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Abstract: Forest management strategies often compromised the patterns and processes of the natu-
rally dynamic forest ecosystems. As species occurrence and diversity are directly associated with
ecological and environment factors, this study evaluated the effect of low-impact forest management
on the structure of the anuran community, considering the effects of the environment types gener-
ated by the management and the post-exploitation time in the Fazenda Uberlândia, southeastern
Amazonia (Portel, Pará, Brazil). Field data were collected in the period of the highest rainfall in
the region (February to March 2021) by sampling 84 linear transects (25 m each) at a minimum
distance of 500 m between them. The time elapsed since logging that took place in the study sites
varied from 2 to 17 years. We analyzed an area without forest management (used as a control) and
three environment types formed by logging activities: secondary roads, skid trails, and storage yard.
Our results showed no differences in species richness, abundance, and composition of the anuran
community with respect to time since exploitation. Meanwhile, we found significant differences
across different environment types, suggesting that the observed pattern of richness and abundance
may benefit the assembly of anurans in the short term. Still, over a longer period, it may have a
homogenizing effect, gradually modifying the anurofauna assemblage in managed areas to favor
species adapted to more open environments, resulting in damage to the local diversity of anurans.

Keywords: anurans; Amazon; forest management; forestry generalists; artificial pools

1. Introduction

Habitat conversion is the main anthropogenic action responsible for biodiversity loss
at a global scale [1]; therefore, it is important to understand and reduce this effect [2,3].
Sustainable forest management has been proposed as an economical alternative to those
which degrade forests and reduce their ability to recover [4–6]. Forest management reduces
the environmental impact and leads to higher levels of biodiversity while allowing eco-
nomic activities to occur in forested areas [6]. However, the effects of sustainable forest
management on the fauna are still controversial. For instance, research has shown that the
effects of sustainable forest management can have both positive and negative impacts on
different vertebrate groups on forest biodiversity [7,8].

Species distribution and diversity are directly associated with ecological and environ-
mental factors [8,9]. Amphibians are particularly susceptible to environmental changes [10],
and their ability to respond to the changes occurring in the landscape is increasingly im-
portant [11]. According to Vaira [12], the distribution and diversity of amphibians are
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thought to be closely related to reproductive habitats, ecological factors [11], and habitat
quality [2,13].

Conventional selective logging results in greater impacts on forests as it removes
timber species, usually without proper planning and/or logging techniques. In contrast,
selective logging uses requires detailed planning and several techniques that reduce forest
damage and shorten the forest recovery period based on the detailed planning of logging
activities [14].

Selective logging is the removal of selected trees within a forest based on criteria
such as diameter, height, or species. Remaining trees are left in the stand, as opposed to
clearcutting, where all trees are felled within a given forest stand. A reduced impact logging
is a sustainable harvesting and management method that aims to minimize ecological
disturbance. It involves selective logging as well as other practices such as directional tree
felling, stream buffer zones, constructing roads, trails and landings to minimum widths,
and methods to extract timber with minimal damage [15].

Studies on the impact of forest management on amphibians have found a rapid
population decline, an increase in generalist species, and community structuring from
forest regeneration (e.g., Refs. [2,10,11,13]). In areas where conventional forest management
is practiced, a rapid population decline in amphibians has been recorded. These declines
have been associated with losses in habitat, an increased forest light, a decreased relative
humidity of air and soil, and decreases in the availability of prey which are important
factors for the survival or permanence of a species in a particular locations [15–20].

An increase in the number of generalist species is due to the occupation of new
niches generated in the wood exploration process [16,21–23]. Habitat quality [2] and
ecological factors [12] strongly influence how a species community will react to the stages
of forest succession, given that the community accompanies its regeneration [13]. Therefore,
it is important to use refined management strategies that contemplate longer harvest
cycles when aiming to conserve and restore the original diversity in exploited forest
ecosystems [13].

Currently, the literature does not discuss trends generated by forest management
in amphibian communities for the neotropical region [12–15,23–27]. Therefore, it is chal-
lenging to understand and quantify the effects of forest management on the presence and
abundance of anurans and of their complex life cycles [2], which can occur in disjointed
habitats and in different spatial scales [28].

