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Abstract: Extensive oil palm plantations worldwide are dependent on insect pollination, specifically
by introduced African weevils (Elaidobius spp.). The effectiveness of these weevils has been questioned
following poor pollination and yield loss in Malaysia. Indigenous thrip (Thysanoptera) species, and
moths (Lepidoptera) in the genus Pyroderces, may also be pollinators of oil palm, while the role of
bees (Hymenoptera) and flies (Diptera) is unknown. The potential of native pollinators remains
uncertain because of the almost total clearing of forest habitat from oil palm landscapes. In this
study, we investigate the value of small high conservation value (HCV) forests as sources of potential
native insect pollinators of oil palm in northern Sarawak. We further examine the filtering effect of
oil palm-dominated landscapes on the species assemblages of six potential pollinator insect orders:
Blattodea, Coleoptera, Diptera, Hemiptera, Hymenoptera and Lepidoptera. Orders differed in both
species composition and abundance between forest and oil palm plantations, with an average of
28.1% of species unique to oil palm. Oil palm presented a soft permeable boundary to Coleoptera,
Hymenoptera and Lepidoptera. Their species richness and abundance differed little between habitats
with distance, despite species turnover. In contrast, oil palm presented a harder boundary to Diptera
with a decline in both species richness and abundance with distance into oil palm. The abundance of
the oil palm weevil (Elaedobius kamerunicus) was low compared to the native dominants, but similar
to levels displayed by native thrips that may be pollinators of oil palm. The functional diversity of
well-known pollinator guilds—bees and flies—was similar in forest and oil palm, suggesting that
potential pollinators may yet exist among native orders of insects. Contrary to the prevailing opinion,
even small forest patches in oil palm landscapes may provide native pollinator pressure.

Keywords: pollination biology; boundary effect; ecological filter; fragmentation ecology; functional
diversity; introduced weevil; landscape ecology; native pollinators

1. Introduction

The increasing global demand for palm oil (Elaeis guineensis) has caused landscape-
scale deforestation and expansion of oil palm estates in Malaysia since 1917 [1], such that
Malaysia and Indonesia retain only 3% of their primary forest [2]. Oil palm establishment
since the 1980s in Sarawak, Malaysian Borneo, has mostly replaced secondary forest [3,4],
and 33.4% (from 2005–2010) of Sarawak’s peatland [5–7]. Between 1990 and 2005, plantation
area increased from 1.8 mil. to 4.2 mil. ha in Malaysia, and as of 2015 Malaysia is the second
largest producer of oil palm globally, with 5.4 mil. ha of oil palm producing 25 mil. tons
of palm and kernel oil annually with a value of RM63.62 bil. [8]. The palm oil market is
not yet saturated and increasing diversification of uses and its value as biodiesel portents
further increases in the production [9]. It is estimated that by 2050 a further 12 million ha
of oil palm will have to be planted to meet demand [10]. Extensive clear-felling and
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replacement of primary and secondary forests by oil palm compromise ecosystem function
and services [11,12]. These simplified landscapes are more susceptible to harmful non-
native invasive species [12], potentially reducing production through increased herbivory
or disease and there is a significant effect on biodiversity and ecosystem services [13,14].
Here we examine the effect of landscape-scale oil palm estates, and the potential mitigating
effect of remnant forest patches, on insect pollinator assemblages and services essential for
healthy natural and production ecosystems and human livelihoods.

Massive clearing of lowland forests by oil palm agriculture in Malaysia and Indonesia
has caused the steepest decline of biodiversity for any region [15]. Oil palm plantations
filter the native forest fauna, allowing only a narrow spectrum of taxa to persist [12,16–19],
resulting in very different species compositions in each habitat [20–22]. Species lost to land
conversion tend to be those that: have specialist diets; are reliant on habitat features that are
not present in plantations; have small range sizes; and are of high conservation concern [23].
While species commonly found in oil palm plantations are abundant generalists, pests and
invasive species that are more common in the wider agricultural landscape [24–27] and few
forest species [22].

Insects are the most prominent pollinators worldwide [28]. Bees are the main service
provider globally [29] and the dominant pollen vector in tropical forests [30–32]. Devising
management strategies to make oil palm a more environmentally friendly and sustainable
crop depends on understanding key processes, such as pollination biology, that are affected
by oil palm. Conversion to oil palm plantation, from either primary or secondary forests, has
resulted in a 70–77% reduction in tropical bird diversity and a 79–83% reduction in butterfly
diversity [33]. Only 29% of invertebrate and 22% of vertebrate species were shared between
oil palm and natural forests [34], and across all animal taxa, an average of only 15% of species
are shared [4]. Groups such as ants [21,35], dung beetles [36], beetles in general [26,36,37],
isopods [38], cockroaches [23], mosquitoes [39], moths [24], butterflies [40], lizards [41], pri-
mates [20], small mammals [19,42], birds [18,25] and bats [20,43] show changes in abundance
but significant declines in diversity [22]. Only bees show increased diversity in oil palm
plantations [27]. Commensurate with the latter trends is an increase in the number of
harmful non-native species, such as the yellow crazy ant (Anoplolepis gracilipes) [44]. It is
clear that oil palm plantations present a boundary barrier, varying in effect from soft (a
moderately permeable barrier to cross-boundary movement) to hard (impermeable bound-
ary with little penetration into oil palm) depending on the functional traits of the native
species, preventing key ecosystem processes, such as gene flow, for the survival of small
communities in remnant native vegetation [45,46].

