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Abstract: The Naoli River (NLR) Basin is a crucial distribution area for wetlands in China. Investigat-
ing the link between land use changes and carbon storage in this basin is of significant importance
for protecting regional ecosystems and promoting the sustainable development of the social economy.
This paper uses long-term Landsat satellite images provided on the GEE (Google Earth Engine)
platform and the random forest classification algorithm to create spatial distribution maps of land
use in the NLR Basin from 1993 to 2022. The study analyzes the dynamic changes in wetlands in the
basin over the past 30 years and employs the InVEST (Integrated Valuation of Ecosystem Services
and Tradeoffs) model to explore the temporal and spatial evolution characteristics of carbon storage.
The results reveal that the wetland area of the NLR Basin showed a downward trend from 1993 to
2022, with a total decrease of 1507.18 hm2 over 30 years. During this period, the carbon storage in the
NLR Basin decreased, with a cumulative loss of 1.98 × 107 t, mainly due to the continuous reductions
in wetland and forest land. Additionally, the change in carbon storage in the basin has a strong
spatial and temporal relationship with the changes in land use/cover area. The total carbon storage
is positively associated with the areas of wetland, forest land, and water bodies. The conversion
of wetlands into any other land type results in the reduction in carbon storage. These findings can
improve our understanding of the spatial and temporal dynamics of wetlands in the NLR Basin over
the past 30 years and enable us to analyze the relationship between land use changes and regional
carbon storage. The results of this study have great significance for protecting the wetland ecology
and regional carbon balance in the NLR Basin.

Keywords: land use and cover change; Naoli River Basin; Google Earth Engine; carbon stocks;
InVEST model

1. Introduction

Marsh wetlands are a crucial component of the terrestrial carbon cycle [1], as they
provide essential ecosystem services and play a critical role in carbon sequestration [2,3].
Although wetlands cover only 8% of the Earth’s surface, they store approximately one-
third of the planet’s organic carbon and play a vital role in the global carbon cycle [4].
Unfortunately, wetland areas have declined by 68% since the Industrial Revolution due to
climate drying and a range of unsustainable human activities [5]. As a result, it is crucial to
examine the spatial and temporal changes in wetland carbon storage and develop effective
wetland ecosystem carbon management strategies so as to comprehend the wetland carbon
cycle process and safeguard wetland ecological environments [6,7].

As an important tool for monitoring wetland landscape patterns, remote sensing
technology has the ability to quickly extract large-scale and longtime surface coverage [8,9].
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The Google Earth Engine (GEE) is a cloud computing platform dedicated to processing
Earth observation data from remotely sensed imagery. In the long-time-series and large-
scale remote sensing exploration of the Earth, the GEE platform provides a large number
of high-resolution Landsat TM/ETM+/OLI remote sensing images through dedicated
cloud storage, which can access, process, and extract wetland water body information
online, greatly improving the efficiency of remote sensing scholars. The Google Earth
Engine is a cloud computing platform dedicated to processing Earth observation data
from remote sensing images. In the long-time-series and large-scale remote sensing explo-
ration of the earth, the GEE platform provides a large number of high-resolution Landsat
TM/ETM+/OLI remote sensing images through dedicated cloud storage, which can access,
process, and extract wetland water body information online, thus greatly improved the
efficiency of remote sensing scholars [10]. In practice, the GEE has proven to be a powerful
tool that can be used to extract wetland information [11,12].

The assessment of carbon stock in wetland ecosystems can be categorized into veg-
etation carbon stock and soil carbon stock [13]. Research on wetland vegetation carbon
stock has progressed considerably, both domestically and internationally, with particular
advancements in the estimation technology of wetland vegetation biomass utilizing 3S tech-
nology (i.e., GPS, GIS, and RS) [14,15]. In detail, wetland vegetation carbon stock mainly
consists of above-ground biomass, below-ground biomass, and deadfall biomass [16]. The
measurement of above-ground biomass is primarily carried out using sample field mea-
surement methods, non-destructive estimation methods, and remote-sensing technologies.
In particular, remote-sensing technology has facilitated a new approach to measuring the
above-ground biomass of wetlands, offering enhanced accuracy in feature information
extraction and the ability to extract long-term series of remote sensing images of wetlands.
Thus, the remote-sensing techniques have been widely used to measure above-ground
biomass in wetlands, despite minor errors. The methods employed to estimate the subsur-
face biomass of wetland plants include the digging block method, the drilling core method,
the in-growth soil core method, and the micro-root zone tube method [17]. The study of
deadfall carbon stock was based on quadrat sampling [18]. Jiao Yan et al. [19] explored
the carbon stock of forest vegetation in Heilongjiang Province, including its dynamics,
and determined that the total carbon stock of forests in the six forest inventories in Hei-
longjiang Province exhibited a trend of first decreasing and then increasing. Meanwhile,
Long Yi et al. [20] combined the optimal GWR model with the spatial distribution of vege-
tation types to estimate the carbon stock of Shenzhen vegetation, with the resulting carbon
stock values ranging from 1.63 to 60.95 Mg C/hm2.

