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Abstract: Urban fringe areas, characterized by relatively larger community sizes and lower popu‑
lation densities compared to central areas, may lead to variations in walkability as well as gender
differences, such as safety perception. While objective measurements have received considerable
attention, further research is needed to comprehensively assess subjective perceptions of walking
in the urban periphery. As a case study, we evaluated survey responses of community perceptions
of “Imageability”, “Enclosure”, “Human scale”, “Complexity” and “Safety” of Shanghai’s five new
towns, comparing these with responses from the central area in terms of gender difference, and
analyzed influencing factors and prediction performance of machine learning (ML) models. We de‑
veloped a TrueSkill‑based rating system to dynamically collect audits of street view images (SVIs)
from professional students and used the result to integrate with Geographic Information Systems
(GIS), Computer Vision (CV), Clustering analysis, and ML algorithm for further investigation. Re‑
sults show thatmost of the new towns’ communities are perceived asmoderately walkable or higher,
with the city center’s community exhibiting the best walkability perceptions in general. Male and
female perceptions of the “Human scale” and the factors that affect it differ little, but there are sig‑
nificant disparities in the other four perceptions. The best‑performing ML models were effective at
variable explanations and generalizations, with Random Forest Regression (RFR) performing better
on more perception predictions. Responses also suggest that certain street design factors, such as
street openness, can positively influence walkability perceptions of women and could be prioritized
in new town development and urban renewal for more inclusive and walkable cities.

Keywords: urban fringe areas; walkability perception; gender differences; street view imagery; new
town

1. Introduction
Walking plays a vital role in the transport systems of cities.Walkable streets contribute

to the creation of sustainable cities by reducing the volume of vehicles on the roads, thereby
mitigating greenhouse gas emissions and enhancing air quality [1]. It has also been proven
to assist residents in maintaining healthy lifestyles by encouraging physical exercise and
decreasing the likelihood of obesity, heart disease, and other chronic illnesses [2]. Addi‑
tionally, walking‑friendly streets foster interpersonal communication and community in‑
volvement by generating more public places and inspiring people to interact with their
surroundings [3,4].

Urban sprawl areas are frequently criticized for their inadequate walking infrastruc‑
ture and the potential negative health outcomes associated with these developments [5].
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Car‑friendly surroundings are believed to discourage pedestrians fromwalking by produc‑
ing lower residential densities, minimal variation in the types of land uses, and poorly con‑
nected streets [6]. Several academics have acknowledged the prevalence of urban fringe ar‑
eas, and there has been a general exploration of the topics related to evaluating and improv‑
ing walking‑related physical characteristics in those areas [7,8]. Conversely, some studies
found that specific attributes of the urban periphery improvewalkability in several regions
of the world [9,10]. Some of these perceptions shifted in the wake of the COVID‑19 pan‑
demic though both desires to avoid infection, mandates forworking fromhome, and travel
distance restrictions associated with disease control. Collectively these aspects of the pan‑
demic increased communities’ interactions with their immediate neighborhood and saw
an increase in the desirability of the sprawling suburb [11]. Urban fringe areas continue
to be the prevailing manifestation of urbanism in numerous regions, including China [12].
Therefore, the potential of urban fringe areas in various forms and levels of density cannot
be overlooked.

Differences in perceptions of walkability between men and women may be caused
by diversity between peripheral urban areas and central regions in community and street
scale, residential density, and population composition. For example, central areas typi‑
cally exhibit a compact road network characterized by narrow roads, whereas the new
urban fringe areas tend to feature a more dispersed road network with wider roads. Some
researchers have studied gender differences in active travel, and their results reveal the
existence of such variations [13–15]. However, there is a dearth of research on how per‑
ceptions of walkability vary betweenmen andwomen in urban fringe developments, such
as Shanghai’s new towns. Understanding the perceptional differences between genders is
crucial for planners to promote and encourage equitable active walking in the whole city.

Given the benefits of promoting a walkable and inclusive city, in this article, we chose
Shanghai’s five new towns, which are developed in urban sprawl, for case studies. The
relationship between urban fringe areas and new towns is demonstrated as detailed in
Section 2.1. Different from some objective measurements of walkability, like the “5D” the‑
ory (Density, Diversity, Design, Destination accessibility, and Distance to transit) [16] and
walkability index, we applied street view images (SVIs) auditing based on the TrueSkill
rating system, Geographic Information Systems (GIS), Computer Vision (CV), and Clus‑
tering analysis to measure five walkability perceptions: “Imageability”, “Enclosure”, “Hu‑
man scale”, “Complexity” and “Safety”, as well as gender differences in Shanghai’s five
new towns and compare them with the central area. Then, we analyzed the important fac‑
tors influencing walkability perceptions of males and females in new towns and evaluated
the prediction performance of several machine learning (ML) models. Within this frame‑
work, we aim to address the following research questions: (1) How do the five new towns
in Shanghai compare to the central area in terms of the scores of walkability perceptions?
(2) Does the peripheral location of these new towns result in gender differences in people’s
perceived walkability? (3) If the previous question is valid, are there any variations in the
factors that influence the walking perceptions between men and women? (4) Is it appro‑
priate to use machine learning to predict walkability perceptions based on street image
features and SVIs auditing?

