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Abstract: Data pre-processing for developing a generalised land use and land cover (LULC) deep
learning model using earth observation data is important for the classification of a different date
and/or sensor. However, it is unclear how to approach deep learning segmentation problems
in earth observation data. In this paper, we trialled different methods of data preparation for
Convolutional Neural Network (CNN) training and semantic segmentation of LULC features within
aerial photography over the Wet Tropics and Atherton Tablelands, Queensland, Australia. This was
conducted by trialling and ranking various training patch selection sampling strategies, patch and
batch sizes, data augmentations and scaling and inference strategies. Our results showed: a stratified
random sampling approach for producing training patches counteracted class imbalances; a smaller
number of larger patches (small batch size) improves model accuracy; data augmentations and scaling
are imperative in creating a generalised model able to accurately classify LULC features in imagery
from a different date and sensor; and producing the output classification by averaging multiple grids
of patches and three rotated versions of each patch produced a more accurate and aesthetic result.
Combining the findings from the trials, we fully trained five models on the 2018 training image and
applied the model to the 2015 test image. The output LULC classifications achieved an average kappa
of 0.84, user accuracy of 0.81, and producer accuracy of 0.87. Future research using CNNs and earth
observation data should implement the findings of this project to increase LULC model accuracy
and transferability.

Keywords: convolutional neural network; deep learning; semantic segmentation; land use; land
cover; aerial imagery

1. Introduction
1.1. Land Use and Land Cover Mapping

Remote sensing as a young science has already undergone several paradigm shifts, for
example, from plain pixel-based analysis to subpixel analysis and geographic object-based
image analysis [1]. Lately, the term ‘big data’, labelled as the fourth paradigm in science [2],
has been used to describe challenges associated with data-intensive sciences. The steadily
increasing volume of data, such as remotely sensed multispectral imagery, leads to general
big data problems where methods are required to process and analyse the input data for
efficient, generalised, transferrable and accurate information extraction [3,4].

Advances in earth observation technologies have provided efficient and cost-effective
land use and land cover (LULC) mapping, encompassing a larger area with higher accuracy
compared to traditional field surveys [5]. As a result, many programs around the world
were established based on manual digitisation in a Geographic Information System (GIS)
environment using image interpretation with assistance from other ancillary data [6].
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Currently, there are operational LULC mapping programs in several countries. These
include the Global Land Cover Characteristics Database from the United States Geological
Survey, Co-ORdinated INformation on the Environment (CORINE) from the European
Environmental Agency, GeoBase from the Canadian Council on Geomatics and Natural
Resources and the Australian Land Use and Management Program. These programs
involve extensive manual interpretation of imagery and other ancillary data to derive
LULC, although there has been some automation of land cover classes.

1.2. Automated Land Use and Land Cover Classifications

Image classification has been fundamental in LULC analysis since the early days
of the remote sensing discipline [7]. There have been many studies exploring classifi-
cation techniques for LULC classification; however, it is still unclear which are the best
classifiers [8].

Traditional approaches, such as maximum likelihood, fuzzy logic and object-oriented
classifications, are referred to as shallow learning. These methods extract data based on
spatial, spectral, textural, morphological and other cues [9]. However, shallow learning
analytical techniques for extracting LULC information using high spatial resolution imagery
but low spectral and temporal resolution cannot successfully separate land use classes due
to similar spectral signatures between features [8].

In contrast, because deep learning is multi-layered and learns from the data itself,
results can be significantly more accurate than those of shallow learning [10,11] and it has
been shown to outperform manual human editing [12].

1.3. Deep Learning

Deep learning for image segmentation has recently become the superior classification
technique for earth observation data, including the identification of LULC in very high-
resolution (<1 m) data. This popularity is evident from the number of review papers
attempting to bring order and clarity to the plethora of recent studies [13–16].

Convolutional Neural Networks (CNNs), a form of deep-learning, can utilise con-
textual information as well as spectral information to undertake image analysis. CNNs
are the current network architecture of choice, with U-Net [17] being one of the most
popular [13]. The U-Net has been used in multiple LULC studies, including forest cover-
age [18], urban studies such as building, road and car identification [19], and agricultural
applications [20].

Numerous studies have shown deep learning techniques can successfully classify land
use features; however, there are limited real-world mapping applications as most of the
literature surveyed was constrained geographically or restricted to a standard set of training
images, such as the University of California Merced Land Use Dataset. Furthermore, there
are few studies that focus on generalisation and assess accuracy when applying the model
to data from another time, sensor, or geographical area [16].

Challenges for Deep Learning Applications and Project Aims

There are several challenges that new projects must overcome to use deep learning
techniques for automated data extraction from earth observations. Obtaining and pro-
cessing training data is a major hurdle, although there is an abundance of imagery [21].
There are freely available existing datasets that can form the basis for training data, such
as those discussed in Section 1.1. However, these products are produced at a continental
scale with resolutions greater than 30 m and do not match the sub-metre spatial resolution
imagery generally used with CNNs. Although some effort has been made recently to re-
lease higher resolution datasets (e.g., https://github.com/Seyed-Ali-Ahmadi/Awesome_
Satellite_Benchmark_Datasets accessed on 16 June 2023).

A recent review article by [22] concluded that computer vision methods are yet to
be unified and integrated with traditional earth observation analysis for LULC mapping.
The article recommended that novel tools and approaches be developed that combine

https://github.com/Seyed-Ali-Ahmadi/Awesome_Satellite_Benchmark_Datasets
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computer vision technology with earth observation data for LULC mapping. In addition,
Vali et al. [23] discusses the technical issues associated with applying deep learning to earth
observation data, including data preparation.

In earth observation data and classifications, the disparity within and between classes
causes class imbalances. Within a particular class, there can be a variety of factors, such as
environmental and climatic influences, solar angle and clouds, and the influence of recent or
absent rainfall, that need to be considered. Further to this, there can be variations within the
class simply because of the elements from which it is composed. For example, the tree fruit
class within the Australian Land Use and Management (ALUM) classification represents
several different tree fruit crop types, such as papaya, banana and mango, which all have
different leaf and growth structures. Although increasing the classification resolution to
the commodity level assists with class consistency, this can present other challenges as a
subtle variation between classes makes separation difficult using earth observation without
additional information such as ground-based observations. A balance is needed between
what training data can be collected from satellite or aerial imagery and creating a robust
model to account for variation within and between classes.