Currently, soil organic carbon is the method most commonly used to estimate soil
carbon stock. Estimation methods of soil organic carbon stock include the soil type method,
life zone method, and correlation method [21]. Yin Shubai et al. [22] found that organic
carbon content and stock varied significantly in the soil profiles of ring-type swamp wetland,
with higher levels towards the center. Their study also revealed a highly heterogeneous
spatial distribution of the soil organic carbon density in the Sanjiang Plain, which was
affected by land use type [23,24]. However, these traditional methods of carbon stock
calculation have limitations in assessing carbon stocks on larger spatial and temporal
scales due to high workloads and long sampling periods [25]. Therefore, the carbon stock
assessment models are used by many experts to calculate or simulate total carbon stock
changes [26]. The InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs)
model is a widely-used carbon stock assessment model for terrestrial ecosystems due to its
low data requirements, fast operation, and high assessment accuracy [27,28].

The NLR Basin is the largest basin in the Sanjiang Plain in China and also has the
largest distribution area of marsh wetlands in the country [1]. Research has revealed that
natural and human factors have led to a drastic reduction in the area of marsh wetlands
in the NLR Basin, which requires immediate protection [29]. It is necessary to study the
carbon stock of the NLR Basin to maintain the regional carbon balance due to its significant
carbon sink function. However, little attention has been paid to the study of the spatial
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and temporal changes in carbon stocks in the NLR Basin wetlands, and most of the related
studies are characterized by short time series, outdated research data, and low research
accuracy. With the development of remote-sensing technology, satellite remote sensing
data can be used to observe the wetland information of large areas and monitor its dynamic
changes over time [30]. This technology provides macroscopic, high-resolution, and long-
term continuous observation data of surface wetland water bodies, making it possible to
study the spatial and temporal variation in the carbon stocks of wetlands in the NLR Basin.

In this study, based on the GEE platform, Landsat remote sensing image data was
utilized and the random forest algorithm was employed to classify land use in the NLR
Basin and analyze its spatial and temporal evolution. The obtained land use data were
used with the InVEST model to analyze the spatial and temporal changes in carbon storage
in the basin.

2. Materials and Methods
2.1. Study Area

The NLR Basin, which is an important marsh wetland distribution area in China,
is located in the hinterland of the Sanjiang Plain in Heilongjiang Province, between
45◦42′ N–47◦31′ N and 131◦10′ E–134◦09′ E (Figure 1). The basin has an area of approxi-
mately 24,900 hm2, with its wetland area accounting for 1/4 of the Sanjiang Plain’s wetland
area. It is characterized by a cold-temperate continental humid monsoon climate, with
an average annual temperature of 3.3 ◦C and an average annual precipitation of 532 mm.
Geomorphologically, the basin is characterized by high terrain in the southwest and low
terrain in the northeast, and most of its rivers flow into the Ussuri River. The basin en-
compasses seven counties and cities, including Raohe County, Fujin City, Baoqing County,
Youyi County, Jixian County, Shuangyashan City, and Qitaihe City. Agricultural activities
in the basin are highly intense, and the proportion of arable land to the total area of the
basin is more than 60% [31]. The NLR Basin has become the main grain-producing area
of the Sanjiang Plain and an important national commercial grain base. However, four
large-scale land developments have occurred in the region since 1956, resulting in the
gradual fragmentation of the wetlands, drastic land use and land cover (LULC) changes,
and a significant impact on the wetlands’ carbon sink function. Therefore, conducting
carbon-storage-related studies on the wetlands in the NLR Basin is necessary to protect the
regional ecological environment.
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2.2. Data Sources
2.2.1. Data Source and Pre-Processing of the Remote Sensing Data

Based on the Landsat series satellite data provided through the GEE, all Landsat5,
Landsat7, and Landsat8 satellite remote sensing images with a spatial resolution of 30 m
and cloud content less than 20% during the vegetation growth period of June–October,
1993–2022, were selected for this study. After that, they were integrated, and remote sensing
image datasets were constructed with geometric correction and atmospheric correction.