New towns in China are generally constructed on the urban fringe areas, representing
a typical urban development pattern. China has a long history of building new towns, and
over the last few decades, it has undergone the most rapid urbanization ever recorded [17].
Therefore, the research on China’s new towns holds universal significance and provides
valuable insights for the construction endeavors of other developing nations. By studying
the walkability perceptions between men and women in various regions of development,
we can gain a deeper understanding of gender differences and their implications for build‑
ing more inclusive walkable cities. The remaining portions of this study are structured as
follows. Section 2 provides a review of the relevant literature. Section 3 introduces the
data and methods used in this study. Section 4 gives the results and discussion. Finally,
conclusions are presented in Section 5.
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2. Literature Review
2.1. Development of China’s New Towns

The new town concept, based on the Garden City model proposed by Ebenezer How‑
ard in 1898 [18], is a mode of suburbanization popularly applied and adapted to the scale
of China’s high‑density urban centers [19]. The majority of urban development in China
since the 1950s has been concentrated on the construction of industrial satellite cities in
the suburbs of some large cities [20]. The built‑up area of major cities expanded quickly
after the “Reform and Opening Up”, and the population scale also increased significantly.
By the end of the 1990s, many megacities had already started to run out of space and wit‑
nessed a decline in operating efficiency [21]. Since then, Beijing, Shanghai, Guangzhou,
and other major cities have attempted to improve the urban spatial structure by planning
and creating new towns. Research on China’s new towns focused on the evaluation of the
effectiveness of new town planning and construction [22,23], as well as the identification
of new town development patterns and spatial evolution [24,25].

In China, new town development is not pervasive and uniform throughout all
cities and regions. Instead, it has been concentrated and most pronounced around the
dominant megacities like Shanghai [19]. Since the 1950s, there has been a concerted ef‑
fort to develop and establish Shanghai’s new towns for the future [26]. After more than
20 years of continuous and rapid construction, Shanghai’s five new towns, including Jiad‑
ing, Qingpu, Songjiang, Fengxian, and Nanhui, which are located on the periphery of the
central area, have basically realized a network of roads, metro access, and coverage of bus
services [27]. Previous studies on Shanghai’s new towns have concentrated on develop‑
ment review [21,28] and transportation [29,30]. Research also has been done on urban di‑
versity measurement [31] and green space [32]. Moreover, it is expected that more people
will move into Shanghai’s five new towns, and almost all the master plans and designs of
those areas stress the need to develop a livable, vibrant, and humane urban environment
that prioritizes walking [33]. Although certain strategies have been proposed from the per‑
spective of pedestrian system planning to enhance the vitality of the Jiading new town [34],
there is still a need for increased attention to the walkability of urban fringe new towns.

2.2. Walkability and Gender
However, compared to the central urban area, the relatively larger community scale

and lower population density of fringe areas may have caused different perceptions of the
walking environment between genders. Globally, both government and non‑government
organizations place a high priority on investigating these differences [35]. Several stud‑
ies show that women are more likely to walk than men [36,37]. Some of these variations
stem from differences in walking goals. For example, females report a higher prevalence
of walking purposes for fun, exercise, and leisure than males do when all ages are taken
into account [38]. Females are also reported to be more sensitive to walking distance when
it comes to commuting, while males appear to be more negatively impacted by travel dis‑
tance when shopping [39].

Some researchers in various countries have identified objective physical environmen‑
tal factors associated with gender differences in walking [40,41]. For example, in an Aus‑
tralian study, neighborhood walking was positively correlated with the convenience of
facilities and access to services for males, while it was correlated with the former for fe‑
males [41]. There are also disparities inwalkability perception, particularly in safety, which
extend beyond concerns solely related to darkness. Females tend to feel more vulnera‑
ble and have more concerns about their safety than males [13,42], and they feel less safe
in disorderly places with rubbish and graffiti, as well as overgrown or excessive shrub‑
bery [43–45]. Females also perceive less safety in urban center areas than males in some
regions [13,46]. In addition, prior literature has shown that improving walkability based
on safety and aesthetics promotes active recreational walking for older women but is not
associated with men [47]. Though we have ample research evidence to prove that females’
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safety perceptions differ from males, we lack a clear understanding of gender inequality
in other important perceptions of walkability.

2.3. Measures of Walkability in Urban Fringe Areas
The majority of current objective research related to urban fringe areas’ walkability

focused on assessing the attributes of accessibility and connectivity using methods such as
Urban Network Analysis (UNA) [7], Space Syntax [48,49], and audit instruments [50,51].
This is mainly because these two attributes are generally considered unable to reach high
levels in traditionally low‑density, car‑centric, street‑fragmented suburbs. However, walk‑
ability, which has a more complex relationship with perceptions of people, cannot be
entirely represented by physical characteristics alone. Using questionnaires is a tradi‑
tional subjective approach to measuring perceptions of walking in suburban areas. For
example, Leung [52] conducted interviews with pedestrians in Tung Chung, a new town
in Hong Kong, to learn about the general public views of the pedestrian environment.
Hooper et al. [53] evaluated urban planning for greenfield suburban developments de‑
signed to encourage walking and physical activity in Perth, Western Australia, using the
“Neighbourhood Physical Activity Questionnaire” (NPAQ). However, the limitation of us‑
ing traditional questionnaires is that they are expensive and labor‑intensive.