Oil palm relies on insect pollination [47]. In West Africa, where oil palm originates, it
has several native pollinators including four species of weevils: Elaidobius kamerunicus Faust,
E. subvittatus Faust, E. plagiatus Faust and E. sigalaris Faust. (Coleoptera: Curculionidae) [48].
The most effective of the West African pollinators, E. kamerunicus, has been introduced to oil
palm plantations outside of West Africa [49]. E. kamerunicus is crop-specific, feeding on and
laying eggs below the anthers of the male inflorescence. The emerging male weevils carry
pollen between male and female inflorescences when feeding [47]. Prior to the introduction
of E. kamerunicus, plantations outside West Africa experienced low fruit sets and were hand
pollinated [47]. Since the introduction of E. kamerunicus to Malaysia in 1981 the need for
assisted pollination has ceased [50] and the crop yield has increased by 20% [49].

Relying on a single pollinator for such a vital ecosystem service is precarious and un-
sustainable [50,51]. Concern has been expressed about the effectiveness and viability of
weevil populations following periodic occurrences of poor pollination and yield loss in certain
locations in Malaysia [50,52]. The introduced weevils have proven to be ineffective in dry con-
ditions and in heavy rain [47,50]; their fitness is affected by nematode worms [50,53]; and they
display inbreeding depression due to low numbers of breeding pairs at their introduction [50].
To ensure the security of oil palm pollination a more diverse insect pollinator guild offering
robust responses to environmental change is required [54–56]. Several native pollinators have
been observed pollinating oil palm [57], including Thrip hawaiensis (Thysanoptera) and moths
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(Pyroderces spp.) [48] and other flying insects may also hold the potential to provide pollination
services to oil palm as well as other vegetation in plantations. Caudwell, Hunt, Reid, Mensah
and Chinchilla [50] reported that in Malaysian plantations, a high abundance of native polli-
nator species could support adequate pollination and fruit set of oil palm. Accordingly, high
conservation value (HCV) forest patches within plantations may provide viable pollination
services although this is yet to be confirmed [27,34].

The Roundtable for Sustainable Palm Oil (RSPO) has recommended best practices for
palm oil agriculture on an industrial scale [58] that address the maintenance of pollination
services, such as banning particularly damaging processes such as fire clearing and replace-
ment of primary forest with oil palm, as well as limiting the use of insecticides. Most of
these recommendations have been adopted by palm oil producers [59]. Consequently, more
recently established oil palm plantations retain riparian zones [60] and HCV areas [61,62].
The HCV remnant forest patches within oil palm plantations buffer biodiversity and sup-
port the persistence of isolated wildlife communities by improving their connectivity [63].
These forest refugia can improve the diversity of insects on oil palm estates [40,64].

Here we examine whether potential insect pollinator assemblages differ between and
across the oil palm–forest boundary. We address the ability of forest patches to act as refugia
for flying insects that are potential pollinators of surrounding oil palms. The abundance,
diversity and richness of flying insect taxa from the orders Blattodea, Coleoptera, Diptera,
Hemiptera, Hymenoptera and Lepidoptera were compared between forest and palm
oil habitats. We examined the abundance, diversity and richness of bees, as the main
pollinators of tropical forests, and the abundance of E. kamerunicus, as the main pollinator
of palm oil. The functional diversity of two important pollinator groups, flies (Diptera) and
bees (Apoidae) was examined, seeking a functional gap filled by thrips that are known to
pollinate oil palm. A gradient of declining abundance and diversity of flying insect taxa
is expected from the forest into the plantation habitat with increasing distance from the
forest–plantation ecotone. Differences among insect orders in the steepness of this gradient
may define the strength of the boundary or filtering effect of oil palm.

