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Abstract: Land Use/Land Cover (LULC) changes have a significant impact on Land Surface Temper-
ature (LST). The LST is an important parameter in various environmental and climatological studies,
as it plays a crucial role in understanding the Earth’s surface–atmosphere interactions. The LULC
changes can modify the surface energy balance and alter the radiation budget, leading to changes in
LST. Urbanization, deforestation, and agricultural land use changes are some of the primary drivers of
LULC change that have a significant impact on LST. Deforestation and agricultural land use changes
result in a reduction in evapotranspiration, leading to an increase in LST. The main objective of the
study is to analyze the spatio-temporal change in Land Use/Land Cover (LULC) and its effect on
Land Surface Temperature (LST), as well as to establish a correlation of LST with the Normalized
Difference Vegetation Index (NDVI) and Normalize Difference Snow Index (NDSI). Understanding
the impact of LULC on LST is essential for developing effective land use policies that can mitigate the
adverse effects of LULC change on the environment and human health.

Keywords: Lahaul and Spiti; Landsat; LULC; LST; NDVI; NDSI

1. Introduction

The change in land use and cover is the major form of environmental change that
occurs in the Himalayan region [1]. The transformation of land is caused by natural driving
forces and anthropogenic activities. The key issue is its impact on the regional environment
in understanding the relationship between society and the environment [2–4]. Land use
and land cover are two different terminologies, where land cover refers to everything
designed by nature on the earth’s surface and land use indicates the utilization of land
cover for different purposes [5]. Change in LULC is dynamic, driven by natural processes
and manmade activities which impact the natural ecosystem [6]. LULC change is the single
most important indicator of global change which is associated with climate change. LULC
change has a significant impact on the environment [7]. Land use/cover change does
not always indicate land degradation. Several studies conducted on the LULC change
in the western Himalayas indicated that major change occurred in agriculture, grassland,
settlement, barren land, snow cover, and salix plantation, etc., over the last 2–3 decades [8,9].
Land use is the management and modification of land to utilize and capture the land cover
through anthropogenic activities such as agricultural fields, residential areas, grazing,
mining, and logging, etc. [10]. LULC change in the western Himalayas is an important
issue due to the region’s ecological, economic, and cultural significance. The Himalayan
region is experiencing rapid changes in land use and land cover due to various drivers
such as population growth, climate change, and developmental activities [11–13].The
land use/land cover pattern of any region is the outcome of socio-economic factors and
nature, and their use by human beings over space and time. The detailed information of
land use/cover (LULC) and its optimum use is important for the selection, planning, and
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implementation of land use schemes to fulfill the increasing demand of society [14]. Land
use/land cover change has a great influence on the earth’s system including land surface
temperature (LST), climate, and hydrology [15].

Land Surface Temperature (LST) is the radiative skin temperature of the earth which
is received from solar radiation [16]. It depends on the LULC types and the amount of
sunlight received by the earth’s surface. It is one of the most important indicators of the
energy balance on the earth and key parameters of microclimate study [17,18]. The main
objective of the present study is to analyze the effects of Land Use/Land Cover Change
(LULC) on Land Surface Temperature (LST) in the Lahaul and Spiti district. The study is
primarily based on Landsat satellite dataset. Remote sensing data have been widely used
to assess and examine changes in the environment such as change in LULC, LST, forest
area, fresh water, and agricultural patterns [19–21].

The Lahaul and Spiti is a cold desert mountain, situated in the northern part of
Himachal Pradesh, India [22]. The terminology desert is used to describe the study area,
indicating that it is already scarce in natural resources, which are essential for a life support
system. The region is sensitive to anthropological activities and climate change. The studies
suggest that LULC change in Lahaul and Spiti is mainly driven by agricultural expansion,
urbanization, and developmental activities, and has significant implications for the region’s
ecology, livelihoods, and traditional way of life [23–26]. A rapid pace of developmental
activities and making the area easily accessible to mass population change the natural
LULC setup. The change in LULC induced the land surface temperature change, which
has multiple adverse effects in Lahaul and Spiti.

2. Study Area

Lahaul and Spiti district is a sparsely populated situated in Indian state of Himachal
Pradesh. The district has tough terrain and consists of two great valleys, Lahaul and Spiti.
The headquarters of the district is at Keylong, which lies between 31◦44′57′′ and 32◦59′57′′ N
latitudes and 76◦46′29′′ and 78◦41′34′′ E longitudes. It is covered by the Survey of India
sheets 52C, 52D, and 52L. It is surrounded by Jammu and Kashmir in the north, Tibet in the
east, Kulu in the south, Kinnaur in the southeast, and Kangra in the northeast (Figure 1).