A series of pre-processing steps of the remote sensing images were performed to obtain
high-quality remote sensing image datasets for subsequent use. The vector boundaries of
the NLR basins extracted in ArcGIS were placed in GEE’s personal database. The study
area was cropped and mosaicked using the clip and mosaic functions. Next, the qa band
(pixel_qa) generated with the mask-based C function (CFMask) algorithm was used to
remove cloud layers from the remotely sensed images.

The classification features were derived using pre-processed seasonal composite im-
ages in the GEE platform, including all available spectral bands, eight spectral indices
(e.g., normalized vegetation index, enhanced vegetation index, vegetation moisture content
index, normalized water index, improved normalized difference water index, normalized
building index, naked soil index, and remotely sensed building land index) with the abbre-
viations NDVI, EVI, LSWI, MNDWI, NDBI, BSI, and IBI, in that order. The texture means
based on the gray-scale covariance matrix (GLCM) and incorporating topographic features
derived from the SRTM data (including the elevation, slope, slope orientation, and hill
shading) were used as auxiliary classification data.

2.2.2. Sample Point Selection and Validation

In accordance with the Classification of Land Use Status, representative land cover
categories were selected based on the status quo and characteristics of land use in the
study area. These categories were primarily classified into five types: water, woodland,
wetland, cropland, and build. To ensure an accurate selection of sample points, a buffer
zone of 60 m was created outward for each sample point, and all points within this area
were considered as the sample set. The sample points were chosen for each year using the
visual interpretation method. The sample points were randomly divided into two sets of
70% and 30%, respectively, for classifier training and accuracy verification.

2.2.3. Carbon Density Data

The carbon density data used in this study mainly referred to previous research
results, and priority was given to data measured in the field near the Sanjiang Plain. If
the comprehensiveness of the data was not sufficient, data measured and compiled in the
literature of the same climatic zone as the study area were selected, and the data were
corrected as needed. The carbon density data of the NLR Basin are shown in Table 1.

Table 1. Carbon density of different land types in the NLR Basin (t/ha).

Land Type Cabove Cbelow Csoil Cdead Ctotal Reference

Water 8.72 2.21 23.01 0 33.94 [32,33]
Woodland 11.46 31.32 173.9 2.02 218.7 [33,34]
Wetland 45.11 92.71 147.84 0 258.66 [24,35]

Cropland 10.1 26.8 147 0 183.9 [32,33]
Build 8.75 4.39 27.78 1.16 41.68 [32,33]

Ctotal represents the total carbon storage; Cabove represents the aboveground carbon storage of vegetation; Cbelow
represents the underground carbon storage of vegetation; Csoil represents soil carbon storage; Cdead represents the
carbon storage of dead organic matter.

2.3. Method

The flow chart of the method used in this study is shown in Figure 2.
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2.3.1. Random Forest Algorithm

Random forest (RF) is a machine learning algorithm that consists of multiple clas-
sification decision trees [36]. The algorithm works as follows: assuming that there are
several datasets to be trained, a random sampling method is used to extract samples from
the selected data through visual interpretation. The extracted samples form the training
sample set of each decision tree. The training samples account for approximately two-
thirds of the original data, while the remaining one-third are used as test data to form a
test decision tree. The prediction category of the sample is determined through voting
based on the decision tree nodes, and the classification result is finally obtained. Compared
to other neural network calculation algorithms, the RF algorithm has several advantages,
including a high calculation accuracy, shorter model training time, and the ability to deter-
mine the importance of variables in the model. Therefore, this method is widely used in
classification research.