2. Materials and Methods
2.1. Study Area

Flying insects were sampled in Sarawak, Malaysian Borneo on two neighbouring oil
palm plantations, Saremas 1 and Segarmas (3◦31′15′′ N, 113◦45′0′′ E; elevation 1288 m),
owned and managed by PPB Oil Palm Berhad (Figure 1). The plantations are in the moist
aseasonal tropics, with a mean annual temperature of 31 ◦C and mean annual rainfall of
2605 mm. Both plantations comprise mature fruiting oil palm trees of approximately 10 m
to 16 m height, planted at 10 m intervals. Saremas 1 (4614 ha) and Segarmas (3334 ha)
were previously secondary forests, cleared from 1990 onwards and planted in 1996 and
1994–1995, respectively. The plantations gained RSPO certification in June 2010. Segarmas
plantation contains the Bukit Durang Conservation Area (3◦28′31.0′′ N 113◦50′04.5′′ E),
an HCV forest patch (Forest Patch 1) of 990 ha, located on a steep hillside that extends
into two other palm oil plantations. Saremas 1 plantation contains an HCV forest patch
(Forest Patch 2) of 116 ha (3◦34′03.8′′ N 113◦46′04.6′′ E). Both forest patches are classified as
HCV level 4 (RSPO, 2014) because of their capacity to provide “basic ecosystem services in a
critical situation, including protection of water catchment and control or erosion of vulnerable soils
and slopes”. Management activities such as harvesting, pruning, fertilizing and insecticide
spraying are common in both oil palm plantations.
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Transects 4, 5 and 6 are situated in the Saremas 1 conservation area. Transect lines are not drawn to 
scale. Lighter green indicates oil palm estate and darker the HCV forest patches. 

2.2. Insect Sampling 
Flight interception traps placed along six 600 m transects were used to sample flying 

insects. Transects crossed the forest–plantation boundary and extended 300 m into each 
habitat. The six transects were divided evenly between Saremas 1 and Segarmas (Figure 
1). Traps were positioned in each habitat along each transect, at 50 m, 150 m and 300 m 
from the forest–plantation boundary, totalling 6 traps per transect. 

A handheld Global Positioning System (GPS) was used to measure the length of the 
transects and determine the location of the traps. Each flight interception trap comprised 
a 2 m × 1 m fine black net pulled taught between two trees with a trough positioned below 
to catch insects flying into the net [65,66]. The trough was filled with 4.5 litres of water, 
and approximately 20 mL of dish soap was added to elevate water surface tension, along 
with 0.2 litres of spirit alcohol to preserve the insects until samples were collected [66]. 
Samples were collected every second day. The liquid mixture in each trough was renewed 
after each sample collection. Sampling took place over 40 days during June and July of 
2015 (18 trap days). Insects were sorted by order and then into morphospecies based on 
defining characteristics using methods described in Oliver and Beattie [67]. An individual 
from each morphospecies was kept as a reference specimen and photographed. The ref-
erence collection was preserved at −10 °C. 

Figure 1. Transect locations. Transects 1, 2 and 3, are situated in the Bukit Durang HCV forest patch.
Transects 4, 5 and 6 are situated in the Saremas 1 conservation area. Transect lines are not drawn to
scale. Lighter green indicates oil palm estate and darker the HCV forest patches.

2.2. Insect Sampling

Flight interception traps placed along six 600 m transects were used to sample flying
insects. Transects crossed the forest–plantation boundary and extended 300 m into each
habitat. The six transects were divided evenly between Saremas 1 and Segarmas (Figure 1).
Traps were positioned in each habitat along each transect, at 50 m, 150 m and 300 m from
the forest–plantation boundary, totalling 6 traps per transect.

A handheld Global Positioning System (GPS) was used to measure the length of the
transects and determine the location of the traps. Each flight interception trap comprised a
2 m × 1 m fine black net pulled taught between two trees with a trough positioned below
to catch insects flying into the net [65,66]. The trough was filled with 4.5 litres of water, and
approximately 20 mL of dish soap was added to elevate water surface tension, along with
0.2 litres of spirit alcohol to preserve the insects until samples were collected [66]. Samples
were collected every second day. The liquid mixture in each trough was renewed after
each sample collection. Sampling took place over 40 days during June and July of 2015
(18 trap days). Insects were sorted by order and then into morphospecies based on defining
characteristics using methods described in Oliver and Beattie [67]. An individual from
each morphospecies was kept as a reference specimen and photographed. The reference
collection was preserved at −10 ◦C.
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2.3. Habitat Complexity and Physiognomy

To quantify the differences in habitat physiognomy between plantation and forest
the percentage cover of leaf litter, dead wood, vines, and vegetation between 0 and 0.5 m,
between 0.5 m and 1 m, and between 1 m and 2 m, were estimated within 10 m × 10 m
quadrats (0.01 ha) centred on each trap. Measurements were focussed on understory
vegetation between 0–2 m to match the height of the traps. Trees (DBH > 15 cm), poles
(5 cm < DBH < 15 cm) and saplings (DBH < 5 cm) were counted, and their density was
estimated in a larger 20 m × 20 m quadrat (0.04 ha), also centred on a trap.