Figure 1. Study Area.
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The district has 521 villages, where only 287 villages are inhabited and 234 are unin-
habited. It has been divided into two divisions Keylong and Kaza. The district has two
tehsils (Kaza and Keylong) and one sub-tehsil (Udaipur). It has a population of 31,564 with
density of 2 persons per km2 as per the census 2011, ranked 12th in the state on the basis of
population. The sex ratio of the district is 903, in which the male and female populations
are 16,588 and 14,976, respectively.

3. Data Base

Landsat imagery is the primary data source for examining land use/land cover (LULC)
and land surface temperature (LST) changes. Landsat data of the post-monsoon season
are used to avoid cloud cover and for better analysis. Data of the month of September are
downloaded from the NASA through its Earth Explorer (USGS) data portal. Landsat im-
agery includes Landsat the Operational Land Imager/Thermal Infrared Sensor (OLI/TIRS)
and Thematic Mapper (TM) scenes of 1990, 2015, and 2020. In addition, the Aster Digital
Elevation Model (DEM) is used to analyze changes in LULC and LST as a function of
altitude zones. The summary of the Landsat images used in the study is given in (Table 1).
The satellite images of the same month in 1990, 2015, and 2020 were used to reduce the
effect of seasonal discrepancies on the classified result. The data were reprojected onto the
43N zone of the Universal Transverse Mercator (UTM) projection system and the World
Geodetic System 84 (WGS 84) datum, ensuring accuracy between datasets during analysis.
Pre-processing of satellite data (radiometric, atmospheric, geometric corrections, and haze
reduction) was performed using ArcMap 10.5 and Erdas Imagine 2015 software.

Table 1. Data sources: Earth-explorer, USGS.

Satellites Raw Path Date of
Acquisition

Scene Centre
Time Bands Sensor Resolution

Landsat 5 37, 38 147, 148 10 September 1990 04:38:03 4, 3, 2 TM 30 m

Landsat 5 37, 38 147, 148 10 September 1990 04:20:45 6 Thermal 120 m × 30

Landsat 5 37, 38 147, 148 10 September 2010 04:38:03 4, 3, 2 TM 30 m

Landsat 8 37, 38 147, 148 5 September 2020 05:17:55 5, 4, 3 OLI 30 m

Landsat 8 37, 38 147, 148 5 September 2020 05:30:20 10, 11 TIRS 100 m × 30

Source: Landsat, USGS (Earth Explorer).

The temperature data of the month of September were acquired from the NASA Lang-
ley Research Center POWER Project funded through the NASA Earth Science Directorate
Applied Science Program. The air temperature was recorded at a height of 2 m from the
ground. The specific six points were entered in the POWER interface within the district
boundary of Lahaul and Spiti with the decimal degrees coordinates of Tabo (latitude 32.1026
and longitude 78.4867), Dhankar (latitude 32.1328 and longitude 78.4416), Kungri (latitude
31.9428 and longitude 77.9948), Kaza (latitude 32.5733 and longitude 77.0322), Chhota Dara
(latitude 32.2772 and longitude 77.4269), Keylong (latitude 32.228 and longitude 78.0517),
Udaipur (latitude 32.7283 and longitude 76.6709), and Triloknath (latitude 32.7372 and
longitude 76.4488).

4. Methodology
4.1. Computation of Land Use/Land Cover Change

There is no perfect classification of land use and land cover, and it is unlikely that it
will ever be developed. There are different views on the classification process, and even
when using a numerical approach, the process itself is often subjective. In fact, as patterns
of land use and land cover change due to natural demands and degradation, there is no
logical reason to expect a detailed inventory to be sufficient for more than a short period
of time. In the present study, the supervised maximum likelihood classification technique
is used to examine the changes in LULC. It is an important tool that is used to extract
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information in numerical values from remote sensing satellite image data. The supervised
classification is performed using the composition of bands of blue, green, and red using
the False Color Composite (FCC) to select the region of interest for features such as water
body, vegetation, dry land, and snow, etc., in Erdas Imagine 2015. Approximately 2500 to
3000 pixels are taken from each category as samples of the five attributes during image
classification. These selected pixels are called spectral signature in the field of remote
sensing technology. The spectral signature of each class is obtained from the reference data
and is performed by pixel selection for each of the LULC types. These pixels help develop
the image by identifying an area of the image based on the color assigned to that category
and the spectral homogeneity of the pixels in a particular area. The different types of LULC
are grouped into five classes for efficient analysis and easy change detection assessment.
This technique is used because more than five LULC classifications would not be possible
with the 30 m resolution of satellite images. The detailed summary of LULC categories has
been given below in Table 2.

Table 2. Land Use/Cover Types.

LULC General Description

Sparse Vegetation Small shrubs and natural grass

Dense Vegetation Crops, apple orchards and trees

Snow Area covered with snow

Barren Land Bare exposed rocks

Water Body River, stream, glacial lake, etc.
Source: Compiled by Author.