As anurans are ideal models for studying the effects of forest disturbance [13,29,30],
we aimed to examine the impact of forest management on the composition of the anuran
assembly. The study took place in regions in which forest management had been used for 2
to 17 years. We hypothesized that: (i) the areas with the highest levels of forest management
would present a greater species richness and general abundance and (ii) a generalist species
would be more represented due to the new environment and the greater water availability.

2. Material and Methods
2.1. Study Area

The study was conducted at a privately-owned farm in Uberlândia (S 3◦3′49′′ and
W 50◦5′28′′), located in southeastern Amazon, in the microregion of the lower Tocantins
River. The farm covers the municipalities of Baião, Portel, Oeiras do Pará, and Bagre. Most
of its territory and headquarters are located in Baião, accessed by the Transcametá highway
(BR 422). According to the Köppen classification, the predominant climate in the region
is of the Am type: humid tropical with a short and dry season [31]. The average annual
rainfall is between 1900 and 2400 mm, and the average annual temperature is 27 ◦C [32].

The study area is predominantly covered by a preserved native forest, where forest
management has been taking place for approximately 20 years, as per Brazilian environmen-
tal regulations and Forest Certification requirements under the FSC (Forest Stewardship
Council). Harvests comply with FSC regulations; each annual production unit (APU) can
only be harvested again after a cycle of 30–35 years within a sustainable polycyclic forestry
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system. According to Silva [33], this cycle is highly recommended for use in dryland forests
in the Brazilian Amazon (Figures 1–3).
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The area consists of four types of forest ecosystems: alluvial open ombrophilous forest,
open ombrophilous forest with vines, dense ombrophilous forest, and periodically flooded
dense ombrophilous forest [34] (Figure 2).

The total area of the locality is 153,115.03 ha. The managed area is 128,934.69 hectares,
constituting the Fazenda Uberlândia Management Unit. It has 15 APUs that have already
been explored, with about 3800 hectares of APU (ha/year) and 24,180.34 ha of natural
forests under full protection [34]. In the APUs studied, every tree with a diameter at breast
height (DBH) ≥ 40 cm is inventoried, and some are chosen for cutting in each work unit
(WT), which are subdivisions of the APU where the exploitation occurs. The data provided
by the company responsible for the concession indicate that an average of 2.69 trees/ha are
removed from each APU.

2.2. Sampling

The effective management area of the Fazenda Uberlândia Management Unit is
128,934.69 hectares. For sampling, we selected seven APUs that had been explored at different
time points (17, 7, 6, 5, 4, 3, and 2 years) (Figure 1), considering the final exploration time
(maximum time, 17 years; minimum time, two years) and the distance between the APUs
(maximum distance, 37 km; minimum distance, 2 km). Twelve transects separated by a
minimum distance of 500 m were installed in each APU [11,35], where three transects were
placed in each environment (storage yards, secondary roads, skid trails, and forests), totaling
84 transects. The environments types are characterized as follows (Figure 3).

Storage yards: Openings of 20 m × 25 m [35] located along secondary or main roads,
with the function of storing and facilitating the exit of wooden logs from the WT. In
these places, all vegetation and surface soil layers are removed to ease the movement of
machinery and the storage of logs, which directly influence the local microclimate and soil
compaction [36,37].

Secondary roads: Roads that aim to serve the traffic of large vehicles (buses, tractors,
and trucks) during the operation period of each APU, connecting the storage yards to the
main roads (Figure 3).
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Skid trails: Signposted trails that aim to optimize and reduce the impact of log drag
from the cutting site to the storage yards, in which skidders (articulated forest tractors, with
4 × 4, 6 × 6 or 8 × 8 traction, which drag trees cut from the trails) circulate. The smaller
trees and leaflets are left in these skid trails to avoid direct soil exposure (Figure 3).

Forests: Native vegetation within the APUs, which have not been directly impacted
by forest exploitation but are relatively close to the explored environments (Figure 3).

