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Abstract: The Flow matrix is a novel method to describe and extrapolate transitions among categories.
The Flow matrix extrapolates a constant transition size per unit of time on a time continuum with a
maximum of one incident per observation during the extrapolation. The Flow matrix extrapolates
linearly until the persistence of a category shrinks to zero. The Flow matrix has concepts and
mathematics that are more straightforward than the Markov matrix. However, many scientists
apply the Markov matrix by default because popular software packages offer no alternative to
the Markov matrix, despite the conceptual and mathematical challenges that the Markov matrix
poses. The Markov matrix extrapolates a constant transition proportion per time interval during
whole-number multiples of the duration of the calibration time interval. The Markov extrapolation
allows at most one incident per observation during each time interval but allows repeated incidents
per observation through sequential time intervals. Many Markov extrapolations approach a steady
state asymptotically through time as each category size approaches a constant. We use case studies
concerning land change to illustrate the characteristics of the Flow and Markov matrices. The Flow
and Markov extrapolations both deviate from the reference data during a validation time interval,
implying there is no reason to prefer one matrix to the other in terms of correspondence with the
processes that we analyzed. The two matrices differ substantially in terms of their underlying
concepts and mathematical behaviors. Scientists should consider the ease of use and interpretation
for each matrix when extrapolating transitions among categories.

Keywords: category; extrapolation; land change; flow; model; Markov

1. Introduction

Scientists want to extrapolate dynamic systems where portions of the extent transition
from one category to another category. The Markov matrix offers an approach that assumes
a constant proportion of a losing category transitions to each other category during all time
intervals [1]. The Markov matrix is popular in several land change models [2], such as the
CLUE family of models [3–5], DINAMICA [6–9], Markov-FLUS [10], the MOLUSCE plugin
for QGIS [11,12], and TerrSet’s Land Change Modeler and Cellular Automata—Markov
model [13–19]. Extensions of the Markov matrix to land change modeling systems include
Markov Chain Random Fields [20,21].

Scientists routinely rely exclusively on the Markov matrix despite the method’s sub-
stantial mathematical challenges. These include the difficulty of extrapolation to desired
time points [22,23]. Nevertheless, the Markov matrix is entrenched in software and the
minds of modelers perhaps due to ignorance of an alternative. Our article presents the
Flow matrix, which offers an alternative to the Markov matrix as a method to describe
and extrapolate transitions among categories. The Flow matrix extrapolates on the time
continuum by assuming each categorical transition has a constant size per increment of
continuous time [24].
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Our manuscript compares the Flow matrix with the Markov matrix in terms of mathe-
matical properties and implications for applications. We demonstrate the characteristics
of each approach using a simple example and also data from wetland and suburban
landscapes in Massachusetts, USA. The two applications relate to land change while the
concepts are not limited to land change.

2. Materials and Methods
2.1. Illustrative Example

Figure 1 gives example data for the Raw matrix and the resulting Flow and Markov
matrices. The Raw matrix gives the size cij that transitions from the start category i in each
row to the end category j in each column during a calibration time interval that starts at
time t0 and ends at time t1. The Sum column in the Raw matrix gives each category’s start
size. Each entry in the Flow matrix is the size of transition per unit of time. The Flow
matrix does not have diagonal entries because diagonal entries indicate persistence, not
change. The results for the Flow matrix in Figure 1 assume the duration of the calibration
time interval is a single unit of time. The Loss column on the right gives the loss per time
unit for each category, while the Gain row on the bottom gives the gain per time unit for
each category. The entry at the bottom right in the Flow matrix gives the total change per
time unit by summing all entries and subtracting the diagonal entries of the Raw matrix,
where the number of categories is J. Each Markov matrix entry is the corresponding Raw
matrix entry divided by the category’s start size, regardless of the calibration interval’s
duration. The Markov proportions in each row have the same denominator, so the sum of
the Markov entries in each row is one.
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matrix. The gray cells are the matrix entries, and the white cells explain the entries. The rows of each 

matrix are the categories at the calibration interval’s start time t0, and the columns are categories at 

the end time t1. Numerical values assume the duration of the calibration time interval is one. 