LULC categories include snow cover, barren land, dense vegetation, sparse vegetation,
and water bodies. The water bodies include rivers, streams, glacial lakes, water-logged
areas, and small ponds. The barren land category includes fallow land, waste land, bridges,
settlements, and roads, etc. Dense and sparse vegetation includes trees, agricultural fields,
apple orchards, grass, and shrubs. Snow cover and barren land are the dominant categories
among all other LULC types.

4.2. Computation of NDSI and NDVI

• Normalized Difference Snow Index (NDSI) is computed by using Visible Infrared
Sensor (VIS), Short-Wave Infrared (SWIR), and bands of Landsat data [27,28].

NDSI = (Green − SWIR)/(Green + SWIR) (1)

• Normalized Difference Vegetation Index (NDVI) is computed by using Near-Infrared
and RED Sensor [29].

NDVI = (NIR − RED)/(NIR + RED) (2)

4.3. Estimation of Land Surface Temperature (LST)

Land surface temperature is determined by using the established equation based on
Liqin et al. 2008 [30]. The methodology has been explained below to estimate brightness
temperature from the thermal band of Landsat Images.

• Top of Atmosphere (TOA) Radiance: Thermal infrared digital number (DN) is con-
verted into spectral radiance (L)

L(λ) = (LMAX − LMIN)/255 × DN + LMIN (3)

where
L(λ) = Spectral radiance;
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LMIN = Spectral radiance of DN value;
LMAX = Spectral radiance of DN value;
DN = Digital Number.

• Top of Atmosphere (TOA) Brightness Temperature: Spectral radiance is converted
into top of atmosphere brightness temperature in Kelvin.

T = K2/In (K1/R) + 1 (4)

where
K1 = Calibration Constant 1 (607.76);
K2 = Calibration Constant 2 (1260.56);
R = Radiance values W/m2 SR µm;
T = Surface Temperature (in Kelvin).

• Land Surface Emissivity (LSE) is derived with the help of NDVI value using the
formula which is given by Sobrino and Raissouni [31].

LSE = 1.0094 + 0.047 × Ln (NDVI) (5)

• Finally, Kelvin is converted into degrees Celsius with the equation given below:

TB = T - 273 (6)

4.4. Mann–Kendall Test

The Mann–Kendall test is a non-parametric test for identifying trends in time series
data. The test compares the relative magnitudes of sample data rather than the data
values themselves [32]. The Mann–Kendall test uses two terminologies, H0 and H1, where
H0 assumes that there is no trend and hypothesis is null (independent and randomly
distributed data). The alternate hypothesis H1 assumes that there is a trend. Hence, H0 is
tested against H1. The Mann–Kendall test statistic S [33,34] is calculated as follows:

S =
n−1
∑

k=1
∑

j=k+1
sign

(
xj − xk

)
sign

(
xj − xk

)
=


1 if xj − xk > 0
0 if xj − xk = 0
−1 if xj − xk < 0

(7)

A very high positive value of S is an indicator of an increasing trend, and a very low
negative value indicates a decreasing trend. The Mann–Kendall test was computed with
help of software XLSTAT 2021. The statistical significance of a trend is evaluated using the
Z value.

The variance is computed using the following equation:

Var(S) =
n(n− 1)(2n + 5)−∑m

i=1 ti(ti − 1)(2ti + 5)
18

(8)

where n is the number of data points, m is the number of tied groups, and ti denotes the
number of ties of extent i. A tied group is a set of sample data having the same value.

4.5. Estimation of Sen’s Slope

Sen (1968) developed the non-parametric procedure for estimating the slope of trend
in the sample of N pairs of data [35]:

Q = Median (xj − xk/j − k) j > k (9)
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where xj and xk are the data values at times j and k (j > k), respectively. If there is only one
datum in each time period, then N = n(n − 1)/2, where n is the number of time periods. If
there are multiple observations in one or more time periods, then N < n(n − 1)/2, where n
is the total number of observations. The N values of Qi are ranked from smallest to largest
and the median of slope or Sen’s slope estimator is computed as

Qmed =

{
Q[(N+1)/2], if N is odd

Q[N/2]+Q[(N+2)/2]
2 , if N is even

(10)

The Qmed sign indicates data trend reflection, while its value indicates the steepness of
the trend. To determine whether the median slope is statistically different than zero, one
should obtain the confidence interval of Qmed at a specific probability.

In the present study, Sen’s slope non-parametric method was used to estimate the slope
of existing trend of temperature. This test was performed using XLSTAT 2021 software. The
positive value of Sen’s slope shows an increasing trend and the negative value indicates a
decreasing trend in the time series.

The flowchart of research methodology (Figure 2) depicts each step of the method
used in the study.