More recent studies have made use of open‑source big data and AI algorithms, such
as SVIs data and CV, to evaluate perceptions of neighborhood street walkability [54–57]
but were less focused on peripheral urban areas. These studies are limited to relying on
objective indicators and cannot capture the nuanced human experiences of walking. SVIs
auditing, which is cheaper and more efficient than traditional on‑site auditing, has been
proven a reliable method for measuring perceptions [58–60]. For example, Zhou et al. [61]
distributed 186 online questionnaires based on Shenzhen’s Baidu street views and ana‑
lyzed them by a numeric scale to validate the visual walkability index (VWI), which was
proposed in the article. “Place Pulse 2.0”, a project launched by the MIT Media Lab, gath‑
ered millions of human responses for the street images, and participants were asked to
select one of the two images in reaction to several perception‑related questions [62]. Using
the MIT Place Pulse dataset, Zhang et al. [63] predicted six human perceptual indicators
in Beijing and Shanghai and concluded that the downtown areas are deemed to be more
“safe” and “lively” than the surrounding suburbs. These studies present a limitation in
that they were mainly concentrated on central areas, with fewer studies focusing on the
urban fringe.

Currently, there is a lack of research into the perception of the street environment
and walkability in China’s new towns. These are locations with the greatest potential for
change as they are still under development and are thus highly suitable for creating amore
inclusive andwalkable environment. In addition, previous studies tend to investigate gen‑
der differences in walkability from the safety perspective, while the research on the more
comprehensive investigation, including multiple aspects, is less conducted. The last point
is that utilizing SVIs audits and machine learning algorithms would greatly enhance the
understanding of the gender differences in perceptions of walkability in urban fringe areas
through quantitative methods.

3. Data and Methodology
3.1. Analytical Framework and Study Area
3.1.1. Analytical Framework

Given the increasing popularity of crowdsourcing techniques, there has been some
research in recent years using subjective audits of SVIs to assess and predict human percep‑
tion [63,64]. Based on previous studies, this study proposes a novel framework (Figure 1).
SVIs auditing, GIS, CV, clustering analysis, and ML were combined to evaluate communi‑
ties’ walkability perceptions and explore the factors influencing gender differences. Addi‑
tionally, the performance ofMLmodels in predicting these perceptionswas assessed. Nine
communities were selected from Shanghai’s five new towns and two communities from
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Shanghai’s central area for comparison (Figure 2a). SVIs were obtained from Baidu Maps
for each community within a 15 min walking circle calculated on ArcGIS. Then, an online
platform based on theMicrosoft TrueSkill ranking systemwas developed to collect percep‑
tions of fivewalkability aspects from expert students. Semantic segmentation and instance
segmentationmodels were applied to extract the physical features in the streetscape. After
that, we conducted a clustering analysis of the perceivedwalkability scores in 11 communi‑
ties, exploring the characteristics of each cluster and the gender differences in walkability
perceptions. Then we used Gini importance, which was calculated by Random Forest, to
analyze the factors influencing males’ and females’ walkability perceptions in new towns.
Finally, we compared the prediction performance of several ML models for both males’
and females’ perceptions of walkability.
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3.1.2. Study Area
The “Shanghai 2035” [65] master planning document establishes a 4 level urban and

rural system, as an important part of which Shanghai’s five new towns situated on the pe‑
riphery of the central area and mostly developed through new construction, are a spatial
carrier reflecting the development goals of the state and local administrations. They are
becoming cities with full socioeconomic functions that are spatially and functionally rela‑
tively independent of the central area. According to the master plan, all five new towns
have a clear core area for new urban development, and four of the five towns have old
districts, except Nanhui new town [33]. Among the central area within the Outer Ring
Road, there is also a distinction between the city center and the inner suburbs. To reflect as
comprehensively as possible the pedestrian environment characteristics of Shanghai’s new
towns compared with the central area, 11 community samples are chosen for this study,
with consideration given to the variations in the geographic settings and development pe‑
riods (Figure 2a). The “15‑min community‑life circle” promoted by the local government
is a basic unit for community life in Shanghai and intends to offer basic public services to
each community within 15 min walking distance. Therefore, we used the Network Anal‑
ysis tool in ArcGIS to obtain the 15 min walking distance of each community based on
the road network from Open Street Map (OSM) as the range of residents’ daily walking
activities (Figure 2b).

3.2. Data and Variables Calculation
3.2.1. Obtaining Streets Image Views

SVIs data is frequently used to measure perceptions of street walkability [66,67], and
SVIs audit has been proven to be an ideal approach to assess how people feel about the
micro‑level street environment [61,68,69]. The SVIs of study areas were collected from the
Baidu Street View service through an API. At an interval of 100 m, the sampling locations
used to request SVIs were generated along the road network. For each location point, the
detailed request parameters were set as follows: image size: 800 × 400, the horizontal
field of view: 120 degrees, and the up or down angle of the camera: 0 degrees. Given
that the majority of the study areas are in new towns with broad roads, the front view
from a moving car cannot accurately depict how people perceive the sidewalk. Therefore,
we adopt the right viewpoint parallel to the street section, which is more approximated
to the scale of the walking environment. In total, 519 images were collected from study
areas. Then, several students majoring in architecture or urban planning were invited to
select the images which better fit the pedestrian perspective, and 325 images were chosen
in the end.

3.2.2. Collecting Subjective Perceptions of Walkability
Beginning with urban design theory related to walkability [70], we selected four de‑

sign attributes: “Imageability”, “Enclosure”, “Human scale”, and “Complexity”. In ad‑
dition, many studies cited “Safety” as one of the influencing factors affecting walkabil‑
ity [13,71,72]. These five qualities were chosen to present subjective perceptions of walka‑
bility on street views.