Figure 1. The example data in the format of the (a) Raw matrix, (b) Flow matrix, and (c) Markov
matrix. The gray cells are the matrix entries, and the white cells explain the entries. The rows of each
matrix are the categories at the calibration interval’s start time t0, and the columns are categories at
the end time t1. Numerical values assume the duration of the calibration time interval is one.
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Figure 2 uses the example data to illustrate the differences between the Flow extrapo-
lation in the left column of graphs and the Markov extrapolation in the right column of
graphs. The vertical axis shows the size as a percentage of the extent. The horizontal axis
shows the time from the start of the calibration interval, which is time 0. The end of the
calibration interval is time 1. The extrapolation is from time 1 to time 5. The Flow matrix
portrays change through continuous time. The Markov matrix portrays change through
incremental time intervals and thus shows category sizes at distinct time points. Readers
will find it helpful to visualize the concepts in Figure 2 before seeing the details of the
mathematics in Section 2.2.

Land 2023, 12, x FOR PEER REVIEW 3 of 19 
 

Figure 2 uses the example data to illustrate the differences between the Flow extrap-

olation in the left column of graphs and the Markov extrapolation in the right column of 

graphs. The vertical axis shows the size as a percentage of the extent. The horizontal axis 

shows the time from the start of the calibration interval, which is time 0. The end of the 

calibration interval is time 1. The extrapolation is from time 1 to time 5. The Flow matrix 

portrays change through continuous time. The Markov matrix portrays change through 

incremental time intervals and thus shows category sizes at distinct time points. Readers 

will find it helpful to visualize the concepts in Figure 2 before seeing the details of the 

mathematics in Section 2.2. 

 

Figure 2. The three graphs on the left show the Flow extrapolation while the three graphs on the 

right show the Markov extrapolation from a calibration interval that starts at time 0 and ends at time 

1. One legend applies to each pair of graphs. The upper pair shows the size of each category via (a) 

Flow and (b) Markov, where Markov shows persistence and gain from the preceding time point. 

The middle pair shows the cumulative number of incidents via (c) Flow and (d) Markov. The lower 

pair shows the temporal difference from time 0 in the bottom three segments via (e) Flow and (f) 

Markov. 

We design Figure 2a,b to show the size of each category at each time point by giving 

Category 1 at the top, stacked above Category 2, stacked above Category 3 at the bottom. 

Figure 2a,b begin with the size of the categories at time 0. A category’s size at a time point 

derives from two components: persistence and gain. Shrinkage of a category’s persistence 

Figure 2. The three graphs on the left show the Flow extrapolation while the three graphs on the
right show the Markov extrapolation from a calibration interval that starts at time 0 and ends at
time 1. One legend applies to each pair of graphs. The upper pair shows the size of each category
via (a) Flow and (b) Markov, where Markov shows persistence and gain from the preceding time
point. The middle pair shows the cumulative number of incidents via (c) Flow and (d) Markov. The
lower pair shows the temporal difference from time 0 in the bottom three segments via (e) Flow and
(f) Markov.

We design Figure 2a,b to show the size of each category at each time point by giving
Category 1 at the top, stacked above Category 2, stacked above Category 3 at the bottom.
Figure 2a,b begin with the size of the categories at time 0. A category’s size at a time point
derives from two components: persistence and gain. Shrinkage of a category’s persistence
implies its gross loss. A Flow extrapolation ends when a category’s persistence shrinks
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to zero, which occurs at year 5. The Markov extrapolation in Figure 2b shows the sizes
at each time point in terms of the persistence and gain during the time interval from the
preceding time point, not from time 0. The Flow extrapolation shows that category 1
maintains its size, category 2 grows, while category 3 shrinks. The Markov extrapolation
shows that Categories 1 and 3 shrink while Category 2 grows as each category approaches
a constant size.

Figure 2c,d show the accumulation of incidents from time zero as a percentage of the
extent. An incident occurs when a portion of the extent experiences change during a time
interval. All portions of the extent have either zero or one incident for Flow extrapolation.
Figure 2c shows that the entire extent accumulates one incident at time 5 for the Flow
extrapolation. In contrast, the Markov extrapolation allows portions of the extent to change
repeatedly during the sequence of time intervals. This occurs when a category gains
and then subsequently loses, which occurs for all three categories in the example data of
Figure 1. When this occurs, the Markov extrapolation accumulates an additional incident
during each time interval; thus, the maximum number of accumulated incidents at the end
of each time interval is the number of time intervals. Figure 2d shows that the extent for
the Markov extrapolation accumulates up to 5 incidents at time 5.