Figure 2. Flowchart of the Research Methodology.
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4.6. Accuracy Assessment

The classification of satellite image is not completed until its accuracy is checked and
the quality of the classification is evaluated by assessment of accuracy [36]. An error and
confusion matrix technique is used to check the accuracy of the classified images. An error
matrix is a very effective way to represent precision, as the precisions of each category
are clearly described as well as the errors of inclusion (errors of commission) and errors
of exclusion (errors of omission) present in the classification. Consequently, the overall
accuracy, manufacturer and user accuracy, and Kappa statistic are calculated from the error
matrix (Tables 3–5). The kappa coefficient is a measure of the proportion of improvement
by the classifier over a purely random assignment to classes. Kappa accuracy is computed
using the following equation.

Kn = (ND − P)/(N2 - P)

where,
N = Total number of pixels;
D = Sum of correctly classified pixels;
P = Sum of product of row total and column total;
Note: Kappa of 0.85 means there is 85% better agreement than by chance alone.

Table 3. Error Matrix of Classified Image, 1990.

Classified Data Dense
Vegetation

Sparse
Vegetation Snow Barren Land Water Body Total Commission

Error (%)
User
Accuracy (%)

Dense Vegetation 120 5 0 2 0 127 5.5 94.48

Sparse Vegetation 3 130 0 13 0 143 7.80 90.90

Snow 0 0 105 8 2 115 8.69 91.30

Barren Land 1 4 3 125 4 136 8.08 91.91

Water Body 0 0 6 8 110 124 11.29 88.70

Total 124 134 114 154 116 518 - -

Omission Error (%) 3.22 2.98 7.89 12.40 8.25 - - -

Producer Accuracy
(%) 96.77 97.01 92.10 81.16 94.82 - - -

Overall Accuracy = 90.25%. Kappa Accuracy = 0.90.

Table 4. Error Matrix of Classified Image, 2015.

Classified Data Dense
Vegetation

Sparse
Vegetation Snow Barren Land Water Body Total Commission

Error (%)
User
Accuracy (%)

Dense Vegetation 150 6 0 4 0 160 6.25 93.75

Sparse Vegetation 4 125 0 10 0 139 10.07 89.92

Snow 0 0 110 6 4 120 8.33 91.66

Barren Land 2 5 4 120 3 134 10.44 89.55

Water Body 0 0 8 5 125 138 9.42 90.57

Total 156 136 122 145 132 691 - -

Omission Error (%) 3.84 8.08 9.83 17.24 5.30 - - -

Producer Accuracy
(%) 96.15 91.91 90.16 82.75 94.69 - - -

Overall Accuracy = 92.25%. Kappa Accuracy = 0.90.

The Kappa and overall accuracy were checked for the classified images of 1990, 2015,
and 2020 which showed above the standard level accuracy (>0.85 and >85%). Kappa and
overall accuracy of classified were obtained as 0.90 and 90.25% for 1990, 0.90 and 92.25%
for 2015, and 0.91 and 91.45 for 2020, respectively. Producer accuracy or accuracy for each
class and user accuracy were obtained for vegetation, snow, barren land, and water body,
which showed a high level of accuracy (Tables 3–5). Furthermore, commission error and
omission error were calculated. This indicates when an area is included in a category to
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which it does not truly belong. Almost all accuracy measurement techniques were used to
check the accuracy for all the classified images of the years 1990, 2015 and 2020.

Table 5. Error Matrix of Classified Image, 2020.

Classified Data Dense
Vegetation

Sparse
Vegetation Snow Barren Land Water Body Total Commission

Error (%)
User
Accuracy (%)

Dense Vegetation 160 8 0 3 0 171 6.43 93.56

Sparse Vegetation 6 182 0 9 0 191 4.71 95.69

Snow 0 0 125 5 3 133 6.01 96.74

Barren Land 4 4 3 170 5 182 6.59 93.40

Water Body 0 0 3 5 112 120 6.66 93.33

Total 170 186 131 189 120 626 - -

Omission Error (%) 5.8 2.15 4.58 10.05 6.66 - - -

Producer Accuracy
(%) 94.11 97.84 95.41 89.94 93.33 - - -

Overall Accuracy = 91.45. Kappa Accuracy = 0.91.