2.3.2. Precision Evaluation Method

The accuracy of validation was determined using the confusion matrix and the GEE
platform for visual interpretation of the sample points in the NLR Basin LULC. The overall
accuracy and Kappa coefficient were then calculated. Overall accuracy is a measure of the
algorithm’s effectiveness and is calculated by determining the number of correctly classified
samples as a percentage of the total number of validated samples. The Kappa coefficient,
on the other hand, measures the degree of agreement between the predicted values and the
ground truth data [37]. To obtain the accuracy evaluation index, the mixing matrix was
calculated using the validation samples through the ImageCollection.errorMatrix (actual,
predicted, order) function of the GEE platform, which provides the overall accuracy (OA)
and Kappa coefficient.

2.3.3. InVEST Model

The carbon storage module in the InVEST (Integrated Valuation of Ecosystem Services
and Tradeoffs) model divides the carbon storage of the ecosystem into four basic carbon
pools: aboveground biological carbon (carbon in all surviving plant materials above the
soil), underground biological carbon (carbon present in the plant living root system), soil
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carbon (organic carbon distributed in organic soil and mineral soil), dead organic carbon
(carbon in litter, inverted or standing dead trees). The calculation formula is as follows:

Ctotal = Cabove + Cbelow + Csoil + Cdead (1)

where Ctotal represents the total carbon storage; Cabove represents the aboveground car-
bon storage of vegetation; Cbelow represents the underground carbon storage of vegeta-
tion; Csoil represents soil carbon storage; and Cdead represents the carbon storage of dead
organic matter.

2.3.4. Correlation Analysis

In this study, wetland area was regarded as a continuous variable with a non-normal
distribution, and linear regression analysis in Origin 2022 was used to explore the correla-
tion between the wetland area and carbon storage in the NLR Basin.

3. Results
3.1. Analysis of LULC Classification Mapping Results for the NLR Basin

The RF algorithm on the GEE platform was used to obtain the land use type data
of the NLR Basin for five-year intervals from 1993 to 2022, and its overall accuracy and
Kappa index were above 90% (Table 2), achieving a relatively good classification effect. The
classification results are shown in Figures 3 and 4.

Table 2. Classification overall accuracy and Kappa coefficient.

1993 1998 2003 2008 2013 2018 2022

Overall accuracy 96.18% 96.74% 96.34% 97.10% 97.30% 97.63% 96.73%
Kappa 0.9449 0.9532 0.9456 0.9578 0.9607 0.9619 0.9473
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3.2. Spatial and Temporal Changes in LULC in the NLR Basin

It is evident from Figure 5 that the structure and distribution of wetlands in the
NLR Basin underwent significant changes from 1993 to 2022, with a general decreasing
trend despite fluctuations in the wetland area. Specifically, the wetland area reduced
from 2823.96 hm2 in 1993 to 1316.78 hm2 in 2022, with 1413.69 hm2 lost from 1993 to
2003; 24.11 hm2 lost from 2003 to 2013; and 69.36 hm2 lost from 2013 to 2022. The past
three decades saw the wetland area decrease by 1507.18 hm2. Figures 5 and 6 reveal that
cultivated land and water bodies are the primary conversion types of wetlands. Overall,
from 1993 to 2022, around 416.42 hm2 of wetland area was converted into cultivated land,
and 38.39 hm2 was converted into water.

From 1993 to 2022, the area of cultivated land in the NLR Basin exhibited a steady
increase, rising from 11,744.47 hm2 in 1993 to 14,393.49 hm2 in 2022. Conversely, the forest
land area decreased from 7212.35 hm2 in 1993 to 6027.28 hm2 in 2022. While the area
of water and construction land varied during this time, there was no clear trend. This
indicates that the expansion of cultivated land has led to the degradation of wetland and
forest land in the NLR Basin, which necessitates urgent protection.

From a spatial perspective, the wetlands in the NLR Basin are primarily distributed
near the banks of the NLR and the Qixing River in a discrete surface pattern around the
water bodies. In 1993, the wetlands in the NLR Basin were extensively distributed in
the central and northeastern areas of the basin. However, by 2003, the wetland area had
significantly decreased, particularly at the confluence of the NLR and the Qixing River.
Although the wetland area continued to decline in 2013, the rate of change stabilized.
Although the wetland area had recovered somewhat by 2022, it remained significantly
smaller than the 1993 level, indicating an obvious trend of fragmentation.
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From 1993 to 2022, the distribution of cultivated land in the NLR Basin was concen-
trated in large areas in the western and central regions of the basin. During this period, the
cultivated land continued to encroach on forest and wetland areas, resulting in an increase
in the total area of cultivated land in the basin. The forest land in the NLR Basin was
mainly distributed in the southeastern and western regions of the basin during the same
period. However, due to the encroachment of cultivated land, the distribution of forest
land became increasingly fragmented. There were no significant spatial changes in the
water or built-up land during this period.