Another challenging factor in remote sensing applications is the class representation
of the landscape. Most applications tend to have one dominant class and several classes
that make up only a small proportion of the landscape. Systematic or random generation of
training patches (or image chips) will have very few training samples for underrepresented
classes, resulting in poor classification for these. With one class dominating the image, it
is highly likely that the classification algorithm will misclassify smaller classes without
incurring a huge penalty. In addition, different areas within the training data class features
result in features with small areas being less sampled than larger features, resulting in their
poor classification.

To address LULC mapping in a consistent and repeatable way, this project aimed
to establish standard training data processing recommendations that can be generally
applied to high-resolution RGB earth observation data prior to training a deep learning
model, including:

- how to sample the data;
- which patch size was the most effective;
- what effect the size of the batch of training data had on model training;
- how to ensure model transferability through data augmentations and scaling;
- how to create a more accurate and aesthetic classification by averaging the results of

multiple prediction passes and augmentations.

Determining a standard set of pre-processing parameters for training data will assist
future projects on how to approach deep learning segmentation problems.

2. Methodology
2.1. Project Area

The project area, located in North Queensland, Australia, encompasses the towns of
Mareeba in the north, Atherton in the south and Dimbulah in the west (Figure 1).

The eastern part of the project area contains part of the world heritage-listed Wet
Tropics rainforests, with the dominant land uses of production from relatively natural
environments, conservation and natural environments, and production from irrigated
agriculture and plantations (Table 1, Figure 1) [24].
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2018, referred to here as the 2018 training image. The training image was mostly captured 
using a Vexcel Ultracam Eagle camera except for the southwestern corner, which was cap-
tured by an A3 Edge camera. The two cameras have different spectral properties, which 
can be seen in Figure 2b. The test mosaic was acquired between 17 July and 14 October 
2015, using an A3 Edge camera, referred to here as the 2015 test image. 

The images were captured with a mounted fixed-wing, three-band (true-colour) cam-
era at spatial resolutions of 25 cm and 20 cm for 2015 and 2018, respectively. The data were 
provided as orthorectified mosaics. As shown in Figure 2, the quality of the imagery is not 
consistent across the project area. Unfortunately, the specific post-processing details were 

Figure 1. Land uses [24] and project area, North Queensland, Australia.

Table 1. Project area primary land uses [24].

Primary Land Use Hectares Proportion

Production from relatively natural environments 201,625 67.3%
Conservation and natural environments 40,404 13.5%

Production from irrigated agriculture and plantations 37,939 12.7%
Intensive uses 10,133 3.4%

Water 7219 2.4%
Production from dryland agriculture and plantations 2143 0.7%

Total 299,463 100.0%

2.2. Image Data

Two orthorectified aerial imagery mosaics acquired under the Queensland Govern-
ment Spatial Imagery Subscription Plan were used in the project (Figure 2). The mosaic
used for training data and assessing each trial was acquired between 1 and 27 August 2018,
referred to here as the 2018 training image. The training image was mostly captured using
a Vexcel Ultracam Eagle camera except for the southwestern corner, which was captured by
an A3 Edge camera. The two cameras have different spectral properties, which can be seen
in Figure 2b. The test mosaic was acquired between 17 July and 14 October 2015, using an
A3 Edge camera, referred to here as the 2015 test image.

The images were captured with a mounted fixed-wing, three-band (true-colour) cam-
era at spatial resolutions of 25 cm and 20 cm for 2015 and 2018, respectively. The data were
provided as orthorectified mosaics. As shown in Figure 2, the quality of the imagery is
not consistent across the project area. Unfortunately, the specific post-processing details
were not listed within the supplied metadata; however, this was the highest resolution data
available for the project area within the Queensland Government archive.



Land 2023, 12, 1268 5 of 25

Land 2023, 12, x FOR PEER REVIEW 5 of 26 
 

not listed within the supplied metadata; however, this was the highest resolution data 
available for the project area within the Queensland Government archive.  

 
Figure 2. Project area orthorectified aerial imagery for 2015 (a) and 2018 (b). Data supplied by the 
Queensland Government. 

The data were resampled to 50 cm using cubic convolution to reduce data volume, 
reduce overall training time, and ensure the resolution was consistent between images.  

2.3. Data Collection 
Eight LULC classes were selected, along with a ninth ‘Other’ class covering all other 

land uses. The chosen classes fall within the ‘Production from irrigated agriculture and 
plantations’ primary land use class presented in Table 1. These classes tend to be more 
dynamic compared to other classes such as ‘Conservation and natural environments’ or 
‘intensive uses’, which are less likely to change. 

Using ArcGIS Pro, the data were manually collected within the 2018 training image 
and 2015 test image by hand digitising polygons to best represent each feature’s extent 
(e.g., the crop boundary). The classes included banana plantations, berry crops, forestry 
plantations, sugarcane crops, mature tree crops, young tree crops, tea tree plantations and 
vineyards, with all other remaining areas within the test area classified as other land uses. 
These classes were selected based on existing training data from previous work [20], prior 
knowledge of the area, ease of identification of the features within imagery, and the ability 
to digitise on-screen to a high level of detail. 

Figure 2. Project area orthorectified aerial imagery for 2015 (a) and 2018 (b). Data supplied by the
Queensland Government.

The data were resampled to 50 cm using cubic convolution to reduce data volume,
reduce overall training time, and ensure the resolution was consistent between images.

2.3. Data Collection

Eight LULC classes were selected, along with a ninth ‘Other’ class covering all other
land uses. The chosen classes fall within the ‘Production from irrigated agriculture and
plantations’ primary land use class presented in Table 1. These classes tend to be more
dynamic compared to other classes such as ‘Conservation and natural environments’ or
‘intensive uses’, which are less likely to change.

Using ArcGIS Pro, the data were manually collected within the 2018 training image
and 2015 test image by hand digitising polygons to best represent each feature’s extent
(e.g., the crop boundary). The classes included banana plantations, berry crops, forestry
plantations, sugarcane crops, mature tree crops, young tree crops, tea tree plantations and
vineyards, with all other remaining areas within the test area classified as other land uses.
These classes were selected based on existing training data from previous work [20], prior
knowledge of the area, ease of identification of the features within imagery, and the ability
to digitise on-screen to a high level of detail.

The 2018 data was used for training, while the 2015 data was used as a comparison
between the model and human classifications with the independent accuracy assessment
detailed in Section 2.8.
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2.4. Field Verification

A field trip to the project area was conducted in January 2020, where 1582 point-based
roadside observations were made. These data were used in the verification and refinement
of the training data. However, due to the time difference between the field observation and
the imagery acquisition date (17 months), these data were not used to assess the accuracy
of the final classification.