5. Result and Discussion
5.1. States of Land Use/Land Cover

Land Use and Land Cover (LULC) are often used simultaneously but they have two
different meanings. Land cover includes the earth’s features which are designed by nature,
and people using those features are part of land use. Land use/land cover of the study area
has been divided into five major categories for easy analysis. The result shows barren land
and sparse vegetation are the major LULC types of the study area in which barren land
occupies largest area among all the categories and sparse vegetation is second major LULC
type. Barren land and sparse vegetation occupied an area of 844,244 ha. and 234,784 ha.
in 1990, 834,544 ha. and 242,861 ha. in 2015, and 714,150 ha. and 279,228 ha. in 2020,
respectively. Sparse vegetation cover is found in the form of grassland, scrub, mosses, and
lichen in the study area. Grassland is generally used for animal grazing and it also provides
an aesthetic view which attracts tourists from different parts of the world. Snow cover is
third major LULC type and a one of the most important natural resources of the valleys; it
fulfills the need for water of mountain dwellers. It covered an area of 188,445 ha., 183,080
ha., and 176,180 ha. in 1990, 2015, and 2020, respectively. The water received from snow or
melting of glaciers is the only source of water because precipitation always occurs in the
form of snowfall, and there is almost negligible rainfall. It is also very tough to fetch water
from the rivers situated in the deep valleys. Thus, snow cover has a great significance on the
lives of mountain dwellers of Lahaul and Spiti. Dense vegetation cover is the fourth major
LULC type, which is generally found near streams and river channels. It only occupied
an area of 33,864 ha., 35,682 ha., and 123,666 ha., in 1990, 2015, and 2020, respectively. It
provides fodder for animal herds, fuel wood, and medicinal plants for mountain dwellers.
Water body is ranked fifth and last position in all LULC types because this region is situated
in a rain shadow area. The result extracted from Landsat image showing the status and
spatial distribution of LULC has been given in (Table 6) and (Figure 3).

Table 6. States of Land Use Land Cover (ha.).

LULC 1990 2015 2020

Total Area 1,384,506 1,384,506 1,384,506

Barren Land 844,244 834,544 714,150

Sparse Vegetation 234,784 242,861 279,228

Snow Cover 188,445 183,080 176,180

Dense Vegetation 33,864 35,682 123,666

Water Body 83,169 88,339 91,282
Source: Calculated from Landsat Imagery.



Land 2023, 12, 1294 9 of 20

Figure 3. States of Land Use/Cover, 1990, 2015, and 2020.

As per the analysis, it was found that changes occurred in all the LULC types of
Lahaul and Spiti during the research span. A major change took place in the area of dense
vegetation cover. It saw an increase of 265 % registering an increase of 89,892 ha. from
1990 to 2020. This change occurred due to development of orchards farms in the form of
small pockets.

5.2. Land Use/Cover Change Detection

Land Use/Land Cover change detection shows a significant change in all LULC types
during the research span. Dense vegetation is not a common phenomenon in Lahaul and
Spiti, but it increased 265% (+89,802 ha.) in the last three decades. Sparse vegetation cover
also increased 18.92% (+44,444 ha.). The second significant change occurred in barren land,
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which showed around a −15.40% (−130,094 ha.) decrease due to the increase in vegetation
cover. The third major change has taken place in water bodies, with a 9.75% (+8113.4 ha.)
increase in the area of water. The fourth major change occurred in snow cover, and this is
the most active LULC type among all studied. The total snow cover decreased by −6.50%
(−12,265 ha.) from 1990 to 2020 (Table 7). As per the analysis, an increase in vegetation
cover and a decrease in snow cover is not a good sign for environmental health of the study
area. A continued increase in vegetation cover can put the valley in the risk zone. Growing
vegetation takes water from the ground and releases it into the atmosphere. Vegetation
leaves also act as interceptors, trapping falling rain, which then evaporates and causes
the rain to fall elsewhere, a process known as evapotranspiration. If evapotranspiration
increases, precipitation will start taking place in the form of rain, and this not a good
sign for Lahaul and Spiti because it is made of sedimentary rock. The increased rain can
disturb the natural setup of the region and put it in a hazardous zone. On the other hand,
increasing the density of vegetation can reduce the negative effects of rain on the land. The
presence of dense vegetation can be considered as a balance factor in the stability of natural
areas, especially since it has the ability to prevent erosion and possible mass movements.
Declining snow cover area is another problem; it provides fresh water for all the purposes
of mountain dwellers. Many snowcapped mountains have become naked mountains due
to declining snowfall and upward shifts in the snowline and vegetation line positions.
If it continues to decline the region would face the severe problem of water scarcity in
the future.
Table 7. LULC Change Detection (1990–2020).

LULC Types
1990–2020

Area (ha.) Area (in %)

Barren Land −130,094 −15

Sparse Vegetation +44,444 19

Snow Cover −12,265 −7

Dense Vegetation +89,802 265

Water body +8113 10
Source: Computed from Landsat Imagery.