2.4. Bee and Fly Functional Diversity

Functional richness (FR) of bees was compared between oil palm and forest habitat
types using a single trait—body size. Body size influences a wide range of physiological,
behavioural and ecological traits [68]. Furthermore, there is evidence that plant morphology
affects body size and that different body sizes fill different pollination niches in some
taxa [69]. Single-trait analysis was chosen over multi-trait analysis because of the nature
of identification in this study. Bee body size was measured as the distance between wing
bases, intertegular (IT) span, as this measures the thorax that contains the flight muscles,
and is correlated with dry bodyweight: IT span = 0.77(mass)0.405 R2 = 0.96; mass in mg and
IT in mm; [70]. Fly body size was measured as the width of the thorax at its widest point.
Each species’ maximum and minimum body size represented their range in functional
space. FR was compared using individuals’ functional range (FRis) following Schleuter,
Daufresne, Massol and Argillier [71].

2.5. Data Analysis

Morphospecies individuals were analysed at the level of trap (6 traps × 6 transects)
and repeated samples (18 samples) from each trap station were pooled. All statistical anal-
yses of morphospecies abundance and diversity were completed in R statistical software
(ver. 4.2.2.) [72]. Species diversity and evenness were compared between habitat types using
Shannon–Wiener diversity indices and Pielou’s evenness index using the “vegan” package [73].
Species richness and sampling saturation was estimated using rarefied species accumulation
curves (specaccum function in “vegan”) and by averaging three popular abundance-based ex-
trapolation methods (Chao1, Jack1, Bootstrap) using the specpool function. As sampling effort
was the same between and within habitats, for comparison the absolute species richness is
analysed and displayed in graphics. Differences in morphospecies composition between habi-
tats were examined by non-metric multidimensional scaling ordination using the metaMDS
function in the vegan package. Bray–Curtis dissimilarity was used as it is non-Euclidean and
better suited to detecting underlying ecological gradients using ranked data [74]. Solutions
were scaled so that one unit change equates to a halving of community similarity. Differences
in composition between habitats were also examined by permutational multivariate analysis
of variance PerMANOVA; [75], using the ADONIS2 function and Bray–Curtis distance.

The effect of distance from the ecotone on flying insect diversity and abundance was
examined for each order using a general linear mixed model (GLMM). Distance of the
trap station from the ecotone and forest patch was included as fixed effect and the transect
within a forest patch as a random effect. Second-order or higher linear functions were
fitted to the models to better illustrate the relationship between insect abundance and
distance from the ecotone. Difference in abundance of E. kamerunicus and differences in the
abundance and diversity of bees were examined between habitats. Bee data were extracted
from the Hymenoptera data set. The abundance and diversity of bees and E. kamerunicus
were compared between habitats using the Kruskal–Wallis test as data did not fit the
assumptions of parametric analysis.

Finally, functional diversity between communities was compared using the individual
trait variance of species within each community. The FRis score was the union of all species
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trait ranges (Rts) in a particular community, standardised by the trait ranges of every species
that appears in all communities [71]:

Rts = max
i∈s

[xits]−min
i∈s

[xits] =
∫

1st(x)dx

FRIs =

⋃
s∈Sc Rts⋃

s∈∪Sc Rts
=

∫
max
s∈Sc

[1st(x)]dx∫
max
s∈∪Sc

[1st(x)]dx

where t stands for trait value, s for species, i∈s for individual i belonging to species s and
1st(x) is the indicator function for trait t in species s.

3. Results
3.1. Habitat Complexity and Physiognomy

Trees occurred at a greater density in forests than in plantation habitats (Figure 2a).
There were no pole-sized trees recorded in the plantation habitat. Saplings occurred at a
greater density in forests than in plantation habitats where they were absent (Figure 2a).
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Figure 2. Tree, pole and sapling density (a) and proportional cover of bare ground, deadwood, leaf
litter, grass and shrubs (b) in forest and plantation.

The percentage of canopy cover was 78% in forests and 60% in plantations. Although
the two habitats have similar ground cover, the plantation understory was dominated by
mosses and ferns and was more open with very low flowering shrub and leaf litter cover
(Figures 2b and 3).

3.2. Comparison of Insect Abundance, Diversity and Richness between Habitats

A total of 8917 individuals and 682 species were sampled. More species were recorded
in the forest (557) than in the palm oil plantations (471). Rarefied species accumulation
curves indicate that all orders in each habitat appear to be reaching their asymptotes
(Figure S1) and >74% of species were sampled. Of these, 211 (31%) were unique to the
forest habitat, 125 (18%) were unique to the plantation habitat and 346 (51%) species were
recorded in both habitat types. Of the six insect orders sampled, the greatest species
abundance and richness were recorded for the Coleoptera, with a total of 3587 individuals
from 267 morphospecies (Figure 4).
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Figure 4. Morphospecies richness by order in forest habitat only, in both forest and plantation habitat
and in oil palm plantation only. Morphospecies richness for each order given above each bar in red
and alongside for each category.