We created a platform (http://120.25.231.168/web2/ (accessed on 3 April 2023)) for an
online questionnaire with 62 participants, a gender ratio of approx. 1.2:1 (female = 34,
male = 28). All participants are students majoring in architecture or urban planning. The
survey used the format and wording of the standard Chinese Census question on gen‑
der, which is defined by the physical manifestations of the underlying biological differ‑
ences. They answered questions such as “What is your gender” and “Which place makes
you feel the walking environment here is more imageable” (Figure 3). They could choose
their preference from two randomly presented images in five perceptions, and the sample
size of 325 images is suitable for balancing survey validity, model accuracy, and raters’ ef‑
fort [73]. The pairwise votes were converted to ranking scores by using TrueSkill [74], a
Bayesian skill rating system that is more flexible than the Elo rating system and has been

http://120.25.231.168/web2/
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applied in some urban studies [64,68]. In four days, we collected a total of 5474 pairwise
scores (females’ = 2985, males’ = 2489) and compared each image an average of 33 times
(females’ = 18, males’ = 15), which is sufficient to train a good TrueSkill model [75].
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3.2.3. Calculating Physical Features
The elements of street image views were extracted by DeeplabV3 [76], which is a

widely used image semantic segmentation algorithm inurban research areas [77,78]. Specif‑
ically, we used the DeeplabV3 that was pre‑trained on ADE20K, an image database con‑
tainingmore than 25,000 images and a total of 150 semantic categories. Then, we calculated
the proportion of each street view element in each image (Figure 4a). In addition, Mask
R‑CNN [79], an advanced Convolutional Neural Network (CNN) for image and instance
segmentation pre‑trained on the MS COCO dataset, was applied to count the number of
elements in the images (Figure 4b). Appendix A shows the descriptive statistics of the
34 physical features with the largest values.
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3.3. Clustering Analysis
The K‑means algorithm has been used in certain areas of the urban environment and

geographic research because of its clear clustering structure and simple clustering pro‑
cess [53,80]. Compared with the K‑Means algorithm, the K‑Means++ algorithm optimizes
the selection of clustering centers and reduces the impact of a poor selection of clustering
centers [81]. In this paper, the K‑Means++ clustering was carried out using the machine
learning package Scikit‑learn. The dataset was built from the 11 communities with their
five walkability perceptions scores—i.e., a 5 × 11 matrix. Each variable was normalized
before the clustering process using the Min‑Max method. To improve the clustering re‑
sults, principal component analysis (PCA) was used as a decomposition tool to reduce the
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number of features in the sample by projecting the data into a lower‑dimensional space.
Three distinctive methods determined the optimal number of “k” clusters and character‑
ized the performance of clustering: the Inertia, the Silhouette coefficient, and the Calinski‑
Harabasz Index method.

3.4. Feature Importance
Visual elements with important effects on perceptions of walkability for both males

and females in five new towns were identified using the GINI impurity coefficient ap‑
proach of Random Forest [82]. The value of GINI can show how frequently a random
instance will be misclassified as a measure of node impurity, so GINI can be used to assess
each variable’s significance [83]. The top 15 important factors were evaluated according to
the order of all contributions.

3.5. Prediction Models Comparison
To examine the prediction performances of walkability perceptions in bothmales and

females in five new towns, we created eight different MLmodels, including Linear Regres‑
sion (LR), Support Vector Regression (SVR), Ridge Regression (RR), Bagging Regression
(BR), Decision Tree Regression (DTR), Random Forest Regression (RFR), Gradient Boost‑
ing Regression (GBR), and eXtreme Gradient Boosting Regression (XGBR). The use of dif‑
ferent algorithms to evaluate the prediction performance allows for better application of
the dataset [68]. The models we selected are classical and well‑established in supervised
learning. They have been widely used as predictions based on street image feature in
urban‑related studies [84,85]. The dependent variables, five for males and five for females,
were perceived walkability scores obtained through the online questionnaire collection
platform; the independent variables were the top 15 influencing factors of eachmodel eval‑
uated by GINI. The Root Mean Square Error (RMSE) and coefficient of determination (R2)
were used to assess these models. The RMSE penalized big mistakes, whereas the R2 ex‑
plains model fit.

4. Results and Discussion
4.1. Clustering Results

Clustering algorithms, including K‑means++ and PCA + K‑means++, were implemen‑
ted for clustering values from2 to 9. The inertia, silhouette coefficient, andCalinski‑Haraba‑
sz Index of clustering results were summarized in Table 1. Compared with K‑means++,
PCA + K‑means++ significantly improved the clustering results. The mean inertia reduced
from 1.152 to 0.193, the mean silhouette coefficient increased from 0.155 to 0.514, and the
mean Calinski‑Harabasz Index increased from 5.925 to 454.084. Therefore, we used the
PCA + K‑means++ algorithm to determine the final k value.

Table 1. Clustering evaluation comparison.