5.3. Land Use/Cover Change Analysis through Matrix Table

Matrix table analysis was used in the study to extract the exact value of LULC con-
verted into other LULC types. It shows that 31% (435,217 ha.) of the area of Lahaul and
Spiti experienced change and was converted into other LULC types from 1990 to 2020.
The result matched with an earlier study. About a 2,151,647 ha (30%) area of Spiti valley
has experienced change in the types of land cover in the 25 years from 1990 to 2015 [37].
In (Table 8), columns and rows represent the total sum of the amount of land for each
LULC type between 1990 and 2020. The value in each cell of matrix table represents the
amount of land that was converted from one LULC type to another. For example, the value
of 31,944.4 ha. in the fourth column (Snow) and of the fourth row (Barren land) means
that 31,944.4 ha area of snow cover was converted into barren land during the research
span. The highlighted bold diagonal values indicate the area of each class that remains
unchanged, while the off-diagonal values indicate the changed area for each LULC type.
For instance, out of 33,861 ha. area of dense vegetation of 1990, 9937 ha. forest area remains
unchanged in 2020.
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Table 8. Land Use/Cover Matrix from 1990 to 2020.

Reference
Data

2020

1990
LULC
Types

Dense
Vegetation

Sparse
Vegetation Snow Barren Land Water Body Total

Dense
Vegetation 9937 32,834 10,841 57,316 12,688 123,614

Sparse
Vegetation 21,525 158,539 3986 90,377 4857 279,285

Snow 0.40 66 132,948 35,032 6923 174,969
Barren Land 1523 40,101 31,944 614,474 25,961 714,003
Water Body 876 3207 8557 46,605 32,637 91,882
Total 33,861 234,746 188,276 843,804 83,065 1,383,752

Major
Changes - - - - -

No Change - - - - -
Source: Computed from Landsat Imagery.

5.4. Land Use/Land Cover Change with Altitudinal Zones

Lahaul and Spiti was classified into three different altitudinal zones (Figure 4) based
on the Agro-Climatic Zones of the classification of Dhillon 1973, 1975 [38,39]. They include
the lower altitudinal zone (2301–3000 m), alpine continental zone (3000–4250 m), and frigid
continental zone (4250–6580 m). A significant change took place in the dense vegetation
cover which increased in all the three altitudinal zones (Table 9). The maximum change
occurred in the frigid continental zone, where +420% (+50,644 ha.) of the area of dense
vegetation cover increased. Dense vegetation cover also increased in the alpine continental
by +186% (+35,091 ha.) and the lower altitudinal zones +138% (+4021 ha.). Sparse veg-
etation decreased in the lower and alpine continental zones by −46% (−2641 ha.) and
+186% (−11,154 ha.) but increased in the frigid continental zone by +50% (+58,336 ha.).
A continued increase in vegetation cover area depicts that climate change is providing
favorable conditions for the growth of vegetation. The increase in sparse vegetation only
occurred in the frigid continental zone because snow/glacier retreated, and later on sparse
vegetation grew on the bare ground in the forms of lichen and mosses. Snow cover was
found in the alpine and frigid continental altitudinal zones but not in the lower altitudinal
zone. Snow cover melts during the peak summer season and does not return until late
post-summer because the lower altitudinal zone is situated at 2301 to 3000 m height.

The height of the lower altitudinal zone is not suitable for permanent snow cover in
the study area. Furthermore, snow cover decreased in both alpine and frigid continental
zones by −93% (−252 ha) and −7% (−13,650 ha.), respectively. Another significant change
occurred in water bodies, which decreased in all the three altitudinal zones (Figure 5). The
maximum change took place in the alpine continental zone where −682% (−12,666 ha.) of
water decreased; around −36% (−414 ha.) and −20% (−12,482 ha.) of the water decreased
in lower and frigid zones, respectively, during the research span. The largest area of Lahaul
and Spiti is occupied with barren land, and major changes in this category took place in the
lower altitudinal zone. This clearly indicates that vegetation cover has increased at the cost
of barren land.
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Table 9. Land Use/Land Cover Change with Altitudinal Zones.

LULC Change in Lower Altitudinal Zone (2301–3000 m)

Zone -1 LULC 1990 2020 1990–2015

Area (ha.) Area (ha.) Area (ha.) Area (%)

Dense Vegetation 2920 6941 4021 138
Sparse Vegetation 5684 3044 −2641 −46

Snow Cover - - - -
Barren Land 2726 928 −1799 −66
Water Body 1564 1150 −414 −36

Zone -2 LULC LULC Change in Alpine Continental Zone (3000–4250 m)

Dense Vegetation 18,890 53,981 35,091 186
Sparse Vegetation 113,158 102,004 −11,154 −10

Snow Cover 272 21 −252 −93
Barren Land 79,659 59,499 −20,159 −25
Water Body 14,522 1856 −12,666 −682

Zone -3 LULC LULC Change in Frigid Continental Zone (4250–6580 m)

Dense Vegetation 12,049 62,693 50,644 420
Sparse Vegetation 115,896 174,232 58,336 50

Snow Cover 188,172 174,522 −13,650 −7
Barren Land 761,147 653,332 −107,815 −14
Water Body 75,797 63,315 −12,482 −20

Source: Computed from Landsat Imagery.