A minimum distance of 500 m between the transects was adopted to avoid pseudo-
replication [11,35]. Daily sampling was carried out for 40 days in the middle of the rainy
season (February to March) in each APU. We chose to perform this during this period since
the sampling was conducted in one of the most intense phases of the COVID-19 pandemic.
We used the visual encounter method [38] to capture adults/juveniles and tadpoles with
a sieve [38]. Reproduction signs (newly metamorphosed juveniles or nests) were also
recorded. Sampling was conducted in the morning (6:00 a.m. to 8:00 a.m.) for logistical
reasons [39].

We sampled each environment using a 25 m transect, using the methodology of Ernst
and Rödel [40] and Kpan et al. [13]. In order to standardize the size of sampled areas, we
considered the sizes of the transects and the Brazilian standard for the size of the storage
yards in forest management areas, equivalent to 25 m2 [36]. In each transect, we measured
the following environmental independent variables for statistical analysis: average litterfall
height, temperature, and moisture, according to Bitar et al. [11,35], as well as the amount of
light. The average litterfall height (cm) was measured with an upright ruler in contact with
the ground at three points in each transect (beginning, middle, and end of the transect).
Temperature (◦C) and moisture (%) were measured using a thermohygrometer (Akso,
model AK28) placed on the ground so that external temperatures would not influence the
assessments. The amount of light (lux) was computed using a lux meter (lux meter, model
MT-30) placed at the ground level, with three measurements made at each transect (start,
middle, and end). All measurements were made between 6:00 a.m. and 8 a.m.

2.3. Sample Preparation

Three specimens of each taxon were sampled for collection and reference purposes.
They were prepared as described by De Oliveira et al. [41]. Adult individuals were identi-
fied through direct comparison with identified specimens from the herpetological collection
of the Laboratory of Zoology at the Federal University of Pará (Universidade Federal do
Pará—UFPA), Altamira, Pará, Brazil, with the help of experts and using taxonomic keys
provided by Cole et al. [42]. To identify tadpoles, we used the taxonomic keys of Hero [43]
and Dubeux et al. [44]. All specimens were deposited at the Laboratory of Zoology of
UFPA/Altamira. Regarding identification at the species group level, we used the studies of
Pereyra et al. [45] for Rhinella gr. margaritifera, Fouquet et al. [46] for Boana gr. geographica,
and Orrico et al. [47] for Dendropsophus gr. microcephalus.

2.4. Data Analysis

We performed a non-metric multidimensional scaling analysis (nMDS), using the
abundance matrix of anurans (through two dimensions and Bray–Curtis dissimilarity
(Figure 3). Subsequently, we applied the ENVIFT function to test the correlation of the
following variables: post-exploitation time, environment type, luminosity, average litterfall
height, temperature, and moisture on community ordination.

We used the multivariate extension of the generalized linear model (GLM) in the
“mvabund” package available in R to analyze the effect of environment types (managed
forests and conventional exploitation—secondary roads, skid trails, and storage yards) and
time (APUs) on the richness, abundance, and composition of anuran species. In addition,
we performed an additive GLM to test the effect of the independent variables on the
anurans. Finally, we applied an interactive manylgm to test the effect of the significant
variables in the additive GLM to identify which variables and interactions significantly
affected each anuran species [13,47–49].
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3. Results