The observations were collected using an Apple iPad Pro running Collector for ArcGIS.
The data were contained in a feature service and stored within the ArcGIS Online servers.
For each point observation, the LULC type (e.g., banana crop) and growth stage (e.g.,
mature crop) were recorded. Optionally, additional fields allowed recording information
such as land management (e.g., irrigation), observation photos, and other information
within a comment field.

2.5. Deep Learning Trials

The objective of this project was to determine a standard set of training processes that
can be generally applied to earth observation data. These processes include training data
sampling strategies, patch size and how to feed these data to the GPU (batch size, data
scaling and augmentations) for learning (Figure 3). Additionally, we trialled the derivation
of the classifications based on the average of multiple inferences from the same test image.
This was achieved through augmentation (image rotations) and by offsetting the start of
the inference by half the number of pixels contained within a single patch.
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For this part of the project, all parameter trials were tested independently. Table 2
summarises the parameter trials, range of test values and default values when the parameter
was not being tested. The only parameters altered within the trials were the ones to be
tested. All other parameters remained consistent throughout the training. There was no
default value for batch size, as this was optimised according to and consistent within each
trial parameter.

Table 2. Parameter trials, number of patches, test values and defaults for the deep learning trials.

Parameter Number of Training Patches Test Values Default

Batch size 3986 10, 50, 100, 150, 200, 250 and 280 *
Patch size and sampling strategy 2408–154,514 1282, 2562, 5122 and 10242 5122

Data Augmentations 22,830 True, False False
Data Scaling 22,830 True, False False

Multiple-Pass Prediction 22,830 True, False False

* batch size was optimised for each trial.

Within each trial, multiple values of the parameters were tested by training five models
for twenty epochs (or iterations of the training data) for each value. It was deemed that
repeating the training a total of five times was sufficient to capture any random variance
within the training process. Training the models for twenty epochs was not enough
iterations of the data to produce a fully trained model; however, it was enough to give an
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indication of training performance and examine the training progress consistently over all
tests while reducing the resource load.

The results can only be compared against each other within the same parameter
trial and are not an indication of the accuracy of the classification from a fully trained
model. Training each trial five times for twenty epochs and assessing the accuracy gave an
assessment of how well a particular set of parameters performed against the 2018 training
image; however, we refrained from assessing the accuracy against the 2015 test image until
we had fully trained models based on the optimised parameters. The method to fully train
a model will be discussed in Section 2.10.

2.5.1. Batch Size

The batch size refers to the number of patches and labels that are processed on the
GPU at one time and is limited by the size of the patches and GPU memory. Using a patch
size of 512 × 512 pixels with three bands and corresponding nine-band labelled data, the
maximum number of patches that could be processed at one time was limited to 280, as
exceeding this value would cause an out-of-memory error. The trials for batch size consisted
of batches ranging from 10 to 280 (Table 2). As this trial involved training 35 models, the
number of patches was restricted to 3986 to limit time and resource requirements.

2.5.2. Patch Size and Sampling Strategy

Two training data sampling approaches were trialled: a systematic grid sampling
strategy and a stratified random sampling approach based on area:

Grid sampling strategy

The grid sampling strategy is a systematic sampling approach. The image is divided
into an even grid, with each grid cell being 1024 × 1024 pixels (512 × 512 m) in size. To
reduce the number of patches, only grid cells that intersected the eight main training classes
were retained. Patches that only intersected the ‘other’ class were excluded—data for this
class was still contained within the target patches as ‘other’ land uses surrounded the eight
main classes within the landscape.

To test for optimum patch size, these grid cells formed the basis for subsequent grid
cell sizes. Each 1024 × 1024 pixel cell was divided into four cells to produce grid cell sizes
of 512 × 512 pixels (256 m × 256 m). This process was repeated to produce a minimum
patch size of 128 × 128 pixels (64 m × 64 m). Figure 4 shows the distribution of the
training data.

This approach ensured the same data were fed to the CNN but split into different-sized
patches. With every reduction in patch size, the number of patches increased fourfold.

Stratified random sampling strategy

The systematic grid sampling strategy is a comprehensive sampling strategy; however,
it does not account for the imbalance in class areas with the training data dominated by
larger classes. To account for this disproportion as well as ensure all features within a
particular class are sampled at least once, a stratified random sampling approach based on
the area was developed.
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For this sampling strategy, the number of patches for a particular class was calculated
by multiplying the required number of patches (based on the result of the grid sampling
strategy) by the log area of the target class and dividing by the sum of the log areas for all
classes. The result was rounded up to the nearest integer (Equation (1)).

Ncp =

⌈
Np

log(ac)

∑i
n log(ac)

⌉
(1)

where Ncp is the number of class patches, Np is the total number of training patches, and
ac is the class area.

Each feature within the training data was sampled at least once to ensure all variations
of the classes were captured. The number of patches generated within the feature was
calculated by multiplying the number of class patches by the proportion of area that the
feature represented of the total class, rounded up to the nearest integer (Equation (2)).

N f p =

⌈
Ncp

a f

ac

⌉
(2)

where Nfp is the number of feature patches, Ncp is the number of class patches, af is the
feature area, and ac is the class area.

To generate the patch extent, a coordinate was randomly selected within the feature’s
geometry. The generated point formed the centroid of the patch.
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To be consistent with the grid approach, a similar number of training patches (Np) was
produced. The stratified random sample approach rounded up the number of classes and
feature patches and sampled every feature within the training data. As a result, the exact
number of patches could not be matched without randomly excluding data, which may
disproportionately affect the classes. Table 3 lists the difference in patch number for each
patch size.

Table 3. Number of patches for patch size and sampling strategy trials.

Patch Size
(Pixels)

Number of Patches
Difference Difference (%)

Stratified Method Grid Method

128 × 128 154,514 154,112 402 0.26%
256 × 256 38,533 38,528 5 0.01%
512 × 512 9635 9632 3 0.03%

1024 × 1024 2412 2408 4 0.17%

Table 4 shows the number of patches for each class and patch size. The table highlights
the differences between the methods and shows that the number of patches in the larger
classes (e.g., other and sugarcane crops) has decreased while the smaller classes (e.g., berry
crops and vineyards) have increased.

Table 4. Number of patches per class for each patch size and sampling strategy trial (grid-based
sampling and stratified random sampling).