We design Figure 2e,f to show the temporal difference from time 0. The gain segments
are at the bottom of the graphs, so the reader can visualize the overall temporal difference
as the sum of the bottom three segments. The Flow extrapolation shows a linear increase
of temporal difference while the Markov extrapolation shows a deceleration of temporal
difference as time progresses. For the Flow extrapolation, Figure 2a,e contain identical
segments but in a different sequence of the vertical stack. For the Markov extrapolation,
the gain segments in Figure 2b are smaller than the gain segments in Figure 2f because
Figure 2b shows the change from the previous time point whereas Figure 2f shows the
temporal difference from the start of the calibration interval. The legend’s label of “Gain”
denotes a portion of the study area where the category at the time point is different from
the category at time 0. The legend’s label of “Persistence or Return” denotes a portion of
the study area where the category at the time point is the same as the category at time 0.
Persistence is the portion of a category that never changes from time 0. Return is the portion
of a category at time 0 that loses and then subsequently returns to the original category.
Return can occur with a Markov extrapolation but not with a Flow extrapolation because
Return requires more than one incident.

Section 2.2 gives the equations that express the concepts mathematically. The equa-
tions in Section 2.2 produce figures in the format of Figure 2. Readers should refer to
Figures 1 and 2 while reading Section 2.2.

2.2. Equations
2.2.1. Raw Matrix

Table 1 gives the notation that the equations use. Italics indicate a variable; bold
indicates a matrix; and round parentheses indicate a function. In the equations, square
brackets indicate a matrix while curly braces indicate the order of operations.

Equation (1) defines Matrix C as the raw matrix for the calibration time interval
starting at time t0 and ending at time t1. Matrix C contains cij to denote the size of the
transition from category i at time t0 to category j at time t1. We assume that at least one
off-diagonal value in C is positive. Figure 1a illustrates C and an additional column on the
right that gives the size of category i at time t0. The size of category j at time t1 is the sum
of the entries in column category j of C.

C =

c11 · · · c1J
...

. . .
...

cJ1 · · · cJ J

 (1)
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Table 1. Mathematical notation.

Variable Description

cij Size of transition from category i at time t0 to category j at time t1
C Raw matrix with J rows, J columns, and entries cij

D(n)d Family of row vectors for time interval n where each member of the family
corresponds to a specific d with d = 0, 1, . . . , n . Each row vector has J
columns where each entry is a category’s size at tn that derives from
d incidents from t0 to tn.

d Number of incidents which is an integer on the interval [0, n] defined as the
number of times a pixel’s category has transitions from time t0 to tn

fij
Size per unit of time for the transition from category i at time t0 to a different
category j at time t1

F Flow matrix with J rows, J columns, and entries fij
G Gain matrix with J rows, J columns, and entries mij off the diagonal and

zeroes on the diagonal
H(n) Matrix with J rows, J columns, and the same entries as Mn off the diagonal

and zeroes on the diagonal
i Index for a category at the start time of a time interval
I Identity matrix, which has 1 for each diagonal entry and 0 elsewhere
j Index for a category at the end time of a time interval
J Number of categories >1

mij Proportion of category i at time t0 that transitions to category j at time t1
M Markov matrix with J rows, J columns, and entries mij
n Index for the time interval from time tn−1 to time tn where n = 1, 2, . . . ∞
P Persistence matrix with J rows, J columns, and entries mii on the diagonal

and zeroes off the diagonal
R(n) Matrix with J rows, J columns, and the same entries as Mn on the diagonal

and zeroes off the diagonal
si(0) Size of category i at time t0
si(n) Size of category i at time tn
S(0) Row vector with J columns and entries si(0)
S(n) Row vector with J columns and entries si(n)

t Continuous time on the interval [t0, T]
t0 Start time of the calibration time interval
t1 End time of the calibration time interval
tn End time of time interval n, which is also the start time of interval n + 1
Ti Time when category i reaches zero persistence for the Flow extrapolation
T Time when the Flow extrapolation stops

wij(t) Size of transition from category i at time t0 to category j at time t
wjj(t) Size of persistence of category j from time t0 to time t
W(t) Matrix with J rows, J columns, and entries wij(t) for the Flow extrapolation

