASMI) at different timescales
during the Meiyu seasons in 1961–2021. The long-term trend and interannual components
are shown in Figure 6a,b respectively. It can be clearly seen that the long-term trend
component of the PDM has a variation that is synchronous with that of the EASM, with
their correlation coefficient as high as 0.91 (Figure 6a). Note that the trend of EEMD is
nonlinear [53]. The trend of decreasing (increasing) PDM in Shanghai occurred before
(after) the mid-1980s, and the amplitude of the trend varied over different periods. The
case is similar to the variation in the trend of the EASM. The PDM in Shanghai showed
stable increasing trend with the increase of EASM in 1961–2021. It reflects the regional
influence of the EASM on PDM at the long-term scale. For the interannual variability, a
distinct change took place in the relationship between the PDM in Shanghai and EASM.
As shown in Figure 6b, the significant positive correlation (correlation coefficient 0.59
above 0.01 significance level) between the PDM and EASM during Stage 1 changed to a
nonsignificant correlation (correlation coefficient 0.24) during Stage 2. This suggests that the
relationship between EASM and PDM at the interannual time scale distinctively weakened
during the rapid urbanization process.
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Figure 6. The long-term trend (a) and the interannual (b) components of the regional average PDM
in Shanghai (blue curves) together with their corresponding EASMI components (orange curves) in
1961–2021 based on EEMD analysis.

The interannual component of the reanalyzed precipitation in Shanghai was also
adopted to investigate the relationship between two kinds of precipitation (large-scale
precipitation and convective precipitation) in PMD with EASM. As shown in Table 1, in
Stage 1, both total precipitation during the Meiyu season and its large-scale precipitation
component had a significant positive correlation with EASM, while the convective pre-
cipitation was not correlated with EASM. The contrary was true in Stage 2, i.e., both total
precipitation and the large-scale precipitation component had no significant correlation
with EASM. However, the convective precipitation component had a significant relation-
ship with EASM in Stage 2. In other words, in the background of rapid urbanization, the
PMD associated with EASM exhibited more convective properties. It may be associated
with enhanced atmospheric instability and moisture transportation over Shanghai [24]. The
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conversion of the precipitation property from large-scale to convective may contribute to
the weakening of the relationship between PDM and EASM at the interannual scale.

Table 1. Correlation coefficients between interannual components of precipitation reanalysis
and East Asian summer monsoon index during Meiyu season (bold numbers denote above 0.05
significance level).

Precipitation Component Stage 1 (1961–1985) Stage 2 (1986–2021)

Total precipitation 0.38 0.07
Large-scale precipitation 0.49 −0.08
Convective precipitation 0.07 0.32

The spatial distributions of the correlation coefficients between the PDM and EASM
during the two stages of urbanization are shown in Figure 7. During Stage 1, with no
urban stations, the correlations between PDM and EASM were significant at all stations
in Shanghai. However, the significant correlation area was restricted to the northern
part (JD, BS, and CM stations) and the southern part (FX station) of Shanghai in Stage 2.
The relationship between the PDM and EASM over the central city and nearby suburbs
(XJH, PD, MH, and SJ stations) distinctively weakened during Stage 2. This suggests that
urbanization effects further weakened the association between PDM and EASM, in addition
to the above-mentioned influence of regional convective rainfall at the inter-annual scale.
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6. Effects of Urbanization on PDM in Two Different Urbanization Processes

The urban heat island is a well-known urbanization effect. How does the urban
heat effect impact PDM? Figure 8 shows the average 2 m surface air temperature (SAT)
during the Meiyu season, and its correlation coefficients with the PDM in Shanghai during
the rapid urbanization process (Stage 2). Similar to Stage 1 (figure omitted), the PDM is
negatively correlated with the SAT during the Meiyu season when the Meiyu usually occurs
under the persistent interaction of cold air intrusion and warm air transported by the Asian
monsoon. Meanwhile, the coupling of SAT and PDM was strengthened in Stage 2, with an
average correlation coefficient of −0.48 between them. The coupling of temperature and
PDM further increased over the urban area. As shown in Figure 8, the negative correlations
were most significant in the central urban areas (XJH). For the spatial difference in Shanghai,
the negative coupling between SAT and PDM was significantly correlated with the average
SAT in Shanghai, with a correlation coefficient of −0.67 above the 0.01 significance level).
In other words, over the stations with warmer climate backgrounds impacted by the urban
heat effect, more PDM occurred when cold air intrusion interacted with the monsoon. This
may be associated with more initial water vapor stored in the warmer environment.
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Urban friction effect also exerts an impact on precipitation during the Meiyu season.
Figure 9a,b shows the spatial distribution of the 10 m wind speed in Shanghai during the
Meiyu season in Stage 1 and 2 respectively. It can be clearly seen that the wind speeds
were generally decreased in Shanghai during the Meiyu season under the background of
fast urbanization compared with Stage 1. Thereinto, the wind speeds were decreased by
1.3 m/s (accounting for 40% of that in Stage 1) at XJH and PD stations over the central
city in Stage 2. The amplitude of the weakening of the wind speed was the smallest at the
nonurban JS station over the southern suburb of Shanghai. Meanwhile, the urban weak
wind phenomenon was obvious over the central city and nearby area in Stage 2, while the
relatively weak wind was mainly located over the downwind direction of Shanghai in Stage
1. The urban weak wind distribution was consistent with the urban rainfall island phenom-
ena in both the total PDM (Figure 4b) and its strong convection components (Figure 5b,d).
Further analysis shows that the correlation coefficient of the spatial normalized PDM and
the wind speed during the Meiyu season in Shanghai was −0.55 and −0.62 in Stage 1 and
Stage 2, respectively. This means that the smaller near-surface wind speed, the more PDM
in both Stages 1 and 2. Additionally, the rapid urbanization in Stage 2 can contribute to the
increased PDM due to the urban friction effect and its related convergence condition.
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Figure 10 further shows the wind-rose diagrams of the typical urban (XJH) and
nonurban (JS) stations during the two stages. There was little change in the near-surface
wind at JS station (nonurban station) during the Meiyu seasons from Stage 1 to Stage 2
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(Figure 10b). However, there was an obvious change observed at XJH station with the
change from the unurbanized process to the urbanized process. As can be seen in Figure 10a,
more quiet wind occurred, and less prevalent wind took place during the urbanized process.
By combing Figures 9 and 10, the enhanced difference in both wind speed and direction
between the urban station and the outskirt nonurban areas was favorable for the wind
shear and its associated rainfall over the central city of Shanghai during the Meiyu season
in the rapid urbanization stage.
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Figure 10. Wind-rose diagram at XJH (a) and JS (b) stations during Stages 1 (blue curve) and 2
(orange curve). C1 and C2 denote the frequencies of quiet wind during Stages 1 and 2.