Figure 4. Altitudinal Zones of Lahaul and Spiti.
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Figure 5. Land Use/Cover Change along Altitudinal Zones.

5.5. Land Surface Temperature (LST) Change Analysis

Land Surface Temperature (LST) determines the Earth’s surface radiation and long-
wave radiation energy balance, which are key input parameters in climate, hydrological,
environmental, and biochemical models. Landsat data of September 1990 and 2020 was
used to analyze the LST change. LST was retrieved using thermal band 6 of Thematic
Mapper (TM) and bands 10 and 11 of Thermal Infrared Sensor (TIRS). In 1990, the maxi-
mum, minimum, and mean LST were 44 ◦C, −13 ◦C, and 15.5 ◦C, respectively (Table 10).
Additionally, the maximum, minimum, and mean LST were 46 ◦C, −12 ◦C, and 17 ◦C,
respectively, in 2020. The spatial distribution of the land surface temperature has been
given in Figure 6 where LST is high in the lower elevation and it gradually decreases with
increasing altitude of the valley.
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Figure 6. Spatial Distribution of Land Surface Temperature.

Table 10. LST Change from 1990 to 2020 (◦C).

Years Minimum LST Maximum LST Mean LST

1990 –13 44 15.5

2020 −12 46 17

1990–2020 +1 +2 +1.5
Source: Computed from Landsat Imagery.

The minimum, maximum, and mean LST changed during the research span in the
study area. The minimum, maximum, and mean LST increased by +1 ◦C, +2 ◦C, and
+1.5 ◦C respectively. The increasing LST provides favorable conditions for vegetation
growth, but it creates problems for areas with snow cover. This can be justified from the
result of the LULC analysis, where vegetation cover increased and snow cover decreased
in significant proportions. A continued increase in vegetation cover would enhance the
heat trapping capability of the study area. The result of the LST change was validated with
the help of the Mann–Kendall and Sen’s slope trend tests. The trend of temperature in
September was analyzed from 1981 to 2021. These two non-parametric tests are the best
method to analyze trends in a metrological dataset. The descriptive statistics of temperature
including maximum, minimum, mean, SD, and coefficient variation are given in (Table 11).
The maximum, minimum, and mean temperatures were −1.47 ◦C, −5.49 ◦C, and −3.69 ◦C,
respectively. The standard deviation (SD) and coefficient of variation of temperature were
0.859 ◦C and −23.24%, respectively.

Table 11. Summary of Statistical Techniques of Temperature (◦C).

Variable
1981–2021 Minimum Maximum Mean Std.

Deviation CV (%)

September −5.49 −1.47 −3.697 0.859 −23.24
Source: Computed by Author.

The result confirmed the increasing trend in temperature observed in the month of
September (Figure 7) which is quite significant as obtained p-value was 0.011. Hence, the
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null hypothesis H0 was rejected and alternative hypothesis H1 was accepted. The p-value
of 0.11 indicated a significant increasing trend in temperature of the month of September in
Lahaul and Spiti (Table 12).

Figure 7. Monthly Trend of Temperature, 1981 to 2021.

Table 12. Mann–Kendall trend test/Two-tailed test.

1981–2021 October

Kendall’s tau 0.276

S 226

Var(S) 7922.667

p-value (Two-tailed) 0.011

Alpha 0.05

Sen’s slope 0.030
Source: Computed by Author.

5.6. Impact of LULC Change on LST

Land Use/Land Cover (LULC) change and Land Surface Temperature (LST) are
interlinked and have significant impacts on each other [40,41]. The extent of this impact
depends on the type and magnitude of the LULC change and the specific characteristics of
the land surface and local climate [42–44]. Overall, the impact of the LULC change on LST is
complex and depends on multiple factors. However, it is generally accepted that changes in
land use and land cover can significantly alter local climate and temperature patterns, with
important implications for human health, ecosystem services, and agricultural productivity.
As per the LULC result, both dense and sparse vegetation have increased in the region.
An increase in vegetation cover is a result of increasing temperature, which is providing
suitable climatic conditions. However, vegetation typically has a cooling effect on the land
surface by releasing moisture through transpiration, which helps to regulate temperature.
The decline in snow cover area is a clear indication of rising of LST in Lahaul and Spiti.
There was an increase of around 10% in water body from 1990 to 2020. This change
has occurred because of the development of new glacial lakes. Furthermore, the study
investigated how the surface temperature of each LULC type changed over time. The
mean surface temperature of each LULC type was extracted by averaging all the sample
pixels of the classified LULC types. The mean STC of each LULC type i.e.dense vegetation,
sparse vegetation, snow cover, water body, and barren land was 16 ◦C, 17 ◦C, −3 ◦C, 19
◦C and 5 ◦C in 1990, and 19 ◦C, 18 ◦C, −2 ◦C, 22 ◦C and 8 ◦C respectively in 2020. The
change in surface temperature of each LULC types can be easily seen in Figure 8. The mean
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surface temperature of dense vegetation, sparse vegetation, snow cover, water body, and
barren land increased by +3 ◦C, +1 ◦C, +1 ◦C, +3 ◦C, and +3 ◦C, respectively, in the last
three decades. The most active and susceptible to temperature is snow cover among all
land cover types. A 1 ◦C increase in surface temperature of snow cover areas could lose
substantial amount of snow from the area mainly during summer time.