2.2.2. Flow Matrix

Equations (2)–(6) describe the Flow extrapolation. If category i is different from
category j, then Equation (2) computes fij as cij divided by the duration of the calibration
time interval. Equation (3) defines the Flow matrix F, which collects the fij in the off-
diagonal entries. F does not have diagonal entries. Equation (4) gives entries wij(t) which
are the sizes of transition from category i at time t0 to category j at time t according to the
Flow extrapolation. If category i is different than category j, then wij(t) is the product of fij
and the duration from time t0 to time t. If category i is the same as category j, then wii(t)
is the size of the persistence of category i from time t0 to time t. Variable wij(t) is the size
of transition in the same units as the raw matrix C. The Flow extrapolation applies from
time t0 to time T. The time T when the Flow extrapolation stops is the earliest time when
a category reaches zero persistence. Equation (5) computes Ti as the time when category
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i reaches zero persistence. We derive Equation (5) by setting wii(t) to zero in Equation (4)
and then solving for t. Equation (6) gives T as the minimum value of Ti over all categories.

fij =

〈
if i 6= j then fij = cij/{t1 − t0}

else fij does not exist
(2)

F =

 · · · f1J
...

. . .
...

f J1 · · ·

 (3)

wij(t) =

〈
if i 6= j then wij(t) = fij{t− t0}

else wii(t) = si(0)− {
si(0)−cii}{t−t0}
{t1−t0}

(4)

Ti =

〈
if si(0) 6= cii then Ti = t0 +

{t1−t0}si(0)
si(0)−cii

else Ti = ∞
(5)

T = MINIMUM(Ti) over all i (6)

Equation (7) defines matrix W(t) which organizes entries wij(t). Equation (8) gives
the Flow gain of category j from time t0 to time t computed as the sum down column j of
Matrix W(t) minus the diagonal entry wjj(t). Incidents are the number of times a portion of
the extent transitions through time. Figure 2a,e each have 2J segments. The J persistence
segments are the J diagonal entries of W(t). The J gain segments are the J results from
Equation (8). Figure 2c derives from Equations (9) and (10), which sum to the size of the
spatial extent. Equation (9) gives the size of zero incidents in the extent as the summation
of each category’s persistence from time t0 to time t. Equation (10) gives the size of one
incident in the extent as the sum of the entries in matrix W(t) minus the sum of the diagonal
entries of W(t).

W(t) =

w11(t) · · · w1J(t)
...

. . .
...

wJ1(t) · · · wJ J(t)

 (7)

Flow gain of j from time t0 to time t =

{
J

∑
i=1

wij(t)

}
− wjj(t) (8)

Size of zero incidents for Flow from time t0 to time t =
J

∑
j=1

wjj(t) (9)

Size of one incident for Flow from time t0 to time t =
J

∑
j=1

{{
J

∑
i=1

wij(t)

}
− wjj(t)

}
(10)

2.2.3. Markov Matrix

Equations (11)–(17) describe the Markov extrapolation. Equation (11) gives si(0) as
the size of category i at time t0 by summing across row i of matrix C. The results from
Equation (11) produce the row vector S(0) in Equation (12), which gives the sizes of each
category at the start of the calibration interval. If the size of category i at time t0 is not zero,
then Equation (13) computes mij as the proportion of category i at time t0 that transitions to
category j at time t1. If the size of category i at time t0 is zero and i 6= j, then Equation (13)
computes mij as zero, which portrays a situation where category i never transitions to a
different category. Equation (14) gives the Persistence Matrix P where the diagonal entries
are mii and the off-diagonal entries are zero. Equation (15) gives the Gain Matrix G where
the off-diagonal entries are mij and the diagonal entries are zero. Equation (16) gives the
Markov matrix M as the sum of matrix P and matrix G. The row vector S(n–1) times the
Persistence matrix P produces a row vector that gives the size of persistence from time tn−1
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to time tn for each category. The row vector S(n–1) times the Gain Matrix G produces a row
vector that gives the size of gain from time tn−1 to time tn for each category. The Markov
extrapolation is performed iteratively across multiple time intervals where the duration of
each time interval equals the duration of the calibration time interval. The end time point of
a Markov iteration is denoted as time tn where n is the index for the time interval from time
tn−1 to time tn where n = 1, 2, . . . ∞. Variable n is the number of iterations in the Markov
extrapolation. The size of category i at time tn is S(0) times the Markov matrix M raised
to the power n. Equation (17) gives S(n) which is a row vector of category sizes at time tn.
The vector is the row vector S(n–1) times Markov matrix M. The J persistence segments in
Figure 2b are the J entries of the row vector that derives from the product S(n−1)P. The J
Gain segments in Figure 2b are the J entries of the row vector that derive from the product
S(n−1)G.