7. Discussion and Summary

Based on the homogenization test of precipitation in Shanghai, we evaluated the
combined impact of urbanization and monsoon on precipitation in Shanghai during the
Meiyu season (PDM) by analyzing two different urbanization processes in 1961–2021.

Using the homogenization tests, we confirmed the observational PDM series at the
XJH station (over a century) and 10 other stations (since 1961) to be homogeneous. For the
long-term change, both total precipitation and extreme daily precipitation during the Meiyu
season have significantly increased in Shanghai since 1961. During the rapid urbanization
process since 1986, the spatial heterogeneity of PDM has increased with the strengthening
of PDM. More PDM is concentrated in the central urban city. Additionally, the strong
convection occurring during the Meiyu season has also exhibited an urban rain island
distribution throughout the rapid urbanization process.

The long-term increasing trend of PDM shows synchronization with that of the EASM
in 1961–2021, demonstrating the influence of EASM on PDM at a regional scale. However,
at the interannual time scale, the significant positive correlation between PDM and EASM
has changed to a nonsignificant correlation from the slow urbanization process (Stage 1) to
the rapid urbanization process (Stage 2). More convective precipitation may contribute to
the weakening of the relationship at the interannual time scale.

In the background of rapid urbanization, the urbanization effect may further weaken
the association between PDM and EASM over the central city and nearby areas in Shanghai
by inducing more convective precipitation. Furthermore, impacted by the urban heat effect
in Stage 2, more PDM over the central city and nearby areas in Shanghai is associated
with the enhanced coupling of cold air intrusion with the warmer climate background. In
addition, the rapid urbanization enhanced the difference in the near-surface wind between
the urban station and the outskirt nonurban areas, which facilitated more PDM over the
central city of Shanghai by way of increasing wind shear.

As pointed out by Liang et al. [55], a notable inhomogeneous change point in SAT
at XJH station occurred in 1954 due to the change of observation schedule in 1954. The
observations of precipitation at XJH changed from four times at 1, 7, 13, and 19 o’clock
(Beijing time, also hereinafte) per day in 1954–1960 to 2, 8, 14, and 20 o’clock per day after
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1960. The homogenization of the daily precipitation record may be influenced by the change
of the observation schedule. Due to lack of observations of hourly rainfall before 1980, two
random resampling based on the hourly precipitation observed since 1981 were calculated
according to the above two different daily observation schedules. It was found that the
extreme daily precipitation may be influenced by the observation schedules. By using the
observations at 1, 7, 13, and 19 o’clock per day, the extreme daily precipitation defined by
the 99.5% percentile during the Meiyu season may be generally underestimated by about
0.8 mm. Considering the small amplitude in the extreme daily precipitation deviation
caused by the change of the observation schedule, the long-term change of the extreme
daily precipitation in this paper is reasonable.

Besides the thermal and dynamic impact of urbanization on the PDM described in
this study, the aerosol effects associated with urbanization may also exert influences on
the change in PDM. Jung et al. [57] pointed out that aerosols exerted significant indirect
effects in mid-and low-level clouds, resulting in an increase in the cloud particle radius and
enhanced precipitation intensity during the Meiyu period in the Yangtze-Huaihe Basin. It
is necessary to further study the mechanism of the abnormal activities of Meiyu from the
perspective of multi-factor interactions at the multi-scale, including atmospheric chemistry,
urbanization, monsoons, and global warming.
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