3.3. Spatial and Temporal Changes in LULC Carbon Storage in the NLR Basin

Using the carbon storage module of the InVEST model, we estimated the carbon
storage of the NLR Basin in seven periods between 1993 and 2022, including 1993, 1998,
2003, 2008, 2013, 2018, and 2022 (Figure 7). The carbon storage in the study area first
decreased and then increased from 1993 to 2022. Overall, the carbon storage in the basin
decreased by 1.98 × 107 t from 1993 to 2022, with the most significant decline observed
during 1993–2003, resulting in a decrease of 2.03 × 107 t. This decrease was mainly due to
the reduction in the wetland and forest land area and the increase in the cultivated land
area. However, from 2003 to 2022, the carbon storage in the basin showed a slight upward
fluctuation, increasing by 0.05 × 107 t. This increase was mainly due to the implementation
of the policy of returning farmland to forest land and returning farmland to wetland, which
helped to restore the area of forest wetland.
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Figure 7. Carbon storage and trend in the study area (107 t) in different years.

From the perspective of land use types, the carbon storage of wetlands in the NLR
Basin showed a decreasing trend from 1993 to 2022 (Table 3). Over this period, wetland
carbon storage decreased by 4.27 × 107 t, declining from 8.12 × 107 t in 1993 to 3.85 × 107 t
in 2022. Moreover, the carbon storage of forest land decreased from 15.77 × 107 t in
1993 to 13.18 × 107 t in 2022, while the carbon storage of cultivated land increased from
21.54 × 107 t in 1993 to 26.39 × 107 t in 2022. The carbon storage of construction land and
water bodies did not change significantly during this period.

From a spatial distribution perspective, the carbon storage in the NLR Basin exhibits
significant spatial heterogeneity, as shown in Figure 8. The areas with high carbon storage
values are primarily located in the eastern and southern regions of the study area, where
wetlands and woodlands are the main land use types. These regions have a large vegetation
area and a high carbon storage capacity. From 1993 to 2022, the carbon storage in the study
area initially decreased and then increased, with an average carbon storage of 44.17 × 107 t
over many years. The staggered distribution of different land use types in the study area
resulted in a staggered carbon storage distribution.
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Table 3. Carbon storage according to land use type in the NLR Basin from 1993 to 2022 (107 t).

Year Water Woodland Wetland Cropland Build Total

1993 0.06 15.77 8.12 21.54 0.05 45.54
1998 0.07 13.77 5.41 24.85 0.07 44.17
2003 0.05 13.12 4.09 26.13 0.12 43.51
2008 0.05 13.54 5.67 24.89 0.09 44.24
2013 0.06 14.14 4.02 25.43 0.09 43.74
2018 0.02 13.36 5.70 25.29 0.06 44.43
2022 0.05 13.18 3.85 26.39 0.09 43.56
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From 1993 to 2003, the spatial distribution of carbon storage in the study area exhibited
considerable variability, with an average of 44.41 × 107 t. The regions with high carbon
storage were predominantly situated in the eastern and southern parts of the study area,
while the central region demonstrated low carbon storage, with sporadic, dispersed areas
having the lowest storage. The decrease in total carbon storage from 2003 to 2013 can
be attributed to several factors, including the expansion of cultivated land, a decline in
wetland and forest areas, and a reduction in the average annual precipitation. The period
between 2013 and 2022 showed a decline in high-value areas of carbon storage in the
eastern and southern parts of the study area, as compared to 1993–2003. The cultivated
land area in the central region was identified as the primary region for low carbon storage
during this period.