Clusters
K‑Means++ PCA + K‑Means++

Inertia Silhouette
Coefficient

Calinski‑Harabasz
Index Inertia Silhouette

Coefficient
Calinski‑Harabasz

Index

2 2.886 0.264 5.959 0.869 0.569 19.504
3 2.073 0.220 5.255 0.327 0.546 29.637
4 1.501 0.137 4.928 0.132 0.551 46.170
5 1.083 0.166 5.143 0.039 0.621 104.619
6 0.732 0.122 5.553 0.167 0.558 163.410
7 0.511 0.109 5.593 0.008 0.498 237.419
8 0.289 0.128 6.681 0.001 0.452 1561.310
9 0.140 0.095 8.290 0.000 0.314 1470.603

Mean 1.152 0.155 5.925 0.193 0.514 454.084
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Figure 5 shows the changes in Inertia and Silhouette coefficient when the k value is
in the range of 2–9. The result of inertia shows a downward trend, and the silhouette
coefficient first decreases and then increases, reaching its maximum value at k = 5, which
indicates that five clusters are the ideal number. At the same time, the elbow graph reaches
the inflection point, and the inertia is relatively small, so the optimal number of clusters is
five. Then, we set K = 5 and performed PCA + K‑means++ clustering.
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The 11 communities were well graded for their perceived walkability perception eval‑
uation scores, and the number of communities in each cluster is relatively balanced. The
results of the clusters’ centroids are shown in Table 2. Cluster 0 has only one community,
and the scores of the five perceptions are the highest. Each of clusters 1 and 2 has three com‑
munities, whereas clusters 3 and 4 each have two. Except for complexity, cluster 4 has the
lowest score of the other four perceptions.

Table 2. Results of the clusters’ centroids.

Clusters Imageability Enclosure Human Scale Complexity Safety Counts Percentage

0 0.973 1.000 1.000 1.000 1.000 1 0.091
1 0.790 0.722 0.663 0.714 0.595 3 0.273
2 0.752 0.294 0.864 0.523 0.427 3 0.273
3 0.613 0.279 0.545 0.184 0.311 2 0.182
4 0.039 0.206 0.340 0.274 0.252 2 0.182

4.2. Characteristics of Communities in Each Cluster
As shown in Figure 6, the clustering algorithm was successful in identifying the com‑

munities in central areas and urban fringe areas. Moreover, the streetscape feature distri‑
bution can contribute to a deeper understanding of the built environment attributes within
each cluster (Figure 7).

Cluster 0: comprises only one community—C1—which is characterized as the com‑
munity in the city center with the highest walkability perception scores. Except for image‑
ability, the other four perception scores are the highest. C1 is one of the earliest new estates
for workers in Shanghai. It was built in the 1970s and is located in the densely populated
area of Yangpu District. In comparison to other communities, it has a much lower average
sky openness ratio with a concentrated distribution and a greater average building cover‑
age ratio, which means the great majority of streets in the city center are less open, and
that may lead to a strong sense of occlusion in visual perception. The average number of
persons and motorcycles is also the highest, indicating that the population of the city cen‑
ter is larger than that of other urban fringe areas. The mean pavement ratio is also higher
but lower than in Q2.

Cluster 1 comprises three communities—C1, F1, and F2—which are characterized as
communities in new townswith high and relatively balancedwalkability perception scores.
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It can be found that both communities in the core and old district of Fengxian new town
scored highly, suggesting that the construction and development of this new town also
take into account the urban renewal of the old district. These communities have samples
with a high ratio of walls in the streetscapes, and clusters 2–4 share the same condition.
The reason may be that in the urban fringe areas, the communities are typically enclosed
and have more walls that define distinct spatial boundaries. There are also samples with a
high ratio of streetlights, indicating that some streets in the new towns have a high density
of streetlights and well‑planned infrastructure construction.

Cluster 2 comprises three communities—S1, J2, and Q2—which are characterized as
communities in new towns with medium walkability perception scores and low scores in
one perception generally. For example, the complexity score of S1 is only 0.137, and the En‑
closure score of Q2 is only 0.219. Considering the communities included in cluster 1, the
walkability perceptions of most communities in new towns are at a moderate or higher
level. The communities in this cluster have the highest average proportion of trees, and
the green environment in the new towns, especially in the old districts, is better than that in
the central area when considering other communities. Meanwhile, except for F2, commu‑
nities in old districts of other new towns and the city center all have a relatively large ratio
of poles, which may occupy the space of pedestrian walkways and affect the overall street
interface. This is likely because the poles there were put up earlier, but as the power indus‑
try develops, more and more streets were built with fewer poles to preserve the aesthetics
of the community while also enhancing traffic safety and comfort. In addition, these three
communities have samples with a large proportion of cars, and it was found that there are
parking lots set up along the roadside upon the examination of the original streetscapes.
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Cluster 3 comprises two communities—J1 and N1—which are characterized as com‑
munities in the core district of new towns with lower walkability perception scores. For
instance, the complexity score of N1 is only 0.017, indicating that there is still great space
for developing walkability perceptions in the core area of some new towns. When addi‑
tional communities are taken into account, it is discovered that, except for the community
in the city center, all other communities have a high average ratio of sky coverage, with
N1 having the highest. This implies that urban peripheral areas with high street openness
have a lower development density. These two communities and other communities in the
core districts of new towns have a small number of persons, motorbikes, and cars on their
streets, indicating that the problem of insufficient popularity persists there.