Class
128 × 128 Pixels 256 × 256 Pixels 512 × 512 Pixels 1024 × 1024 Pixels

Grid Stratified Grid Stratified Grid Stratified Grid Stratified

Banana Plantations 6155 17,509 1861 4535 637 1214 249 369
Berry Crops 387 14,050 129 3567 49 892 21 230

Other 132,194 98,019 35,955 3567 9519 892 2408 2410
Plantation Forestry 3604 16,565 1100 4191 360 1050 133 266
Sugarcane Crops 23,705 19,585 6994 5162 2247 1503 795 473

Tea Tree 766 14,795 274 3761 110 964 50 247
Tree Crops—Mature 26,360 24,152 9005 7151 3414 2531 1418 941
Tree Crops—Young 4361 17,304 1634 4636 722 1423 367 451

Vineyards 546 14,539 194 3693 84 933 43 241

Total 154,112 154,514 38,528 38,533 9632 9635 2408 2412

Figure 5 shows the spatial distribution of the stratified sampling method and illustrates
the clustering of patches around classes with a smaller area.

When training a neural network, the model weights were updated after each batch
of training data was fed to the GPU. Smaller batch sizes will update the model weights
more often than larger batch sizes. However, larger batch sizes have more data to inform
the update of the model weights. To control the effect of the batch size on the results,
the number of iterations per epoch remained consistent for each of the patch size tests
(Table 5). This was deduced by determining an optimal batch size for the patch size of
1024 × 1024 pixels, which was capable of fitting within the GPU memory (batch size
of 16) and multiplying the result by 4, 42 and 43 to calculate the batch size value for
512 × 512 pixels, 256 × 256 pixels and 128 × 128 pixels, respectively. This resulted in
150.5 batches of data for each epoch (rounded to 151).
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Figure 5. Patch layout from the stratified random sampling strategy. The training classes shown are
derived from the manually derived training dataset.

Table 5. Parameters for setting up the log number patch experiments. The number of iterations
is calculated by dividing the number of patches by the batch size and rounding to the nearest
whole number.

Size (Pixels) Number of Patches Batch Size Batches Per Epoch

1024 × 1024 2408 16 151
512 × 512 9632 64 151
256 × 256 38,528 256 151
128 × 128 154,112 1024 151

2.5.3. Data Augmentations

Aerial imagery can have poor calibration and varying quality and resolution, par-
ticularly between capture dates, because the same vendor, aircraft, camera and camera
condition may not be used. As a result, spectral reflectance and spatial distortions can
affect the appearance of features within the data. In addition, varying climatic conditions
can also affect the spectral reflectance of features. To attempt to capture these variations,
the training data can be augmented by flipping, rotating and changing the brightness of
the image [25,26], which creates a more robust model for these image types and prevents
overfitting of the data [14].

The Python package imgaug v0.4.0 (accessed on 16 June 2023) was used to apply
random augmentations to the training data. The types of augmentation chosen were
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dependent on whether they were deemed useful for remote sensing applications. The
augmentations selected were based on:

• altering the contrast and colourations (gamma, sigmoid, AllChannelsCLASHE, linear,
multiply and allChannelsHistogramEqualization);

• adding noise to the image (salt and pepper, multiply element-wise, additive Gaussian,
additive Poisson and multiply—different for each channel);

• and altering the geometry and scale of the image by zooming and stretching the image
(affine, elastic transformation, vertical and horizontal flips);

• adding blur and artificial clouds/fog/smoke to mimic varying environmental and
climatic conditions, different resolutions, capture angles and aircraft roll effects, which
are not always fully corrected in the provided imagery.

For each training image patch, one augmentation was picked randomly for each of
the contrast, noise and geometric distortions, and 50% of the time either blur or artificial
clouds/fog are applied. The augmentations were applied to each patch at every epoch,
resulting in different versions of the patches on every iteration.

Figure 6 shows examples of the randomly applied augmentations. Note the size of the
image provided does not represent the actual patch size used in this project but instead are
to demonstrate the augmentation output.

Land 2023, 12, x FOR PEER REVIEW 11 of 26 
 

Aerial imagery can have poor calibration and varying quality and resolution, partic-
ularly between capture dates, because the same vendor, aircraft, camera and camera con-
dition may not be used. As a result, spectral reflectance and spatial distortions can affect 
the appearance of features within the data. In addition, varying climatic conditions can 
also affect the spectral reflectance of features. To attempt to capture these variations, the 
training data can be augmented by flipping, rotating and changing the brightness of the 
image [25,26], which creates a more robust model for these image types and prevents 
overfitting of the data [14]. 

The Python package imgaug v0.4.0 (accessed on 16 June 2023) was used to apply 
random augmentations to the training data. The types of augmentation chosen were de-
pendent on whether they were deemed useful for remote sensing applications. The aug-
mentations selected were based on:  
• altering the contrast and colourations (gamma, sigmoid, AllChannelsCLASHE, linear, 

multiply and allChannelsHistogramEqualization); 
• adding noise to the image (salt and pepper, multiply element-wise, additive Gaussian, 

additive Poisson and multiply—different for each channel);  
• and altering the geometry and scale of the image by zooming and stretching the image 

(affine, elastic transformation, vertical and horizontal flips);  
• adding blur and artificial clouds/fog/smoke to mimic varying environmental and cli-

matic conditions, different resolutions, capture angles and aircraft roll effects, which 
are not always fully corrected in the provided imagery. 
For each training image patch, one augmentation was picked randomly for each of 

the contrast, noise and geometric distortions, and 50% of the time either blur or artificial 
clouds/fog are applied. The augmentations were applied to each patch at every epoch, 
resulting in different versions of the patches on every iteration. 

Figure 6 shows examples of the randomly applied augmentations. Note the size of 
the image provided does not represent the actual patch size used in this project but instead 
are to demonstrate the augmentation output. 

 
Figure 6. Example of data augmentations over an area consisting of banana plantations, including 
the original image (top left) and three augmentation versions. Note that these examples do not rep-
resent the patch size used in this project but are a demonstration of the augmentations used for each 
patch. 

2.5.4. Data Scaling 
Imagery from earth observation data can be supplied with a variety of pixel depths, 

including integers and floating point numbers in a variety of sizes, such as 8-bits or 32-

Figure 6. Example of data augmentations over an area consisting of banana plantations, including the
original image (top left) and three augmentation versions. Note that these examples do not represent
the patch size used in this project but are a demonstration of the augmentations used for each patch.