si(0) =
J

∑
j=1

cij (11)

S(0) =
[
s1(0) · · · sJ(0)

]
(12)

mij =

〈
if si(0) 6= 0 then mij = cij/si(0)

else if i 6= j then mij = 0 else mii = 1
(13)

P =

m11 · · · 0
...

. . .
...

0 · · · mJ J

 (14)

G =

 0 · · · m1J
...

. . .
...

mJ1 · · · 0

 (15)

M =

m11 · · · m1J
...

. . .
...

mJ1 · · · mJ J

 = P + G (16)

S(n) = S(n− 1)P + S(n− 1)G = S(n− 1)M (17)

Figure 2d derives from an iterative algorithm that Equation (18) describes. Equation (18)
gives row vector D(n)d for which the entries are the size of each category that has d incidents
after n time intervals. The number of incidents d is the number of times a portion of the
extent changes category from time t0 to time tn. Variable d is a whole number bounded on
the inclusive interval from zero to n. The top part of Equation (18) shows that the vector
of zero incidents from the previous time point tn−1 multiplied by the Persistence matrix P
gives the category sizes that have zero incidents at a time point tn. All observations have
zero incidents at time t0; therefore, we define row vector D(0)0 as the row vector S(0). The
middle part of Equation (18) requires the sum of persistence and gain during the previous
time interval. The size of each category to persist during time interval n with d incidents is
the product of the incident vector at time tn−1 with d incidents and the Persistence matrix P.
The size of each category that transitions during time interval n and increases from d–1 to d
incidents is the product of the incident vector at time tn−1 with d–1 incidents and the Gain
matrix G. The sum of these two values is the incident vector of category sizes with d incidents
at time point tn. The bottom part of Equation (18) computes the incidence row vector at time
point tn as the incidence row vector at time point tn times G. The sum of the entries in row
vector D(n)d is the size of the segment at time point n for d incidents in Figure 2d.

D(n)d =

〈 if 0 = d, then D(n)0 = D(n− 1)0P where D(0)0 = S(0)
if 0 < d < n, then D(n)d = D(n− 1)dP + D(n− 1)d−1G

if 0 < d = n, then D(n)d = D(n− 1)d−1G
(18)
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Figure 2f derives from Equation (19). Equation (19) gives the row vector S(n) expressed
as the product of the row vector S(0) and the Markov matrix M raised to the power n.
We define matrix R(n) and matrix H(n) such that their sum equals Mn similar to how
Equation (16) expresses matrix M as the sum of P and G. Specifically, the diagonal entries
of R(n) are the same as diagonal entries of Mn while the off-diagonal entries of R(0) are
zero. Therefore, S(0)R(n) is a row vector of J entries that give the sizes of the portion of
the extent that is category j at both time 0 and time n. These J sizes in S(0)R(n) appear in
Figure 2f as Persistence or Return for the categories. The diagonal entries of H(n) zero and
the off-diagonal entries of H(0) are the same as the off-diagonal entries of Mn. Therefore,
S(0)B(n) is a row vector of J entries that give the size of the portion of the extent that is
category j at time n and not j at time 0. Those J sizes in S(0)B(n) appear in Figure 2f as the
Gain categories.

S(n) = S(0)Mn = S(0)R(n) + S(0)B(n) (19)

2.3. Case Studies

We use two case studies to demonstrate and compare the characteristics of the Flow
and Markov matrices. Both case studies derive from the Plum Island Ecosystems site
of the Long Term Ecological Research network of the United States National Science
Foundation. The first case study uses reference data from 1938, 1971, and 2013 for three
land categories in a wetland landscape. The second case study uses reference data from
1971, 1985, and 1999 for three land categories in a suburban landscape. The two earlier time
points form the calibration time interval, from which we extrapolate using the Flow and
Markov methods. We then compare the extrapolated changes to reference changes. Pattern
validation assesses each extrapolation’s predictive power by comparing the extrapolated
change to the reference change.