In the other orders, 782 individuals of Blattodea representing 43 morphospecies;
773 Diptera of 63 morphospecies; 519 Hemiptera of 81 morphospecies; 2524 Hymenoptera
of 148 morphospecies, of which 94 were ants, 37 were wasps and 17 were bees; and 732 Lep-
idoptera comprising 80 morphospecies, of which 3 were butterflies and 75 were moths.
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All orders were dominated by a few hyper-abundant species. For example, one
species accounted for 17.5% (628 individuals) of total Coleoptera abundance; one species
accounted for 30.9% (782 individuals) of all Hymenopterans recorded; and a species of fly
represented 37.4% (289 individuals) of the dipterans captured. Diptera and Hymenoptera
were significantly more abundant in the plantation habitat (Table 1). Of the 48 species of
Diptera sampled in the plantation habitat, three species accounted for 71% of all individuals.
Similarly, of the 119 species of Hymenoptera in the plantation habitat, three accounted for
48% of all individuals sampled.

Table 1. Order-level differences in abundance between forest and plantation habitats. Significantly
different abundances in bold type.

Order Adj.R2 df MSE F Value p Value

Blattodea −0.030 1/33 0.5 0.002 0.963
Coleoptera −0.005 1/33 0.3 0.8 0.371
Diptera 0.682 1/33 0.291 73.8 <0.005
Hemiptera Patch 1 0.000 1/15 0.1 1.0 0.334
Hemiptera Patch 2 0.506 1/15 0.3 18.4 0.001
Hymenoptera 0.111 1/33 0.3 5.3 0.029
Lepidoptera 0.021 1/33 0.5 1.7 0.195

3.3. Comparison of Community Assemblages between Oil Palm and Forest

In general, species richness and diversity were greatest in the forest for all orders, and
community structure was more even (Table 2). Diptera abundance and species richness
were greatest in oil palm, and Hymenoptera and Lepidoptera species richness were the
same or near identical. Community assemblages differed significantly between forest and
plantation (Figure 5; ADONIS2 F1,22 = 4.91, p < 0.0001), and for some orders between
HCV forests and between oil palm estates (Figure 6). For example, Coleoptera forest
communities differed significantly from those in oil palm (F1,22 = 5.61, p < 0.0001), and
Saremas 1 communities differed from those in Segarmas (Figure 6). The composition of
Blattodea, Hemiptera, Diptera and Hymenoptera communities were significantly different
between the two habitat types (Blattodea: F1,22 = 3.71, p < 0.0001; Hemiptera: F1,22 = 2.74,
p < 0.0003; Diptera: F1,22 = 5.86, p < 0.0001; Hymenoptera: F1,22 = 2.74, p < 0.0001), but
were not grouped between sites (Figure 6). Lepidoptera communities differed significantly
between habitat groups (F3,20 = 2.26, p < 0.0001), and between Saramas 1 and Segarmas and
Bukit Durang and the HCV4 forests (Figure 6).

3.4. Species Richness Gradients across the Forest—Plantation Ecotone

All orders were more species-rich within the forest ecotone (Figure 7). Coleoptera and
Hemiptera were more species-rich in the plantation than in the adjacent forest, while the
Diptera declined in species richness from forest to oil palm (Figure 7).

For the remaining orders, there was no appreciable difference in species richness
between forest and oil palm (Figure 7). These order level patterns of species richness may
be mistaken for suggesting that oil palm plantation does not present a hard boundary
to insects. However, the striking differences in community composition and turnover
between forest and oil palm plantation (see above; Figure 6) emphasises that plantation
does significantly filter the insect community.

Coleoptera communities are significantly filtered by oil palm with a significantly
different but richer community in plantations. Diptera communities show opposite trends
to the Coleoptera with fewer (F1,33 = 6.02, p < 0.02) and different species in oil palm habitat
(Figure 7). Similar differences in community assemblage composition and turnover between
habitats (see above) occur in other orders.
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Table 2. Insect diversity, richness and abundance for forest and plantation. Data are provided
separately for each forest patch and the adjacent plantation. Diversity is according to Chao 1 diversity
index; richness according to rarefied species richness, which was calculated based on the lowest
number of individuals sampled; and abundance is the number of individuals sampled. H’ is the
Shannon–Weiner index, and SR is species richness.