2.5.4. Data Scaling

Imagery from earth observation data can be supplied with a variety of pixel depths,
including integers and floating point numbers in a variety of sizes, such as 8-bits or 32-bits,
and can include negative or positive only values. Without patch data scaling, models
trained with, for example, pixel values between −1 and 1, will not transfer to imagery with
values between 0 and 255. The imagery used in this project was supplied with an 8-bit data
type; however, the distribution of this data varied between the images (Figure 7). The data
were scaled between 0 and 255 for each batch of patches.
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2.5.5. Multiple-Pass Prediction

It has been found in previous studies [27] that the edges of each image chip have lower
accuracy than the centre region. To overcome this, a two-pass ensemble inference strategy
was trialled. This was achieved by iteratively applying the model to the original image
patch and averaging the resulting prediction from three rotated (augmented) versions. The
second pass of predictions was offset by half a patch, resulting in the centre of the patches
being located at the boundary of four of the first pass patches. The results from the two
passes were combined using a weighted average based on distance, with pixels towards
the centre of the patch given a higher weight than the pixels towards the edge.

2.5.6. Patch Image and Label Generation

For all trials except for patch size and sampling, 22,830 patch extents were generated
spatially and stored within an ESRI shapefile. The extents were used to extract the training
image patches. Corresponding labels were generated by converting the training polygon
features to a raster representation covering the extent of the patches. The information
for each class was added to a separate band within the label raster file known as one
hot encoding, where 1 represents the presence of the class and 0 represents its absence.
As a result, the label rasters consisted of nine bands representing each of the classes in
alphabetical order.

2.6. Training

The purpose of the training stage was to allow the model to learn how to identify
land use classes. This was achieved by iterating the training image patches and labels
(training data) to determine their relevant colour, texture and context attributes [12]. Each
trial consisted of 20 iterations (epochs) of the training data.

The aim of the training was to produce a model to label every pixel in the image
through semantic segmentation using a CNN. The structure of the CNN was based on the
U-Net architecture [17]. It consists of two parts: an encoding stage that down-samples
the resolution of the input images and a decoding stage that up-samples and restores the
images to their original resolution.

At each level of the encoding stages, two convolution operations were applied, and a
2 × 2 max pooling operation was used to down-sample the input images. The first level
consisted of the original satellite image and label patches where a specified number of
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filters were applied. For this project, we used 32 initial filters. At each subsequent level of
the encoding side of the U-Net, the number of filters was doubled and the resolution halved
until reaching the bottom level, where 512 filters were applied with a 16-fold reduction
in spatial resolution (8 m) and pixels (e.g., 32 × 32 pixels for an original patch size of
512 × 512 pixels). Figure 8 is a graphical representation of the U-Net architecture from [20].
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2.7. Prediction

Classifications for each trial were produced for the 2018 training image to assess how
well a particular parameter learns from the training data. The classifications for the fully
trained models based on the optimised parameters were produced for 2015 and 2018. The
output from the model prediction is a raster with values between 0 and 1 for the nine
classes represented in nine image bands. The prediction rasters are then flattened to a
single-band thematic map, with the class containing the highest value considered the most
probable feature for each pixel.

2.8. Accuracy Assessment

An independent accuracy assessment was conducted at the desktop by randomly
generating 10,000 points in an unbiased sampling approach. At each point, an observation
was made for the 2018 and 2015 imagery and classified according to the project classes. The
data were stored within an ESRI Shapefile. Figure 9 shows the spatial distribution of data
coloured according to the 2018 observation.
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according to the 2018 observation value.

Although 10,000 points were generated, the disproportionate area between classes
resulted in 94% of the points being located within the ‘Other’ class. This means smaller
classes such as berry crops, vineyards and tea tree plantations only have five or six points.
However, as the trials were repeated five times, this resulted in a minimum of 25-point
observations used to calculate the statistics for each class. Although it would be ideal
to assess the accuracy using additional points, time and resource considerations limited
this capacity.

The hand-crafted training data and each trial classification were compared against
the validation points, and accuracy was assessed by calculating the kappa and the user’s
accuracy (precision), producer’s accuracy (recall) and F1-score metrics for each class.

2.9. Ranking the Trials

To assist in the interpretation of the results, the models were ranked by considering
the reliability of the user’s (recall) and producer’s (precision) accuracy and model training
time. To account for slight changes in computation time due to uncontrolled factors
such as computing infrastructure load, the times were rounded up to the nearest 15 min.
Time was only considered a factor if there was more than 15 min between the minimum
and maximum.

For each test, the metrics were ranked from one to the total number of tests. A higher
ranking represents higher accuracy or a lower computation time. The results were scored
by adding the user’s and producer’s accuracies and twice the time ranks (resulting in the
time having equal weighting as accuracy). Each test was assigned a final ranking based on
this score.
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2.10. Full Training of Top-Performing Models

Using the top trial rankings, full training was conducted to assess the highest possible
result for the project area by training on 2018 data and applying the prediction to the 2015
data. As with the above trials, this was repeated five times but trained for 100 epochs.

2.11. Computing Infrastructure and Software

The Queensland Department of Environment and Science owns and operates High-
Performance Computer (HPC) facilities. The HPC infrastructure consists of 2256 threads,
8.8TB of memory, eight Nvidia Tesla V100 GPUs and NVMe drives, which were used to
process the training data, train the CNN model and create the model inference.

The processing of vector and image data used the Geospatial Data Abstraction Library
(GDAL) version 3.1.0 (https://gdal.org/ accessed on 16 June 2023), and the deep learning
part of the project utilised TensorFlow 2.1.0 [28]. Image augmentations used the Python
library imgaug 0.4.0 (https://imgaug.readthedocs.io/en/latest/ accessed on 16 June 2023).

3. Results and Discussion

The aim of this project was to provide guidance on how to collect and process training
data for use in deep learning projects involving earth observation data. The following
sections present and discuss the results and provide recommendations on how other
projects may best undertake the processing of the training data to produce the best possible
results. Table 6 shows the results for all trials for the 2018 training image.

Table 6. Trial results for the 2018 training image.