3. Results
3.1. Wetland Case Study

Figure 3 shows the first case study’s data, which derive from maps digitized by a
team from the United States Long Term Ecological Research network [25]. Data availability
dictated the spatial extent. The 10 meter resolution raster map shows the cumulative
incidents of land change during two time intervals for the categories Marsh, Water, and
Other. The gray shades indicate persistence during both the calibration time interval from
1938 to 1971 and the subsequent time interval from 1971 to 2013. Non-gray indicates the
category at 2013. Lighter shades of blue for Water, green for Marsh, and yellow for Other
indicate a single transition either from 1938 to 1971 or from 1971 to 2013. Darker shades
indicate transition during both time intervals. Changes are concentrated along the coast,
meaning between places that are always Water and places that are always Marsh.

The bar chart in Figure 3 shows the size of the spatial extent that is different from 1938
for each of the four bars. The first bar on the left is the change during the calibration interval
from 1938 to 1971. The second and third bars show the same 33-year calibration interval
combined with a 33-year extrapolation interval. The second bar extrapolates change via
the Flow extrapolation. The Flow extrapolation consists entirely of one incident during
66 years from 1938 to 2004. The size of change via the Flow matrix during the 66 years is
twice the size of change during 33 years. The third bar demonstrates change via the Markov
extrapolation, which is shorter than the Flow bar because of two reasons. The Markov
extrapolation implies deceleration, and the Markov extrapolation assumes some part of
the spatial extent changes more than once. The top of the bar shows segments with two
incidents, indicating change during both the calibration and extrapolation intervals. The
bottom of the bar shows segments with one incident, indicating change during either the
calibration or the extrapolation interval. The fourth bar reveals the change according to the
reference data during 75 years, meaning the 33-year interval from 1938 to 1971 combined
with the 42-year interval from 1971 to 2013. The fourth bar is shorter than both the Flow
and Markov bars, which indicates that the part of the extent that experiences at least one
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change in the reference data is smaller than either extrapolation portrays. Furthermore, the
portion of the change that derives from two incidents is greater in the reference data than
in the extrapolations.
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Figure 3. (a) Map and (b) bars for the cumulative number of incidents during two time intervals
along with the category at the end of the second time interval for categories Marsh, Water, and Other.
Final means 1971 for the Calibration (33) bar, 2004 for the two Extrapolation (66) bars, and 2013 for
the Validation (75) bar.

Figure 4 compares the behavior of the Flow and Markov extrapolations similar to
Figure 2. The left column of graphs displays the Flow extrapolation while the right
column displays the Markov extrapolation. The graphs show the calibration interval’s
start year at 1938 and end year at 1971. Figure 4 facilitates comparison by showing both
methods extrapolated to the year 2235. The Flow extrapolation cannot extrapolate beyond
2247 because Marsh reaches zero persistence at 2247. The Markov extrapolation occurs
during discrete 33-year increments; thus, 2235 is the last year that is less than 2247. The
Markov graphs show ten time points, which form the calibration time interval and eight
extrapolated time intervals.
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Figure 4a,b show the size of each category at each time point, with Water at the top,
Marsh in the middle, and Other at the bottom. Both Flow and Markov extrapolate an
increase in Water’s size and a decrease in Marsh’s size. The size of each category is a
linear function of time in the Flow extrapolation. The size of each category asymptotically
approaches a constant size as time progresses in the Markov extrapolation.

Figure 4c,d demonstrate the accumulation of incidents for each method. The Flow
extrapolation has either zero or one incident per observation. The Markov matrix allows
an additional incident for each observation during each additional time interval. Some
portions of the extent accumulate up to nine incidents from 1938 to 2235.