Order Diversity Index Forest Plantation

Patch 1 Patch 2 Patch 1 Patch 2

Blattodea

Chao 1 38 62 30 59
Exp (H’) 14 14 10 12
Simpson’s index 0.908 0.895 0.808 0.848
Rarefied SR 21 28 22 20
Observed SR 25 31 22 28
Abundance 219 154 178 231

Coleoptera

Chao 1 239 279 184 171
Exp (H’) 57 63 22 36
Simpson’s index 0.966 0.961 0.825 0.944
Rarefied SR 131 153 115 100
Observed SR 159 171 131 103
Abundance 1029 900 913 745

Diptera

Chao 1 52 57 100 38
Exp (H’) 14 18 8 8
Simpson’s index 0.848 0.925 0.775 0.739
Rarefied SR 22 24 14 16
Observed SR 31 25 37 31
Abundance 100 54 312 307

Hemiptera

Chao 1 76 84 40 58
Exp (H’) 27 21 20 25
Simpson’s index 0.952 0.847 0.931 0.948
Rarefied SR 31 29 31 27
Observed SR 37 55 29 33
Abundance 86 273 93 67

Hymenoptera

Chao 1 125 96 147 110
Exp (H’) 25 21 19 24
Simpson’s index 0.878 0.847 0.861 0.900
Rarefied SR 81 72 69 68
Observed SR 94 73 89 85
Abundance 567 409 840 708

Lepidoptera

Chao 1 63 78 54 60
Exp (H’) 28 33 22 24
Simpson’s index 0.946 0.956 0.934 0.924
Rarefied SR 41 41 34 29
Observed SR 42 52 39 51
Abundance 103 158 186 285

Total species 391 404 349 320

3.5. Changes in Abundance across the Forest—Plantation Ecotone

The abundance of individuals in each order broadly followed the trends observed
for species richness (Figure 8). There were significantly fewer Diptera and Lepidoptera
individuals, and significantly more Hemiptera individuals, in oil palm plantations than
in forests. Coleoptera, Blattodea and Hymenoptera did not differ in abundance between
habitats (Figure 8).
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3.6. Potential Native Pollinators of Oil Palm

Thrips (Thysanoptera) are native pollinators of oil palm [76]. Significantly fewer thrip
individuals (n = 30, 27.3%) were found in forest patches than in oil palm plantations (n = 80,
72.7%; t = −2.63, df = 22, p = 0.015). Thrip abundance did not increase with proximity to
the forest ecotone (R2 = 0.044, F1,4 = 2.02, p = 0.170) as observed in many orders.

A few of the introduced oil palm pollinating weevils, Elaiedobius kamerunicus were
collected in the traps (n = 22). Most of these individuals were found in the oil palm
plantation (86.4%, n = 19; χ2 = 7.94, df = 1, p = 0.005; Figure 9).

Ninety-two bee individuals were sampled from seventeen species. Six species were
unique to the plantation habitat and four species to the forest habitat, while seven species
were found in both habitats. Bee abundance did not differ significantly between habitats
(χ2 = 2.13, df = 1, p = 0.145; Figure 9, Table S1).
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3.7. Functional Diversity of Potential Bee and Fly Pollinator Species

Bee functional diversity (17 species) across all habitats was lower (FRis = 2) than fly
functional diversity (28 species; FRis = 3.620). Bee functional diversity was greater in oil
palm (FRis = 0.950) than in the HCV forest patches (HCV4 FRis = 0.895; Bukit Durang
FRis = 0.860) (Figure S2). Diptera displayed the opposite relationship with assemblages
in HCV forests presenting greater functional diversity (HCV4 FRis = 0.980; Bukit Durang
FRis = 1.000) than oil palm (FRis = 0.765) (Figure S3). Both bee and fly assemblages had a
high proportion of functionally redundant species (Diptera 57%, n = 16 species; Bee 58%,
n = 10 species). Both assemblages were dominated by species with a broad range of func-
tional traits. For instance, fly species-14 presented 21% and bee species-2 presented 28% of
the total trait range. The bee community also included two species with an extreme trait
value but a low variation, increasing the trait range by 70%.

4. Discussion
4.1. Comparing Forest and Plantation Insect Assemblages

In spite of the potential of native species as pollinators of oil palm, Edwards, Ed-
wards [61] found that their net effect on oil palm yield was neutral. They urged a more
nuanced assessment of the effects of forest remnants and their biodiversity on oil palm
yields, and that the benefits of retaining forest remnants are dependent on their size and
number. At current levels, the retention of remnants is not beneficial to the environment
as a whole, with HCVs supporting only fractionally more diversity than the oil palm
itself [62,77]. The reduced assemblages of dung beetles [78], termites [79] and birds [18,80]
in remnant forests have low functional diversity, affecting ecosystem services. Nevertheless,
retaining old growth forests on the boundary of plantations does significantly increase
biodiversity [81], and the current opinion is that conservation efforts are best focused on
conserving larger remaining primary and secondary forests.

In this study, both species diversity and richness were lower in oil palms than in
forests. The difference between habitats (Figure 5) was consistent with other studies [34]
with on average 28.1% (s.e. = 4.3%) of species among the orders being unique to oil palm
(Table 1, Figure 4) and 71.9 ± 4.3% of species found in both forest and oil palm. Only the
Hemiptera were less species-rich in the forest than in oil palm habitats. Coleoptera species
richness was greater than expected in oil palm when compared to primary and logged
forest and oil palm [26].