In order to better depict the changes in carbon storage in the study area, a spatial
change map of carbon storage was constructed for the period of 1993–2022 by reclassifying
the difference value of each decade. The spatial variation in carbon storage during this
period was classified into three categories: reduction, no significant change, and increase, as
shown in Figure 9. The spatial variation in carbon storage showed the characteristics of large
aggregation and sporadic distribution. During the period of 1993–2003, the spatial variation
in carbon storage was intense, with the increase in carbon storage mainly concentrated in
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the central and eastern regions of the basin. However, the carbon storage showed a sporadic
distribution and mainly exhibited a decreasing trend. The area with a significant reduction
in carbon storage was concentrated in the central region of the basin, where the carbon
storage changed dramatically. In contrast, the spatial variation in carbon storage during the
periods of 2003–2013 and 2013–2022 was relatively stable, with the area of carbon storage
change mainly being concentrated in the central part of the basin near the banks of the NLR
and Qixing River. The carbon storage in the other regions remained unchanged. Overall,
the change in carbon storage in this basin from 1993 to 2022 was intense. The area with
significant changes in carbon storage was mainly concentrated on both sides of the NLR
and the Qixing River. The establishment of the NLR National Nature Reserve and the
completion of water conservancy projects such as Longtou Bridge have influenced the
carbon stocks in the central and northeastern regions of this region and the upper reaches
of the basin to varying degrees. In addition, the expansion of cultivated land has led to the
conversion of wetlands and woodlands into paddy fields and dry land, causing sporadic
reductions in carbon storage in the eastern and central regions of the basin.
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3.4. The Effect of LULC Change on Carbon Storage in the NLR Basin

Combining Figures 8 and 9, the carbon storage in the NLR Basin is closely related to
the change in LULC. The change in LULC is one of the reasons for the change in carbon
storage in the NLR Basin. Table 4 shows that LULC changes from 1993 to 2022 resulted in a
decrease in carbon storage of approximately 626.02 × 105 t. Specifically, the conversion of
wetlands into other land types resulted in a significant reduction in carbon stocks, with a
total loss of 437.5 × 105 t. Additionally, the conversion of forest land also reduced carbon
storage by 336.21 × 105 t. However, the conversion of cultivated land, water bodies, and
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construction land increased carbon storage, although the overall trend was still decreasing.
The conversion of water bodies into other land types, forest land into wetlands, and
cultivated land into woodland and wetland, as well as the conversion of construction land
into wetland, woodland, and cultivated land, were beneficial for the increase in carbon
storage. In contrast, the conversion of wetlands and forest land into other land types was
not conducive to carbon storage increase. The main reason for the decrease in carbon
storage was the conversion of wetland and forest land into cultivated land, resulting in a
loss of 772.18 × 105 t.

Table 4. Change in carbon storage caused according to land use type conversion from 1993 to 2022.

1993–2022 Area/km2 Change of Carbon Storage/105 t Subtotal/105 t

Water–woodland 2.81 0.51
Water–wetland 38.39 5.24

30.72Water–cropland 110.93 24.93
Water–build 1.02 0.04

Woodland–water 14.83 −0.38
Woodland–wetland 1.16 0.15 −336.21Woodland–cropland 1491.72 −335.27

Woodland–build 9.73 −0.71

Wetland–water 11.78 −0.3
Wetland–woodland 0.58 −0.10 −437.5Wetland–cropland 1943.96 −436.91

Wetland–build 2.62 −0.19

Cropland–water 78.49 −2.04
Cropland–woodland 328.93 60.13

105.29Cropland–wetland 416.42 56.88
Cropland–build 131.37 −9.68

Build–water 1.63 −0.04
Build–woodland 2.82 0.51

11.68Build–wetland 3.36 0.45
Build–cropland 47.92 10.76

Overall, the carbon storage of wetlands and forest lands decreased, while the carbon
storage of cultivated land, water bodies, and construction land increased. Among these
types, wetland carbon storage decreased the most, while cultivated land carbon storage
increased the least. The order of the carbon storage values of different LULC types in the
total carbon storage in the study area was as follows: cultivated land (60.57%) > forest land
(30.25%) > wetland (8.85%) > construction land (0.02%) > water body (0.01%). Wetlands,
with an area of only 5.96%, accounted for 8.85% of the carbon storage, making them an
important carbon pool in the NLR Basin. Although the area of forest land is declining, it
still accounts for a large proportion of carbon storage, making it the main carbon pool in
the study area.