Figure 8. Surface Temperature (ST) Change of Each LULC Types.

Overall, changes in land use and land cover can have complex effects on LST, and the
specific impacts will depend on a range of factors, including the type and extent of land
use change, the climate of the area, and the season. Understanding these relationships is
important for predicting and mitigating the impacts of land use change on temperature
and climate.

5.7. The Relationship of LST with NDSI and NDVI

The relationship was established on the basis of the pixels values extracted using the
fishnet technique from Land Surface Temperature (LST), Normalized Difference Vegetation
Index (NDSI), and Normalized Difference Vegetation Index (NDVI) The fishnet tool creates
a feature class that contains a net of rectangular cells. There are three basic sets of informa-
tion to create fishnet: the spatial extent of fishnet, the number of rows and columns, and the
angle of rotation (Figure 9). Karl Pearson’s coefficient of correlation was used to examine
the relationship of LST with NDSI and NDVI. LST was considered an independent variable
and NDSI as well as NDVI were taken as dependent variables in this calculation.

The result of correlation of coefficient of LST with NDVI shows a positive correlation
of R2 = 0.47 in 1990 and R2 = 0.61 in 2020 (Figure 10). The climatic conditions of Lahaul
and Spiti are not suitable for vegetation, but the change in regional temperature due to
global warming creates ideal conditions for vegetation growth. The result of correlation of
coefficient clearly indicates that LST is providing favorable environmental conditions for
vegetation growth.

On the other hand, the analysis of the correlation coefficient of LST with NDSI shows a
negative correlation R2 = 0.3827 in 1990 and R2 = 0.4285 in 2020. An increase in the value of
R2 (correlation coefficient) indicates that a negative correlation is becoming strong between
LST and NDSI. It confirms that rising LST has a negative impact on snow cover area in
Lahaul and Spiti. This will result in a significant decrease in snow cover in alpine and frigid
continental zones, where precipitation will tend to fall in the form of rain and there could
also be more rain-on-snow events. This could result in flash floods.
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Figure 9. The Sample Pixels of LST, NDVI, and NDSI.

Figure 10. The correlation of coefficient of LST with NDVI and NDSI.

6. Conclusions

Based on the Landsat images of 1990, 2015, and 2020, LULC changes and its impact on
LST in Lahaul and Spiti district was examined. The study area has been classified into five
LULC types, for example barren land, sparse vegetation, snow cover, water body, and dense
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vegetation. A significant change occurred in vegetation cover, where dense and sparse
vegetation increased. Water body area increased by 10%, which is in contrast with the global
trend. Conversely, snow cover decreased by −7% during the research span. The region
is a rain shadow area where glacier/snowmelt water is the single source of fresh water.
Thus, the increase in water body is the result of the conversion of glacier/snow cover area
into several glacial lakes. The Lahaul and Spiti region will face a severe problem of water
scarcity if snow cover continues to decrease at this rate. The livelihood of the mountain
dwellers depends upon the two most important LULC types, vegetation and snow cover.
Analysis of the LST indicated that the minimum, maximum, and mean LST increased
by +1 ◦C, +2 ◦C, and +1.5 ◦C, respectively. The result of the LST change was validated
with the help of the Mann–Kendall and Sen’s slope trend test. It also shows a significant
increasing trend in temperature in the month of September (p-value 0.011). LULC change
has significant impacts on Land Surface Temperature (LST). The effects of LULC change on
LST can be seen in the form of vegetation increase, deglaciation, changes in agricultural
practices, and alteration of wetlands. These changes in LST can have far-reaching effects
on the local and regional climate, as well as on ecosystems and human communities. It is
important to understand these relationships in order to effectively manage and mitigate the
impacts of LULC change on LST and the associated environmental, social, and economic
impacts. Further research is needed to fully understand the complex interactions between
LULC change and LST and to develop effective strategies for managing land use in a way
that balances human needs with environmental sustainability.
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