A similarity in species diversity among habitats is usually ascribed, in part, to the
influence of habitat patch size and isolation [82]. It is likely that species lost when forest is
converted to oil palm are replaced by disturbance-tolerant generalist species [24–26]. Our
results support species replacement rather than retention, with plantation communities
in all orders differing in assemblage composition from their respective forest assemblages
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(Figure 6). Both retention of important forest species [45] and replacement of forest species
in oil palm [78] have been observed. However, in the Coleoptera, species replacement
was less than expected from continuous forest adjacent to the plantation [64,77]. This
suggests that while they experience large losses of diversity, forest fragments are able to
retain some hardy forest species [78,83], and that a select number of generalists dominated
the community, with several species in oil palm reaching exceptionally high abundances,
reducing species evenness and increasing total abundances in oil palm (Table 1).

4.2. Plantation Boundary Effect on Insect Assemblages

The oil palm plantation boundary is an environmental filter and affects flying insects
in two ways. First, it filters species by habitat so that in most orders the composition of
assemblages was different in plantation from forest (Figure 6). Second, species richness and
abundance are expected to decline with distance into the plantation. In this study, species
richness and abundance trends did not decline as expected (Figures 7 and 8). These trends
are likely confounded by species replacement in oil palm by generalist species [83] and
perhaps by the relatively short distance surveyed (300 m) into the plantation. Thus, the oil
palm boundary represents a hard boundary for habitat specialists and a soft boundary for
generalist species. In general, a decline in species richness and abundance with distance
into oil palm is explained by high levels of functional redundancy among generalist
species, and secondly by an assumed increase in competition among functionally similar
species with increasing simplification of the oil palm habitat with distance from the forest–
plantation ecotone (Figures 2 and 3). The latter trends were most notable for native
Coleoptera (Figures 7 and 8), although the introduced weevil increased in abundance
further into the plantation (Figure 9). Consistent with the observed richness across the
forest–oil palm habitat gradient [64], Lepidoptera were more diverse at the habitat boundary
(Figure 7). However, while Lepidoptera typical of tropical forests have been observed
in plantation habitats, species that are common in oil palm have not been observed in
forest [40]. Pyroderces species of moth known to occur in forests, and are possible pollinators
of oil palm, were not identified in this study. Boundary filtering of the oil palm weevil
and thrips was not observed. There was a strong distance effect on the richness and
abundance of Diptera in oil palm plantations (Figure 7). Despite the abundance of Diptera
and Hymenoptera in the plantation environment, there was at best a weak forest edge
effect with few “oil palm” species penetrating into the forest, consistent with the findings
of Lucey and Hill [40].

4.3. Potential Native Oil Palm Pollinators

Neither thrips nor E. kamerunicus increased in abundance with proximity to forests
(Figure 9) and appear to be oil palm-dependent species [57]. Both were significantly more
abundant in oil palm than in forest. This concurs with previous studies that show that
native oil palm pollinators are not found in close proximity to forest [57] and palm oil
yield does not decline in proximity to forest [61]. In fact, the forest provides a reservoir for
parasites and predators of native oil palm pollinators affecting yield [84]. Other tropical
crops such as coffee show the opposite yield trends [85,86]. However, coffee plantations
are a mix of crop and non-crop plants, rather than a monoculture, and are more hospitable
to forest species [87]. Trends in the diversity of Lepidoptera in oil palm suggest that moths
may be potential pollinators too. However, potential oil palm pollinator moths of the
genus Pyroderces could not be identified in the field. Their abundance and effect on yields
should be investigated. Coleoptera richness across the distance gradient did not predict
E. kamerunicus abundance patterns in this study.

4.4. Functional Diversity of Potential Pollinator Taxa

The diversity of bees in an oil palm plantation on Peninsula Malaysia (17 species) [27]
was similar to the 11 species sampled in oil palm in this study. However, diversity indices
do not reflect the ecological importance of species. We examined the proposition that bee
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species are differentiated according to their functional traits and capability. We intuitively
expected bee functional diversity to be greatest in the complex forest habitat but found that
it was greatest in oil palm. This accords with Liow, Sodhi’s [27] finding that bee diversity
was greatest in oil palm landscapes. The smaller of the two forest patches sustained higher
functional diversity than the larger Bukit Durang area. Bukit Durang is a long and thin
forest (Figure 3) with greater edge effects on bee diversity [88] than Saremas 1 HCV 4. A
reduction in core habitat is known to result in the loss of specialist forest species and forest
size and shape may limit species diversity and their functional diversity.

Diptera functional diversity was commensurate with trends in the literature with
higher functional diversity in forest patches [78–80]. Saremas 1 HCV4 had far fewer species
than the oil palm, but the absent species were functionally redundant. In contrast, species
absent from oil palm included two functionally extreme species that were not replaced by
disturbance-tolerant species. We conclude that the functional diversity of bees and flies in
oil palm is not limiting the potential for these orders to be native pollinators of oil palm.