In order to explore the relationship between land use change and total carbon storage
in the study area, we calculated the correlation between the LULC area change and total
carbon storage from 1993 to 2022. Figure 10 shows that the total carbon storage in the
study area is positively correlated with the area of wetland and forest land, since the
wetland and forest land have a high carbon density, and large carbon sequestration in
soil, which significantly affects regional carbon storage. Conversely, the area of cultivated
land is negatively correlated with total carbon storage. Although the area of cultivated
land has increased, it has mainly been converted from wetlands and woodlands with high
carbon storage, resulting in a negative correlation with total carbon storage. The correlation
between the area of the build and water categories and the total carbon stock is not clear.
It is possible that other factors have a significant effect on the carbon stocks of these two
types of land.
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4. Discussion
4.1. Spatial and Temporal Changes in Wetlands in the NLR Basin Based on the GEE Platform

In this study, the RF algorithm in the GEE platform was used to obtain the land use
type data of the NLR Basin at five-year intervals from 1993 to 2022. The overall accuracy
and Kappa coefficient were above 90%, achieving a relatively good classification result. Due
to the continuous innovation of machine learning methods, many scholars have achieved
good accuracy using machine learning algorithms for wetland mapping [38–40]. The
results of this paper provide a new method for wetland mapping. Nevertheless, higher-
resolution data could be used to further improve the accuracy of mapmaking in the future
remote-sensing monitoring of wetlands.

In this study, the LULC distribution map of the NLR Basin from 1993 to 2022 was
obtained through the GEE platform. The results showed that the wetlands in the NLR basin
showed a degradation trend, which was consistent with the results of previous studies, and
the marsh wetlands in the NLR basin were severely degraded in the last 40 years due to the
influences of various factors [41]. Natural and anthropogenic factors have contributed to the
gradual loss of wetlands in the region [42]. Specifically, between 1993 and 2022, the wetland
area decreased by 1507.18 hm2, with 416.42 hm2 being converted to cultivated land. The
expansion of cropland is a key factor in wetland degradation. In line with previous research,
human farming activities are the main driver of wetland area retreat in the NLR basin [43].
Between 1993 and 2003, the devaluation of several dryland crops led to their conversion into
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paddy fields, resulting in wetland area shrinkage. Simultaneously, state-led development
prioritized drainage network and road system construction, further exacerbating wetland
degradation [44]. While the area of wetlands continued to exhibit a degradation trend
from 2003 to 2013 and from 2013 to 2022, the rate slowed down. This can be attributed to
the impacts of reduced river supplementary water, climate change, and small-scale illegal
reclamation, which represent the results of both natural and anthropogenic factors.

4.2. Effects of Temporal and Spatial Variation in Wetlands on Carbon Storage in the NLR Basin

The change in LULC is one of the reasons for the change in the soil organic carbon
content; meanwhile, the area where the LULC is changed is also the area where the
carbon stock is drastically changed [45]. From 1993 to 2022, the carbon storage in the
NLR Basin showed a trend of decline–rise–fluctuation, shifting from 45.54 × 107 t in
1993 to 43.56 × 107 t in 2022. During this time, the overall fluctuation in carbon storage
in the region was considerable. The substantial expansion of cultivated land led to the
encroachment of high-carbon wetlands and woodlands, resulting in a significant loss of
carbon storage that is consistent with the marked shrinkage of these areas. Our results
reveal the impact of LULC on regional carbon stocks, which is consistent with the findings
of previous studies. LULC is one of the causes of changes in ecosystem carbon stocks [46].
In light of these results, we recommend that the NLR Basin prioritize efforts to restore
farmland to wetland and forest land, protect the ecosystem, improve the compensation
mechanism for farmland restoration, enhance the carbon sequestration capacity of wetland
forest ecosystems, and promote local sustainable development.

According to previous research, many scholars have evaluated the impacts of wetland
changes on carbon storage in the Sanjiang Plain, consistent with the findings of this study.
The conversion of woodland and swampy wetland into cropland leads to a decrease in
vegetation carbon stocks, and the conversion of cropland into woodland and swampy
wetland leads to an increase in vegetation carbon stocks [47]. From 1993 to 2022, the
wetland area in the NLR Basin fluctuated after a sharp decline, which was highly correlated
with the change in carbon storage in the study area. Figure 10 demonstrates that the total
carbon storage in the study area exhibited a significant positive correlation with changes
in the wetland area. In addition, the total carbon storage showed a significant positive
correlation with forest land and a negative correlation with cultivated land, which is
consistent with the findings of other scholars. Wang Lili et al. [48] found that the expansion
of cultivated land reduces the organic carbon storage of wetland soil, and the return of
farmland to wetland is conducive to the fixation of soil organic carbon and the increase in
regional carbon storage.