Cluster 4 comprises two communities—C2 and S2—which are characterized as com‑
munities in the edge areas with poor walkability perception scores, and the worst scores of
all five perceptions are in this cluster. C2 is located in the fringe of the central area, between
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the city center and new towns, but its walkability perception scores are lower than most
communities in new towns, with safety and complexity scores being the worst among all
communities and the average ratio of roads being the highest. This suggests that the sus‑
tainable development of other peripheral areas closer to the city center is probably going
to be disregarded in comparison to new towns where the government promotes progress
and has relatively independent development groups. S2 is close to the Cangcheng histor‑
ical and cultural district of Songjiang new town, with the lowest scores in imageability,
enclosure, and human scale among all communities. The community’s average ratio of
walls in the streetscapes is the highest, while the average ratio of sidewalks is the lowest.
Presumably, the area is quite desolate due to the numerous old, unoccupied buildings that
need to be restored and rebuilt, aswell as the fact thatmany of the original inhabitants have
already moved away.

4.3. Gender Differences in Walkability Perceptions
Figure 8 shows the perceptual gender differences in five walkability aspects in vari‑

ous clusters. An interesting finding is that for imageability, cluster 0 has the highest score
for males and the lowest score for females. Cluster 1 has the highest imageability score
for females, indicating that women are more likely to be imageable about new towns with
new buildings and square spaces, while men are more about the city center. Most previ‑
ous literature has suggested that the fringe areas are generally less imaginable [86,87], but
our finding supports this only in terms of male perception. There are also studies showing
that the imageability of some newer suburbs is well‑liked by people, which is consistent
with the female perception in our study area [88]. For enclosures and human scales, clus‑
ter 0 has the highest scores for both males and females, which means the city center has a
superior performance in these two perceptions, and these have been proved in previous
studies [89,90]. Unlike males who appear to believe that the enclosure score of peripheral
communities in cluster 4 is the lowest, results suggest that women think it is higher. The
ranking of human scale scores for different clusters is consistent between males and fe‑
males, and overall, they predominantly responded that the city center and the old districts
in new towns are more humane than the core areas of the new towns.
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There are significant differences in the perception of complexity between males and
females. Males feel that cluster 3 has the greatest complexity score, whereas females think
cluster 0 has the highest score and cluster 3 the lowest. In other words, men think some
core areas in new towns are themost complex, whereaswomen believe the contrary. There
are also gender differences in safety perception. Clusters 0 and 2 had approximately the
same safety perception among females, and cluster 4 had the lowest rating. This indicates
thatwhilemen think the fringe communities are relatively safe, women believe that the city
center and the old districts of new towns are generally safer and peripheral communities
are the worst, consistent with the results of prior literature examining some suburbs [91].

4.4. Gender Differences of Influence Factors in New Towns
The existence of gender differences can be discerned from the influencing factors that

affect walkability perceptions (Figure 9). The greatest influencing factor on men’s image‑
ability is the trees, while for women is the roads. Sky has a significant impact on the im‑
ageability of both men and women. It has been proven that a higher sky ratio is associated
with higher imageability in some areas [89,92]. However, combined with the results in
Sections 4.2 and 4.3, the high sky ratio only has a positive impact on the imageability of
women in our study, while it has a negative impact on men. In other words, women be‑
lieve that new towns with high street openness are more imageable, while men believe
the opposite. Lower openness of the sky generally leads to higher enclosure scores [89,93],
and our findings support it more specifically. The effect of the sky on women’s enclosure
is significantly higher than other features, and it has a negative impact combined with the
results in Sections 4.2 and 4.3. For men, features such as the sky, trees, and signboards
have a similar impact on the enclosure.
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The important features that affect the human scale of males and females are basically
the same, with the sky, trees, and buildings having the greatest impact; similar resultswere
also found in other studies [68,94]. Combined with the results in Sections 4.2 and 4.3, there
is relatively little gender difference in the perception of human scale between males and
females, and among the influencing factors, the sky has a negative impact, while trees and
buildings have a positive impact. In addition, the sky and persons are the greatest factors
affecting women’s complexity, and the sky has a negative impact, whereas persons have a
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positive impact combined with the results in Sections 4.2 and 4.3. However, persons have
minimal impact on men’s complexity, with trees and roads having the greatest impact.

The sky has been proven by some studies to be the most influential feature of the
streetscape in terms of safety [63,64,92]. Specifically, in our study, the impact of the sky
on females’ safety is significantly higher than other features, and males’ safety is most
affected by the sky and roads. Combined with the results in Sections 4.2 and 4.3, the sky
has a negative impact both on females’ and males’ safety. Therefore, building heights
and setbacks that increase sky‑view could be considered to create more inclusive built
environments, and urban canyons or sky view factor (SVF) measurements are suggested
to be included in the planning of new towns and urban renewal of old areas. Meanwhile,
ashcans only appear among the top 15 important features affecting safety perception, and
the streetlights’ ranking has also increased. This finding indicates that compared to other
perceptions, street furniture has a greater impact on the safety perception of males and
females, which is supported by previous studies [95].

4.5. Results of Models Performance
Tables 3 and 4 show the performance of different ML models, and each model per‑

forms differently in predictingwalkability perceptions formales and females in new towns.
Specifically, RFR outperformed other models in predicting males’ enclosure, human scale,
complexity, and females’ imageability. RR outperformed other models in predicting fe‑
males’ enclosure, complexity, and safety. In terms of predicting males’ safety and females’
human scale, SVR performed better than other models. GBR only performed better in pre‑
dicting males’ imageability. The results in best models with RMSE being between 0.1400
to 0.1851 and with R2 from 0.5947 to 0.6398. It indicates that the influencing factors in the
models explain more than half of the variation in the dependent variables, which is rel‑
atively higher or close to the results of previous studies with similar sample sizes [73,90].
Therefore, themodels can be applied to the large‑scalemeasurement of the fivewalkability
perceptions of males and females in new towns.