Trial Parameter
Average

Training Time
(h)

Kappa (95% CI)
Average

F1—Score
(95% CI)

Average User’s
Accuracy

(Precision)

Average
Producer’s
Accuracy
(Recall)

Ranking

Human
Derived Manual >200 0.96 0.95 0.97 0.92 -

Batch
Size

10 1.2 0.67 (0.62–0.71) 0.68 (0.56–0.74) 0.63 (0.5–0.71) 0.84 (0.66–0.92) 5
50 0.8 0.63 (0.62–0.65) 0.62 (0.6–0.64) 0.53 (0.51–0.55) 0.91 (0.89–0.92) 2
100 0.8 0.55 (0.48–0.62) 0.56 (0.54–0.59) 0.49 (0.46–0.53) 0.85 (0.81–0.89) 1
150 0.8 0.43 (0.31–0.49) 0.51 (0.44–0.56) 0.43 (0.38–0.49) 0.83 (0.81–0.86) 5
200 0.8 0.41 (0.33–0.49) 0.45 (0.41–0.49) 0.38 (0.34–0.41) 0.82 (0.81–0.83) 4
250 0.7 0.45 (0.33–0.51) 0.48 (0.43–0.51) 0.42 (0.37–0.44) 0.79 (0.77–0.8) 2
280 0.7 0.36 (0.19–0.46) 0.41 (0.31–0.45) 0.36 (0.29–0.4) 0.75 (0.65–0.82) 5

Patch Size
(Systematic)

128 × 128 3.7 0.69 (0.65–0.77) 0.49 (0.37–0.59) 0.53 (0.35–0.66) 0.51 (0.42–0.62) 2
256 × 256 1.3 0.58 (0.4–0.72) 0.48 (0.34–0.56) 0.49 (0.34–0.61) 0.55 (0.42–0.63) 2
512 × 512 1.2 0.7 (0.62–0.74) 0.49 (0.45–0.52) 0.53 (0.46–0.61) 0.53 (0.46–0.61) 1

1024 × 1024 1.3 0.66 (0.48–0.75) 0.42 (0.41–0.45) 0.43 (0.4–0.46) 0.47 (0.42–0.52) 4

Patch Size
(stratified-
random)

128 × 128 3.7 0.42 (0.38–0.49) 0.46 (0.41–0.5) 0.38 (0.35–0.43) 0.86 (0.85–0.87) 4
256 × 256 1.2 0.51 (0.47–0.58) 0.51 (0.47–0.57) 0.43 (0.4–0.49) 0.86 (0.85–0.86) 2
512 × 512 1.2 0.65 (0.59–0.71) 0.62 (0.52–0.67) 0.59 (0.48–0.68) 0.77 (0.7–0.81) 1

1024 × 1024 1.3 0.53 (0.31–0.66) 0.54 (0.38–0.62) 0.5 (0.36–0.56) 0.71 (0.52–0.82) 3

Data
Augmentation

FALSE 2.8 0.73 (0.7–0.77) 0.7 (0.66–0.74) 0.64 (0.58–0.68) 0.87 (0.83–0.9) 1
TRUE 8.9 0.49 (0.34–0.59) 0.5 (0.48–0.53) 0.43 (0.4–0.46) 0.75 (0.72–0.77) 2

Data Scaling FALSE 2.1 0.69 (0.62–0.74) 0.64 (0.56–0.69) 0.59 (0.48–0.66) 0.78 (0.72–0.81) 2
TRUE 2.1 0.77 (0.7–0.79) 0.74 (0.68–0.78) 0.68 (0.6–0.74) 0.88 (0.83–0.91) 1

Multiple-Pass
Prediction

Single 8.9 0.49 (0.34–0.59) 0.5 (0.48–0.53) 0.43 (0.4–0.46) 0.75 (0.72–0.77) 2
Multiple 8.9 0.55 (0.4–0.65) 0.52 (0.48–0.53) 0.45 (0.41–0.48) 0.75 (0.69–0.81) 1

3.1. Training Data

The collection of training data took over 200 h to hand digitise. This is a significant
challenge for many semantic segmentation applications [29] and potentially negates any
benefits of deep learning approaches. The availability of the existing banana dataset [20]
assisted greatly, and it is recommended that future studies leverage existing datasets
where possible.

https://gdal.org/
https://imgaug.readthedocs.io/en/latest/
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Table 7 lists the 2018 training data collected for this project. Approximately 94% of the
project area consisted of the ‘other’ class, while only 0.03% of the area contained berry crops.
This class imbalance can be typical for projects classifying LULC using earth observation data.

Table 7. Number of features, area and proportion of the project area for each class in 2018.

Name Feature Count Area (ha) Area (%)

Banana Plantation 243 1860 0.62
Berry Crops 69 92 0.03

Forestry Plantation 118 981 0.33
Sugarcane Crop 515 7621 2.54

Tea Tree Plantation 42 188 0.06
Tree Crop—Mature 2289 6249 2.09
Tree Crop—Young 280 988 0.33

Vineyards 33 146 0.05
Other 323 281,344 93.95

Total 3912 299,471 100.00

The ability of a model to successfully train with high accuracy is reliant on the accuracy
of the training data. If the training data is of poor quality, the model may not be able to
determine the ideal weights for the model neurons to achieve the highest accuracy for
classification. To a certain extent, CNN models may account for some level of error in the
training data but may result in the model being penalised for achieving higher accuracy
than the data used to assess its performance [21].

The training data used in the project has its own inaccuracies, as maintaining focus
while hand digitising features over extended periods of time can be problematic [30]. As
shown in Tables 6 and 8, the human-derived training data achieved an F1-Score of 0.95.
Analysing these data at the class level revealed some individual classes, such as the young
tree crops class, which achieved an F1-Score of only 0.73 (Table 8), which limits the ability
of the model to identify this class.

Table 8. Per-class accuracy of the human-derived classifications for 2018 and 2015.

2018 2015

Class F1-Score User’s
(Precision)

Producer’s
(Recall) F1-Score User’s

(Precision)
Producer’s

(Recall)

Banana Plantations 1.0000 1.0000 1.0000 0.9908 0.9818 1.0000
Berry Crops 1.0000 1.0000 1.0000 0.8571 1.0000 0.7500

Plantation Forestry 0.8400 0.9545 0.7500 0.8780 1.0000 0.7826
Sugarcane Crops 0.9839 1.0000 0.9683 0.9204 0.9946 0.8565

Tea Tree Plantation 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Tree Crop—Mature 0.9602 0.9361 0.9856 0.9403 0.9141 0.9679
Tree Crop—Young 0.7297 0.8710 0.6279 0.6897 0.8696 0.5714

Vineyards 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Other 0.9981 0.9973 0.9989 0.9968 0.9950 0.9987

Total 0.9458 0.9732 0.9256 0.9192 0.9728 0.8808
Kappa 0.9617 0.9293

During the training data collection process, separating young and mature tree crops
was extremely subjective and quite difficult, which was reflected in the accuracy assessment
of the training data and, as a result, in the accuracy of the resulting models outlined below.
As a comparison, the banana plantation class was based on a previous deep learning model
developed by [20], resulting in an F1-Score of 1 for 2018 and 0.99 for 2015 (Table 8). The
classes with smaller areas, such as tea tree plantations and vineyards, had high accuracy as
these features were easily identifiable.
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The sugarcane crop class was complicated by several challenges. Firstly, the 2018
training image was captured in August, early in the sugarcane harvest season, when the
cane was either fully mature or yet to be planted. The dates for the 2015 test image were
captured as late as October when some of the fields harvested early in the season contained
young sugarcane. The collection of the training data for 2015 was consistent with the
2018 training data, and only mature sugarcane was included. However, for the accuracy
assessment points, we decided to call the validation point sugarcane if the canopy of the
crop was predominantly closed.