We recorded 710 frog specimens from 19 species and/or groups of species (Figure 4),
distributed in six families, of which 155 were juveniles (21.82%), 208 were tadpoles (29.30%),
and 347 were adults (48.88%). Hylidae had the highest number of species, represented by
three genera: Boana (one species), Dendropsophus (four species), and Scinax (one species). The
species with the highest number of records was Rhinella gr. margaritifera (115 individuals
in 41 transects), followed by Leptodactylus mystaceus (39 transects), and Adenomera sp.
(29 transects) (Table S1).
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The nMDS analysis grouped the anuran samples by environment type (Figure 5),
pointing to a tendency of separation in the multivariate space. The ENVIFT result showed
a significant effect of the variables’ luminosity and environment type between treatments
(p > 0.002; Figure 5). We also observed a spatial pattern between species (Figure 5): those
that occurred in various environments are in the intersection region between the ellipses,
e.g., Amereega sp. (Amersp), Leptadactylus mystaceus (Lepmys), and Rhinella margaritifera
(Rhimar). Other species, found only at yards or secondary roads, are scattered on the edges
of the graph: Rhinella granulosa (Rhigra), Dendropsophus gr. microcephalus (Denmic), and
Boana geographica (Boageo).
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Figure 5. Non-metric multidimensional scaling analysis (nMDS) and ENVIFT based on anuran assem-
blage composition, considering the four environment types (forests, secondary roads, skid trails, and
storage yards) sampled at the Uberlândia Farm Management Unit, southeastern Amazonia, Brazil.
The shape and color represent the environmental impact of the forest management and conventional
exploitation of the APUs. Amer: Amereega sp.; Rhmarg: Rhinella gr. margaritifera; Prist: Pristimantis
giorgii; Adegal: Adelphobates galactonotus; Phys: Physalaemus sp.; Lepent: Leptodactylus pentadactylus;
Lepmys: Leptodactylus mystaceus; Adeno: Adenomera sp.; Rhmari: R. marina; Scneb: Scinax nebulosus;
Phyvail: Phyllomedusa vaillantii; Phylo sp.: Phyllomedusa sp.; Pithyp: Pithecopus hypochondrialis; Den-
mela: Dendropsophus melanargyreus; Denmin: D. minutus; Denmicr: D. gr. microcephalus; Dendro. sp.:
Dendropsophus sp.; Boageo: Boana geographica; Rhigran: R. granulosa.

The managed forest environments showed little variation compared with the other
environment types, as observed in the grouping of points on the graph representing the
transects in the different environments (Figure 3). The points in the managed forests were
less dispersed than the points in the other environments. Skid trails tended to be more
similar to those in the managed forests. The storage yard and secondary road transects
were more dispersed.

Regarding the homogeneity of the ellipses, it is notable that the managed forest sites were
the most tightly grouped due to the similarity between the species that occur in those sites.
In contrast, secondary roads had the least homogeneous ellipse because they showed a high
abundance of specific species, causing their points to be far from the center of the ordination.

Our analysis also revealed that the different types of sampled environments affect the
richness and abundance of amphibians (GLM: p = 0.001; Table 1).
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Table 1. GLM model results summarizing the effect of different environment types on the richness
and abundance of the amphibian assemblage in Fazenda Uberlândia, southeastern Amazonia, Brazil.
Bold print and asterisks indicate statistical significance.

Variable Res. Df.diff Dev Pr (>Dev)

(Intercept) 62
Environment type 59 3102.6 0.001 ***

The Anova.manyglm results on the effects of independent variables on the assembly
of anurans showed significant differences for the environment type (p = 0.002), temperature
(0.013), and APU (0.006) (Table 2).

Table 2. Anova.manyglm model results summarizing the effect of independent variables (environ-
ment type, luminosity, litterfall, moisture, temperature, and annual production unit (APU)) on the
variability of richness and abundance of amphibian assemblage in the Fazenda Uberlândia. Bold
print and asterisks indicate statistical significance.

Variable Res. Df.diff Dev Pr (>Dev)

(Intercept) 62
Environment 59 3102.56 0.002 **
Luminosity 58 126.20 0.187

Litterfall 57 123.23 0.436
Moisture 56 117.29 0.771

Temperature 55 147.00 0.013 *
APU 49 6137.59 0.006 **

4. Discussion

The greater richness presented by Hylidae and Leptodactylidae in the present study
seems to be related to three factors: the fact that these groups are common in neotropical
environments [50], that Hylidae has a greater number of species in Brazil [51], and that
the genera of these families have a wide geographical distribution in the Amazonia, being
frequently recorded in the southeastern region [52].

Species richness, abundance, and composition differed significantly between APUs
with different management times (2 to 17 years). These findings are in line with other stud-
ies on different taxa (birds and other groups of vertebrates and invertebrates ([53]—review);
plants [54]; and anurans [55,56]). The richness, general abundance, and composition were
indistinguishable between the forest and skid trail environments after 17 years since explo-
ration activities had been carried out. However, the establishment of anuran communities
was the lowest in the first five years after exploration had finished [57].