Table 3. Performance of different machine learning models for males’ five perceptions.

Model
Imageability Enclosure Human Scale Complexity Safety

RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2

LR 0.1590 0.6208 0.1660 0.6138 0.2107 0.5691 0.2044 0.5754 0.1876 0.5922
SVR 0.1473 0.6325 0.1802 0.5996 0.2137 0.5661 0.1990 0.5808 * 0.1720 * 0.6078
RR 0.1520 0.6278 0.1701 0.6097 0.2040 0.5758 0.2043 0.5755 0.1731 0.6067
BR 0.1494 0.6304 0.1962 0.5836 0.2132 0.5666 0.2138 0.5660 0.2054 0.5744
DTR 0.2394 0.5404 0.2193 0.5605 0.2870 0.4928 0.2757 0.5041 0.2694 0.5104
RFR 0.1664 0.6134 * 0.1541 * 0.6257 * 0.1685 * 0.6113 * 0.1851 * 0.5947 0.2062 0.5736
GBR * 0.1448 * 0.6350 0.1822 0.5976 0.2314 0.5484 0.2165 0.5633 0.1812 0.5986
XGBR 0.1554 0.6244 0.1883 0.5915 0.2442 0.5356 0.1975 0.5823 0.2024 0.5774

* Indicates the best performance model for each prediction.

Table 4. Performance of different machine learning models for females’ five perceptions.

Model
Imageability Enclosure Human Scale Complexity Safety

RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2

LR 0.1698 0.6100 0.1480 0.6318 0.1638 0.6160 0.1827 0.5971 0.1667 0.6131
SVR 0.1631 0.6167 0.1432 0.6366 * 0.1636 * 0.6162 0.1936 0.5862 0.1710 0.6088
RR 0.1605 0.6193 * 0.1400 * 0.6398 0.1676 0.6122 * 0.1819 * 0.5979 * 0.1665 * 0.6133
BR 0.1774 0.6024 0.1699 0.6099 0.1654 0.6144 0.1974 0.5824 0.1957 0.5841
DTR 0.2063 0.5735 0.2309 0.5489 0.2122 0.5676 0.2358 0.5440 0.2491 0.5307
RFR * 0.1526 * 0.6272 0.1515 0.6283 0.1638 0.6160 0.1974 0.5824 0.1708 0.6090
GBR 0.1845 0.5953 0.1674 0.6124 0.1888 0.5910 0.1932 0.5866 0.1887 0.5911
XGBR 0.1937 0.5861 0.1811 0.5987 0.1767 0.6031 0.1954 0.5844 0.1967 0.5831

* Indicates the best performance model for each prediction.
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4.6. Implications for Urban Planning and Design
The findings and framework of our study are valuable for researchers, policymakers,

urban planners, and designers. They have the potential to inform practical applications
in urban master planning, new town construction, and urban renewal. First, the results
have indicated that many new towns have higher walkability perception scores, while the
inner suburban areas have the worst perceptions of walkability. Therefore, policymakers
and urban planners should not only focus on the construction and development of new
towns but also prioritize other relatively peripheral areas in the city. This will allow for
better formulation of urban policies and the promotion of sustainable and equitable ur‑
ban development. Second, it is critical to acknowledge the differences between genders
in the walkability perception. For example, sky openness has the opposite effect on the
perception of imageability for men and women, so planners and designers need to deal
well with it to create more inclusive and walkable cities [92]. Third, the study focuses on
exploring gender differences in perceptions of walking in urban fringe new towns. The
research framework can also be applied to other group segmentation studies for a com‑
prehensive analysis. Fourth, the SVIs auditing, based on the TrueSkill rating system, is a
relatively new subjective assessment method that provides new criteria for measuring the
walkability of streets and neighborhoods beyond physical characteristics [89]. It can help
researchers understand human perception and emotion to better model the relationship
between humans and the environment.

5. Conclusions
Walking is an important component of urban transportation systems and plays a crit‑

ical role in sustainable urban development. However, most previous studies have focused
on the central areas, and less attention has been paid to thewalkability perceptions and gen‑
der differences in the urban fringe areas. In this study, we take Shanghai’s five new towns
as a case study to evaluate communities’ walkability perceptions and explore gender differ‑
ences, influencing factors, and prediction performance of MLmodels. Based on the theory
of urban design [70], five variables were chosen to evaluate the perception of walkability:
“Imageability”, “Enclosure”, “Human scale”, “Complexity”, and “Safety”. Technically, we
used an online platform based on the TrueSkill rating system for SVIs auditing and com‑
bined GIS, CV, clustering analysis, and ML.

First, in terms of the evaluation of walkability perceptions and physical characteristics
of the streetscape, we found that the community in the city center has the best overall
walkability and the largest population. The perceived walkability of communities in most
new towns is moderate or higher, but only one new town considers the urban renewal
of the old district while constructing the core area. Some of the new towns still need to
work on improving walkability perceptions. An intriguing finding is that the peripheral
area closer to the city center is less walkable than the majority of new towns. In terms of
physical features, most new towns have a greener environment, fewer buildings, andmore
sky openness than the city center, and some streets of new towns have a higher density of
streetlights. However, there are more poles in the old districts of new towns and the city
center, which may have an impact on the pedestrian path and the street interface.