The sugarcane crop class was further complicated by the presence of maize crops
in the southeast of the project area. Maize can look similar to sugarcane and was only
separated during the training and validation data collection through local knowledge and
identification of farm management practices only seen at a broad scale and not within a
single image patch. Ideally, maize should be included as a separate class; however, due to
time constraints, it remained part of the ‘other’ class. Additional training data may assist
with the differentiation of these classes but was not conducted as part of this project. There
were also areas of abandoned sugarcane crops that were not in production but were still
identified by the models.

3.2. Batch Size

The batch size results indicate higher accuracy using smaller batch sizes (Table 6).
During the training process, model weights are updated at the end of every batch, which
results in models with smaller batch sizes updating their weight more often, likely resulting
in more refinement of model weights and faster convergence. These results are consistent
with [31], who recommended using lower learning rates with small batch sizes, although
data scaling and augmentation may assist training when using larger batch sizes [32].

Based on the results of batch size in combination with patch size, it is recommended
to increase patch size while decreasing batch size to achieve higher accuracy.

3.3. Patch Size and Sampling Strategy

A challenging factor within remote sensing applications is class imbalance from over
or underrepresented classes in the training data [16]. For the project area in this project,
the ‘other’ class represented 94% of the area, whereas the berry crop class only represented
0.03%. A systematic or random generation of training patches will have very few training
samples for underrepresented classes, resulting in their poorer classification. In addition,
different areas within class features mean features with smaller areas will be sampled less
than larger features, resulting in their poorer classification.

Other studies have applied class weighting [33]; however, this does not solve the
problem of under-sampled classes and features. Classes with smaller areas will still contain
very few patches and remain underrepresented within the training data.

Results from the systematic grid sampling method (Table 6) did not indicate a sig-
nificant increase in accuracy for each patch size. The stratified random sampling method
showed the 512 × 512-pixel patch size produced higher accuracy for both the kappa statistic
and F1-Score compared to other patch sizes. The kappa statistic indicated a slight reduction
in accuracy compared to the grid sampling strategy (2018: −0.06); however, the F1-Score
improved (2018: +0.13).

The stratified random sample approach is a workable solution to overcome the class
imbalance issue. The overall results for the patch size and sampling strategies do not
indicate a significant improvement in accuracy between the trials; however, the largest
improvements were produced in the smaller classes, particularly for larger patch sizes.
Figure 10 shows an example of this improvement for the vine class. The grid sampling
strategy tests showed inferior performance, with some models not being able to classify the
vine features. In contrast, the stratified random sample strategy was able to detect the vines
in most cases with some degree of accuracy. Based on these results, the best performance
was achieved with a patch size of 512 × 512 pixels.
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for the vineyard class F1-scores. The box represents the first and third quartiles of the data, and
the whiskers define the 1.5 inter-quartile range. The orange line represents the median, and the ‘o’
symbol represents outliers.

3.4. Data Augmentation

The data augmentation trials (Table 6) decreased model accuracy (kappa: −0.24;
F1-Score: −0.2) and increased training time. This result is expected as the random augmen-
tations have avoided overfitting the model to the training data by presenting an altered
version of the training data each time the data is loaded. As a result, we decided to assess
the model on the 2015 test image (Table 9). We found that when comparing models trained
with and without augmentations, there was a >0.24 increase in kappa and a 0.19 increase
in F1-Score. This demonstrates how to avoid overfitting the model to the training data to
increase its transferability to unseen data.

Table 9. Augmentation trial results for the 2015 test image.

Parameter
Average Training

Time
(h)

Kappa
(95% CI)

Average
F1-Score
(95% CI)

Average User’s
Accuracy

(Precision)

Average Producer’s
Accuracy
(Recall)

Ranking

False 2.8 0.12 (0.09–0.15) 0.21 (0.18–0.25) 0.22 (0.18–0.27) 0.35 (0.31–0.39) 2
True 8.9 0.36 (0.27–0.41) 0.4 (0.38–0.41) 0.37 (0.33–0.4) 0.61 (0.57–0.65) 1

Although applying augmentations increased the training time (threefold), it created a
more robust model, which allowed for better transferability to other data.

The results from this trial indicate the importance of using a range of image augmen-
tations to alter image perspective, colour and brightness. The pixel value variations within
the 2018 training image and 2015 test images result from different camera configurations,
post-processing of the image tiles into a seamless mosaic, and atmospheric and climatic
conditions. These are all typical occurrences for earth observation data, particularly when
using high-spatial-resolution data from aerial photography or satellites.

It is recommended that any project attempting to ensure model transferability not
only to a different time but also to a different sensor or geographic region implement
data augmentations.

3.5. Data Scaling

Table 6 shows the kappa statistic improved by 0.08 and the F1-Score by 0.1 when
patch data scaling was applied. Although only one type of scaling was tested for this
project, other scaling and normalising options are possible, such as scaling between zero
and one. We used the range of 0–255 to maintain compatibility with the imgaug library,
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which recommends pixel values in this range. We recommend the implementation of data
scaling, particularly for projects using multiple imagery sensors.

3.6. Multiple-Pass Prediction

Comparing single and multiple-pass prediction methods (Table 6) shows the multiple-
pass method marginally improves prediction accuracy (kappa difference: +0.06; F1-Score
difference: +0.02). However, the multiple-pass classification is more aesthetic with the
elimination of patch edge effects (Figure 11).
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Figure 11. An example of a single pass prediction (a) compared to a multiple-pass prediction and
augmentations (b).

Although only a marginal improvement in accuracy resulted from the multiple-pass
method, this is recommended as it results in a smoother final classification.

3.7. Full Training

The objective of this project was to determine the optimal pre-processing steps to
maximise the transferability of a model to a different sensor at a different date. Based on the
results of the trials, five models were trained for 100 epochs using the parameters presented
in Table 10.