4.5. Do Forest Refugia Benefit Oil Palm?

Forest patches within the oil palm landscape provide essential ecological services to
palm oil plantations. This study shows that native pollinator species that reside in forest
refugia have the potential to supplement pollination by the introduced oil palm weevil [89].
Retaining more native forest vegetation on palm oil estates can provide pollination services
but also provide benefits to soil and water retention and quality, as well as improving and
sustaining biodiversity. Riperian habitat, when large enough, can effectively combat soil ero-
sion and protect waterways [60]. The latter is essential for proper environmental certification
of palm oil products. Furthermore, forest refugia are necessary to support connectivity and
the maintenance of metapopulations of wildlife that would otherwise undergo area- and
isolation-dependent extirpation. This study demonstrates that forest refugia may be important
species pools or sources for generalist and highly mobile insects [23,90]. Insect community
assemblages are known to differ between forest and oil palm [23] and these differences were
also observed in this study. Clearly, some insect taxa perceive the oil palm boundary as a
hard boundary (hence the differences in assemblage structure and composition), for others
such as Coleoptera and Lepidoptera, it is a soft boundary. Butterflies are able to migrate long
distances with relatively high accuracy [91]. Previous research on bird diversity and abun-
dance in wildlife-friendly oil palm estates found that while the retention of forest fragments
is desirable [81], protecting contiguous forests on or adjacent to estates is preferred [77]. An
analysis of the complexity of the food web and community structure [92–94] on oil palms
estates with different amounts of forest refugia is needed to establish what level of forest cover
and connectivity is best in planning and restoring oil palm estates [22,33].

5. Conclusions

Several key findings relating to environmentally responsible management of oil palm
landscapes can be derived from this study.

1. While insect diversity in oil palms is generally lower than in forests, the differences
in richness reported in other studies were not observed. In this study, this may be
due to sampling insects in oil palms in relative proximity (within 300 m) to forests.
Nevertheless, the value of retaining forest fragments within oil palm-dominated
landscapes is indicated by the high proportion of species (72%, 346 species) recorded
in both habitat types.

2. Insect assemblage composition differed between forest and oil palm and to a lesser
extent between the forests examined in this study. Clearly, not all forests are the same
and community dynamics may differ among fragments dependent on their area and
isolation characteristics and history. Optimizing the retention of forest fragments with
different characteristics and history on oil palm landscapes is recommended, but the
larger and less linear (except for riparian forests) the better.
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3. While species richness was slightly less and potentially different (see Point 2) in oil
palm from forests, species evenness in oil palm was low and dominated by a few
species, especially among the Coleoptera, Hymenoptera and Diptera. These dominant
species are likely generalists [24–26], capable of persisting in oil palm and should be
more closely investigated for their potential as native pollinators of oil palm.

4. Identifying orders and related species, such as Lepidoptera, for whom oil palm
presents a softer and more permeable boundary is an essential step in managing
oil palm for both environmental and economic viability. Retaining riparian forests is
important for retaining native species, especially moths in the genus Pyroderces, that
may have the potential to pollinate oil palm [81,95].

5. The abundance of the oil palm weevils (Elaedobius kamerunicus) was low compared
to the native dominants, but similar to levels displayed by native thrips that may
be pollinators of oil palm. In addition, the weevil was more abundant further into
oil palm. Previous studies show no decline in oil palm yield with proximity to the
boundary, suggesting that either the low abundance of the weevil is sufficient for the
economic viability of oil palm, or that native species assume the role of pollinators near
forest fragments. It is likely a combination of the latter, but further species-focused
research is required [96,97], especially thrip species [76,98] and moths in the genus
Pyroderces [95,99].

6. The functional diversity of well-known pollinator guilds—bees and flies—was similar
in forest and oil palm, suggesting that potential pollinators may yet exist among
native orders of insects. Ongoing reviews of potential pollinators are advised, as
the functional diversity of potential native pollinators suggests sufficient phenotypic
plasticity to adapt to pollinating oil palms.

7. The estate management policy of planting non-native flowering plants along roadsides,
and its effect on potential insect pollinator diversity in oil palm, needs to be reviewed
for its effectiveness. Management of the moss- and fern-dominated understorey in oil
palm to increase the abundance of flowering plants is recommended.

8. Finally, conserving and including forest fragments in an oil palm-dominated landscape
has mainly positive benefits for the environment and oil palm productivity. Some have
argued that these benefits are outweighed by the benefits of focusing on protecting
remaining continuous forests through a large-scale land-sparing approach [4,22,77,100].
However, where oil palm establishment has occurred or is inevitable, as much native
forest habitat should be included on estates as possible, especially well-buffered (wide)
riparian forests [45,60].
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functional diversity of fly communities in oil palm (A), Bukit Durang (B) and HCV4 (C). Blue bar
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