Second, in terms of gender differences in the perceptions of walkability, we found
that there are fewer differences in the “Human scale” between males and females, both of
whom believe the new town’s core areas are less humane than its old districts and the city
center. Nevertheless, gender disparities in the other four perceptions were greater. For in‑
stance, women appear to think new towns are more imageable, while men are more likely
to be imageable about the city center. Results suggest that men believe some core areas
of new towns are more complex, while women perceive the opposite. In addition, men
appear to think the periphery areas are relatively safe, whereas women hold the contrary
opinion, with the old districts considered to be safer.

Third, in terms of gender differences in the influencing factors affecting the perception
of walkability in new towns, we found that the sky had a large effect on all five perceptions



Land 2023, 12, 1339 16 of 21

for both males and females but had a positive impact for women and a negative impact
for men on imageability. Persons have a significant positive influence on the complexity
of women, whereas having minimal effect on men. Street furniture had a greater effect
on the perception of safety in males and females. However, gender disparities were less
noticeable in the factors affecting the “Human scale”.

Fourth, in terms of the prediction of MLmodels in the perceived walkability of males
and females in new towns, we found that eachmodel performed differently on five percep‑
tions. Overall, RFR performed better on more predictions. The best‑performing models
had RMSE between 0.1400 to 0.1851 and R2 between 0.5947 to 0.6398. These models are
effective at variable explanations as well as generalizations, and they can be used to do
extensive research in new towns.

There are some limitations to this study. First, the SVIs collected from the Baidu Street
View service are not time‑sensitive, and future studies may involve field acquisition of
real‑time street view images. Second, our data volume was limited by the scarcity of vol‑
unteer raters, involving 62 students in related majors for a sample of 325 SVIs. More par‑
ticipants and a larger sample size may improve the accuracy and reliability of perception
assessment and prediction. Incorporating volunteers with a wider range of ages and oc‑
cupations may align the assessment results more closely with the perceptions of a broader
population. Third, while Shanghai exemplifies the typical development pattern of Chi‑
nese metropolises in the past decades, it would be more generalizable and interesting to
include additional regions in future studies, considering the international context. Fourth,
the wording for the question relating to gender in this study was based on the standard
Chinese Census gender question, which is based on biological sex assigned at birth. A
more inclusive approach to this question may provide an important contribution to under‑
standing different perceptions of marginalized groups.

Generally, this study evaluated the walkability perceptions of five fringe new towns
in Shanghai, a metropolitan city in China, and explored gender differences, influencing
factors, and prediction performance of ML models. Comparative studies focusing on dif‑
ferent genders and areas at various stages of development can provide insightful details for
comprehensive and nuanced urban research on urbanization, walkability, inclusive cities,
and other related fields. In the future, the framework and conclusions of this study can be
applied to the large‑scale measurement of males’ and females’ perceptions of walkability
in China’s new towns. They can also serve as a guide for the design of urban fringe areas
in developing countries to create more equitable and inclusive walkable cities.
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Appendix A

Table A1. Descriptive statistics of physical features.

Physical Features Mean Std Min Max

1 Trees 0.265 0.161 0.000 0.623
2 Sky 0.201 0.132 0.000 0.538
3 Roads 0.170 0.123 0.000 0.405
4 Buildings 0.128 0.137 0.000 0.594
5 Sidewalks 0.071 0.095 0.000 0.396
6 Earth 0.035 0.072 0.000 0.398
7 Grass 0.040 0.070 0.000 0.375
8 Plants 0.035 0.057 0.000 0.312
9 Walls 0.014 0.025 0.000 0.177
10 Signboards 0.005 0.009 0.000 0.071
11 Railings 0.003 0.019 0.000 0.240
12 Fences 0.004 0.011 0.000 0.071
13 Mountains 0.003 0.012 0.000 0.103
14 Floors 0.003 0.019 0.000 0.179
15 Paths 0.002 0.014 0.000 0.140
16 Pole 0.001 0.002 0.000 0.022
17 Sand 0.001 0.005 0.000 0.052
18 Streetlights 0.000 0.001 0.000 0.012
19 Stairs 0.000 0.001 0.000 0.019
20 Ashcans 0.000 0.000 0.000 0.005
21 Posters 0.000 0.001 0.000 0.011
22 Rocks 0.000 0.001 0.000 0.009
23 Booths 0.000 0.001 0.000 0.020
24 Bases 0.000 0.000 0.000 0.002
25 Bridges 0.000 0.000 0.000 0.006
26 Windowpanes 0.000 0.001 0.000 0.012
27 Columns 0.000 0.000 0.000 0.005
28 Runways 0.000 0.001 0.000 0.015
29 Awnings 0.000 0.000 0.000 0.004

30 Persons 1.174 1.873 0.000 12.000
31 Cars 1.377 3.318 0.000 25.000
32 Motorcycles 0.475 1.371 0.000 11.000
33 Bicycles 0.234 0.753 0.000 8.000
34 Benches 0.083 0.315 0.000 2.000

The data of the first 29 features is the proportion of each feature in the SVIs calculated by DeeplabV3, and the
data of the last 5 features is the count of each feature in the SVIs calculated by Mask R‑CNN.
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