Hölting et al. [29] studied the effects of forest management on the beta diversity of
anurans for the northern Amazonia in forest certified by the FSC. They studied short
periods (two to four years after logging had ended) and found no significant differences
between the sampling sites. Kpan et al. [13] identified a recovery of an amphibian assembly
associated with litterfall in tropical forests in Côte d’Ivoire, French Guiana, detecting an
increased similarity about 20 years after the end of forest harvesting and exploration.
Although our results cannot be directly compared to those of Hölting et al. [29] since these
authors did not analyze the selective cutting of wood and their study involved a short
period (four years), they are congruent with the findings of Kpan et al. [13] in Côte d’Ivoire.

These differences in richness, abundance, and composition as a function of the forest
management time can be related to the number of trees removed per hectare (approximately
three trees/ha) (Table 1), which is in line with Adum [27]. This is reinforced by the study
carried out in Côte d’Ivoire, French Guiana [13], which found that the number of trees
removed per hectare could explain the similarity between the environments since the
assemblies did not recover to previous levels, even 45 years after exploration with an
average of 19.5 trees/ha [13,40,58].
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The results of the studies mentioned above support our suggestion that a smaller
number of trees removed per hectare relates directly to the forest richness, as it generates a
greater diversity of plants and more refuges, preventing terrestrial and fossorial anurans
(mainly juveniles in the dispersal process) from undergoing desiccation [59] while favoring
a greater similarity between the environments. We consider that the water availability in
the study sites due to the impacts of logging operations [16] enabled the greater richness of
these genera since the success of species reproduction is closely related to the greater water
availability [60,61]. Therefore, the reproductive strategy would strongly influence how the
species react to environmental disturbances [22].

Landscape characteristics between the environments studied [62] and permanent streams
crossing the exploited forests [27] provide evidence that these places serve as reservoirs for
forest species. However, the dominance of generalist species was evident, in particular, in
storage yard environments and secondary roads, as we recorded several individuals tolerant to
disturbances not found in skid trails and forest environments. Leptodactylous mystaceus, Rhinella
gr. margaritfera, R. granulosa, R. marina, Adenomera sp., Pristimantis giorgii, Dendropsophus minutus,
and Physalaemus sp. are considered generalist species and were recorded only in storage yard
and secondary road environments, with a high abundance.

All species cited as generalists, except for Pristimantis giorgii, have reproduction stages
in standing water [60,61], suggesting that they were favored reproductively in these envi-
ronments. A greater dispersal capacity added to their adaptation to open environments
and their reproductive characteristics related to standing water [63,64] would allow these
species to have higher populations in newly formed environments [16,24,65]. In the present
study, we found that generalists were able to occupy both the unmanaged environments [11]
and the new niches resulting from management [16,24].

Vallan [66] recorded a change in species composition four years after logging had
ended in a tropical forest in eastern Madagascar and found that the species characteris-
tic of untouched forests were outnumbered by species adapted to disturbed forests. A
similar substitution process from specialist to generalist species was observed in forest
fragments exploited for more than 10 years in the Taï National Park in Côte d ‘Ivoire, French
Guiana [67]. Miranda et al. [24] registered an anuran assembly more characteristic of dis-
turbed forests in the Brazilian states of Acre and Amazonas after logging. They noticed
a similar pattern to that of Vitt and Caldwell [16], also in the Amazonia, with a greater
number of species found in the post-management period, as well as species reproducing in
the new microhabitats. Therefore, species that adapt to disturbed locations are favored in
the new environments resulting from management [58].

Vitt and Caldwell [16] reported that Physalaemus cuvieri, Engystomops freibergi, and several
species of Bufonidae and Hylidae were favored reproductively in Central Amazonia through
the formation of microhabitats, resulting from forest management operations. Furthermore,
in areas where logging activities have degraded the forest, artificial puddles of standing
water emerged, leading to an increased abundance of Boana geographica tadpoles and adults,
suggesting that the reproduction of this species is favored in this environment [16].