Table 10. Parameters used for the 100-epoch training trials.

Parameter Value

Patch size (pixels) 512 × 512
Sampling strategy Stratified random sample (area)
Number of patches 22,830

Batch size 20
Data Augmentations True

Data Scaling True
Multiple-Pass Prediction True

Training the models for 100 epochs resulted in the models achieving a kappa statistic of
0.9 (0.89–0.91) and 0.84 (0.82–0.87), a user accuracy of 0.8 (0.78–0.83) and 0.78 (0.76–0.8), and
a producer accuracy of 0.98 (0.98–0.98) and 0.87 (0.85–0.9) for 2018 and 2015, respectively
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(Table 11). As the models now contain the optimal pre-processing steps for the training
data and are fully trained, we will no longer discuss the 2018 results.

Table 11. Resulting accuracy measures for the 100-epoch training trials.

Image Kappa (95% CI)
Average
F1-Score
(95% CI)

Average
User’s (95% CI)

(Precision)

Average
Producer’s (95% CI)

(Recall)

2018 0.9 (0.89–0.91) 0.87 (0.86–0.89) 0.8 (0.78–0.83) 0.98 (0.98–0.98)
2015 0.84 (0.82–0.87) 0.81 (0.79–0.84) 0.78 (0.76–0.8) 0.87 (0.85–0.9)

Figure 12 shows the confusion matrix for 2015. The model performs well at finding all
land use features; however, there is some confusion between the tree crop classes (mature
and young) and between the other classes and the sugarcane, tree crops (mature and
young), vineyards and tea tree classes.
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The per-class results for all five trials (Figure 13) showed most classes achieved an
accuracy >70% except for the vineyards class. The main confusion was with areas of fallow.
The 2018 training data contained many noticeably young vineyards where vines were
barely evident in the image. This resulted in some vineyard features resembling areas of
ploughed fallow. Only 0.5% of the project area contained the vineyard class (Table 7), which
was the second-smallest class in the area. Berries were the smallest class; however, most
berries in the project area were contained within a greenhouse, which makes these features
easily identifiable within the imagery.
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Figure 14 shows the human-derived (Figure 14a) and 2015 (Figure 14b) output classifi-
cations. At this scale, confusion between sugarcane crops and other land uses is evident.Land 2023, 12, x FOR PEER REVIEW 22 of 26 
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Figure 15 shows the 2015 and 2018 imagery, hand-digitised 2015 validation and 2018
training data, and resulting classifications for the top performing of the five fully trained
models. This model achieved a kappa of 0.87 and 0.84 and an F1-score of 0.84 and 0.77 for
2018 and 2015, respectively.
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The results showed some inaccuracies in the training and validation data. The 2015
manually classified data for the young tree crop, as shown in Figure 15, showed areas
of missed tree crops that were identified by the model classification, consistent with the
findings of other studies using noisy data [29]. The young tree crop example also identified
an area of confusion between young and mature tree crops in the 2018 training data, which
led to confusion with the model results (Figure 12).

Figure 15 also demonstrates an area of emerging sugarcane crops in 2015 that was not
included in the manual classification as it was deemed the canopy had not fully closed as
discussed in Section 3.1. In addition, it is also evident in Figure 15 that sugarcane crops are
misclassified with the ‘other’ class, as demonstrated in Figure 12.

4. Limitations and Future Research

This project restricted the analysis to three-band, 50-centimetre imagery. These results
may not be applicable for training a model for earth observation applications at different
spatial and spectral resolutions. Convolutional neural networks are suited to higher-
resolution data (<1 m) [34,35], although some success has been achieved using earth-i [18]
and sentinel data [36]. It is expected that the recommendations presented in this project,
such as sampling strategy, data augmentations, and multiple-pass prediction, will be
applicable at different spatial and spectral resolutions; however, spatially specific aspects
such as patch size (and as a result batch size) will need to be re-evaluated.

Additional research could investigate different approaches to producing the output
classifications. In this project, we have used a multiple-pass strategy involving overlapping
patches and a weighted mean to counteract patch edge effects when producing the output
classification; however, there are alternatives such as trimming edge pixels and ensuring
the patches overlap by the same number of pixels as presented in [18].

There are several outstanding questions that need to be addressed in future research.
First, we did not classify all LULC features within the project area due to time restrictions.
Future work should analyse the effect on model accuracy of additional LULC classes. It
would also be interesting to compare the training time and model accuracy when a model
is created for each class separately in contrast to having one model for all classes.

In this project, we compared generating the output classification using a single-pass
strategy to a multiple-pass with augmentations. Although the multiple-pass method
produced a more accurate and aesthetic classification, we did not compare the additional
time it took to generate the classification. We did not examine if averaging the patch
classification with three augmented versions has any advantage over one or two augmented
versions. Producing outputs efficiently is imperative for the timely delivery of broad-scale
LULC classifications.

The production of LULC classifications often relies on additional ancillary data and
the existing experience of the skilled professional. The integration of additional ancillary
information such as, for example, climate, elevation and soil information may assist in the
prediction of LULC features, specifically over broad areas.

5. Conclusions

The objective of this project was to better understand how to prepare earth obser-
vation data for training a multi-class deep learning model to assist in the integration of
traditional earth observation analysis for LULC mapping as recommended by [22]. Firstly,
we recommend the use of existing datasets where available. The collection of training data
for this project took hundreds of hours, even with existing datasets and prior knowledge
of the area. Although freely available datasets usually do not match the spatial resolution
used in projects implementing CNNs, the training of deep learning models can tolerate a
certain level of noise within the data, and, in some cases, the trained model may have a
higher level of accuracy compared to the original training data.

The most substantial improvements in the transferability of the model from the 2018
training image to the 2015 test image resulted from image augmentations and scaling of the
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data. Data augmentation and scaling are imperative to avoid overfitting the model to the
training data, model generalisation and transferability, and therefore are recommended.

Compared to the grid sampling approach, the stratified random sampling approach
for generating image patches substantially increased inaccuracy for small classes in our im-
balanced training dataset. This approach, although not improving overall model accuracy
metrics, substantially improved accuracy in detecting classes that represent only a small
proportion of the landscape. For projects with class imbalances, it is recommended that
this sampling strategy be implemented.

When producing image patches, we recommend generating larger patch sizes and
training with a lower batch number rather than smaller patches with larger batches.

Applying the model to imagery using different perspectives through patch rotations
and applying for a second pass over the prediction image with a half patch offset improves
the output accuracy and creates a more aesthetically pleasing classification.
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