In addition, studies from many countries have revealed the relationship between
LULC changes and carbon stocks [49]. For instance, Xiaoqing Chang et al. [50] analyzed the
impacts of changes in LUCC on terrestrial carbon stocks in China from 2000 to 2018, and the
results showed that LUCC had a significant impact in increasing the terrestrial carbon pool
sink in China. Similarly, M. Maanan et al. [51] assessed the impacts of LULC changes on
carbon stocks in northwestern Morocco using the InVEST model, and the results showed
that the total carbon stocks increased from 4.81 TgC in 1996 to 4.98 TgC in 2017, with the
largest impact of LULC on carbon stocks. This is consistent with the results of the NLR
basin, where the change in LULC was one of the relevant factors for the change in carbon
stock. Shuqing Zhao et al. [52] studied the relationship between LUCC and carbon sink in
the southeastern U.S. from 1992 to 2050, showing that urban expansion affected the carbon
sink function of the region, leading to the decrease in the regional carbon stock. In general,
the impact of LULC changes on regional carbon stocks is a long-term process; thus, policy
makers should fully consider this factor when formulating ecological conservation policies.

4.3. Deficiencies and Prospects

Based on the GEE platform, the Landsat remote sensing image data were utilized,
and the RF algorithm was employed to classify land use in the NLR Basin and analyze its
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spatial and temporal evolution. The obtained land use data were used with the InVEST
model to analyze the spatial and temporal changes in carbon storage in the basin. However,
this study has some limitations.

Firstly, the NLR Basin, located in the Sanjiang Plain of Heilongjiang Province, is
characterized by widely distributed marsh wetlands, a complex geography, and diverse
land use types. Due to the limitations of some technical measures, this study only selected
five representative land types, neglecting the divisions of grassland, swamp, and unused
land. Therefore, in future studies, land use classification should include grassland, swamp,
and unused land divisions in remote sensing image analysis. Moreover, due to the lack of
field survey data, the accuracy verification of this classification is incomplete.

Secondly, carbon density data that were mainly derived from previous studies were
used when calculating the carbon storage of the NLR Basin using the InVEST model. While
the selected carbon density data were mostly derived from the Sanjiang Plain, which is not
geographically distant from the NLR Basin, the InVEST model disregarded differences in
the vegetation types and growth conditions of the same land type, as well as the changes
in carbon density values over time. Therefore, in future research, land types should be
classified more precisely and accurate carbon density data should be obtained through
extensive soil sampling in order to accurately measure carbon storage.

5. Conclusions

The main conclusions of this article are as follows:
(1) Over the past 30 years (1993–2022), the overall trend of the wetland area in the

Flexi River Basin has decreased, with a total reduction of 1507.18 hm2. The wetlands were
primarily concentrated in the central and northeastern parts of the study area, in a strip
pattern on both sides of the NLR and Qixing Rivers. The main land use transfer observed
was the conversion of wetlands into cropland, accounting for 8.8% of the total study area.

(2) From 1993 to 2022, the carbon storage of the NLR Basin showed a downward trend
followed by a fluctuating upward trend, with an overall decrease of 1.98 × 107 t. The
wetland distribution in the central and eastern regions had higher carbon storage compared
to the other areas. The total carbon storage was positively correlated with the area of
wetland, forest land, and water bodies. Any conversion of wetland into other land types
would result in a reduction in carbon storage. Wetlands accounted for 8.85% of the carbon
storage despite occupying only 5.96% of the total area in the NLR Basin. This highlights
the significance of wetlands as an important carbon pool.

(3) In this study, we showed that the wetlands in the NLR Basin are significant carbon
sinks, with minimal human activity and abundant natural vegetation and biodiversity. The
implementation of strict natural resource protection policies is necessary to optimize the
land use structure and promote sustainable development in the NLR Basin.
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