From this, we infer that the anurans would use these artificially created environments
in our study area as suitable places for reproduction due to the water availability and higher
moisture levels that are adequate for their physiological needs [50,68]. In addition, they
were the only environments in which tadpoles were present, indicating that the species are
reproducing in a certain location. Moreover, in contrast to natural aquatic environments,
these new habitats can last much longer, playing an important role in the dynamics of
amphibian assemblages after exploration [29].

Popescu et al. [2] evaluated different exploration intensities and times on habitat use
by specialist and generalist juvenile anurans. They found that specialist species avoided
habitats where clear-cutting or selective management occurred compared to areas with
no contrast in anuran composition. Our generalist species were favored by the pres-
ence of puddles resulting from forest management. Regarding post-exploitation time,
Keenan and Kimmins [57] pointed out that the most significant effects of logging distur-
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bance on amphibian habitat use probably occur in the first five years post-exploitation due
to the adverse microclimatic conditions associated with canopy removal.

In addition, Crump [69] highlighted that road construction in managed areas directly
influences the dynamics of the anuran community since they reproduce in standing water
and are therefore exposed to potential dehydration, predation, and increased pollutants
when moving from one reproduction site to another. The impacts of road construction on
the anurofauna, specifically in management areas, can destroy the reproduction habitats of
many species [12].

Anuran richness and the availability of water bodies are directly related [30,50,68,70],
mainly during the reproduction season [71]. Storage yards and secondary roads provide
perennial artificial pools for the species, helping to recover post-exploitation fauna [58] and
thus favoring species that reproduce both in lotic and lentic environments.

Moreover, the water availability in these environments and the forest surrounding the
storage yards make them less susceptible to abrupt changes in temperature and moisture,
offering more stable and, therefore, more favorable habitats for a greater number of species
in the short term than environments that may be at a successional stage characterized by
the recolonization of native species and colonization of invasive species [72,73].

In the present study, species like Leptodactylus mystaceus and Rhinella gr. margaritifera
were favored in these environments. This may be due to several factors; both species are
larger than the others we found, and some studies point out an increased abundance of
arthropods in clearings, showing that large animals, such as grasshoppers and spiders,
are favored due to the vegetation complexity, which ranges from exposed soil to places
with large accumulations of litterfall [17,18]. These invertebrates could serve as a food
source for Leptodactylus mystaceus and Rhinella gr. margaritifera since they are too large to
feed on smaller frogs. In addition, Rhinella gr. margaritifera is not highly dependent on
humidity due to its drier skin, allowing it to tolerate the high temperatures and insolation
rates caused by clearings [74].

5. Conclusions

Our results indicate that post-exploitation time and different environment types signif-
icantly influenced the structuring of the anuran communities in terms of species richness
and abundance. In addition, the impacts that make original forest areas more open and
more water-available environments lead to the replacement of typical forest species by
others usually found in more open environments, which better tolerate disturbances and
are better adapted to hydrological stress and high temperatures. Finally, this study shows
that the effects of sustainable forest management and the responses of the local environment
and their flora and fauna communities must be considered.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/land12071437/s1. Table S1. Table with the richness and abundance of
anuran species at the Uberlândia farm, southeastern. Amazon, Brazil, considering the UPA/Year of
exploitation and the type of environment. APU: Annual production unit; ENV: Environment (YARD;
Secondary road = ROAD, Skid trail = SKID, and Forest = FOR); RIC: Wealth; ABU: Abundance.
Amer: Amereega sp.; Rhmarg: Rhinella gr. margaritifera; Prist: Pristimantis giorgii; Adegal: Adelphobates
galactonotus; Phys: Physalaemus sp.; Lepent: Leptodactylus pentadactylus; Lepmys: Leptodactylus mystaceus;
Adeno: Adenomera sp.; Rhmari: R. marina; Scneb: Scinax nebulosus; Phyvail: Phyllomedusa vaillantii; Phylo
sp: Phyllomedusa sp.; Pithyp: Pithecopus hypochondrialis: Denmela: Dendropsophus melanargyreus; Denmin:
D. minutus; Denmicr: D. gr. microcephalus; Dendro. sp.: Dendropsophus sp.; Boageo: Boana geographica;
Rhigran: Rhinela granulosa.
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