Figure 4e,f show change since 1938 at the bottom of each graph. Figure 4a,e contain
identical segments in a different order from top to bottom for the Flow method. Return of a
category is the size of the extent that began at 1938 as a particular category, transitioned
from that category during a subsequent extrapolation interval, and then returned to the
initial category by the end time. The Flow matrix has at most one incident; thus, the Flow
matrix does not have Return.
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Figure 4. The three graphs on the left show the Flow extrapolation while the three graphs on the right
show the Markov extrapolation from a calibration interval that starts at 1938 and ends at 1971. One
legend applies to each pair of graphs. The upper pair shows the size of each category via (a) Flow
and (b) Markov, where each Markov bar shows transitions from the previous 14 years. The middle
pair shows the cumulative number of incidents via (c) Flow and (d) Markov. The lower pair shows
differences from 1938 in the bottom three segments via (e) Flow and (f) Markov extrapolations.
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3.2. Suburban Case Study

The second case study uses data from the state of Massachusetts [26], which describe
21 land-use categories that we merged into three categories to illustrate the concepts. The
raster maps have 30 meter resolution pixels at three time points for three Massachusetts
suburban towns: Topsfield, Hamilton, and Wenham. Figure 5 is a map of the cumulative
incidents of land change for three categories: Built, Forest, and Other. The gray color in
the map indicates persistence during the calibration time interval from 1971 to 1985 and
the subsequent time interval from 1985 to 1999. The categories at 1999 indicate transitions
to Built in blue, Forest in green, and Other in yellow. Lighter shades indicate a single
transition during either 1971–1985 or 1985–1999. Darker shades indicate transitions during
both time intervals. Changes are primarily to Built.
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Figure 5. (a) Map and (b) bars for the cumulative number of incidents during two time intervals
along with the category at the end of the second time interval for categories Built, Forest, and Other.
Final means 1985 for the first Calibration (14) bar whereas Final means 1999 for the other three bars.

The bar chart in Figure 5 shows cumulative incidents for four bars. The vertical axis is
the size that experiences at least one change. The first bar on the left is the change during
the calibration interval from 1971 to 1985, during which the predominant transition is
to Built. The second bar combines the 14-year calibration interval with the 14-year Flow
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extrapolation. The second bar is twice the size of the first bar. The third bar combines the
14-year calibration interval with the subsequent 14-year Markov extrapolation thus shows
one or two incidents. The area of change from 1971 for the Markov extrapolation is slightly
smaller than for the Markov extrapolation because of two reasons. Markov extrapolates
deceleration, and Markov assumes some of the spatial extent changes more than once.
The fourth bar at the right combines the calibration interval and the subsequent interval
from 1985 to 1999 according to the data in the map. The fourth bar is nearly three times
the size of the first bar because the reference data show the change accelerates, which is a
phenomenon that neither of the extrapolation methods can portray. The Flow and Markov
methods extrapolate Built’s gain but not Forest’s gain because Forest did not gain during
the calibration interval.

Figure 6 compares the behavior of the Flow and Markov extrapolations, similar to
Figures 2 and 4. As before, the left column of graphs displays the Flow extrapolation while
the right column of graphs displays the Markov extrapolation. We extrapolated to 2097
with both the Flow and Markov for direct comparison. We chose an endpoint of nine time
intervals of 14 years each to match the number of time intervals of the previous case study.
The Flow extrapolation cannot extend beyond when a category reaches zero persistence,
which forest does at 2262.
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Figure 6. The three graphs on the left show the Flow extrapolation while the three graphs on the right
show the Markov extrapolation from a calibration interval that starts at 1971 and ends at 1985. One
legend applies to each pair of graphs. The upper pair shows the size of each category via (a) Flow
and (b) Markov, where each Markov bar shows transitions from the previous 14 years. The middle
pair shows the cumulative number of incidents via (c) Flow and (d) Markov. The lower pair shows
the difference from 1971 in the bottom three segments via (e) Flow and (f) Markov extrapolations.
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Figure 6a,b present the size of categorical persistence and gain as a function of time.
Persistence and gain are from 1971 for the Flow extrapolation and from the previous time
point for the Markov extrapolation. The Flow method extrapolates continuously from
1971 to 2097, while the Markov method extrapolates during nine discrete time intervals of
14 years. The light blue segment of Built persistence is constant because Built does not lose
during the calibration interval. There is no Forest gain during the extrapolation because
Forest does not gain during the calibration interval.

Figure 6c,d demonstrate the accumulation of incidents for each extrapolation method.
The Flow extrapolation allows a maximum of one incident. The Flow extrapolation shows
30% of the study area changes by 2097. Incidents accumulate during each time interval
for the Markov extrapolation; thus, some of the study area has nine incidents in 2097. The
Markov extrapolation shows 25% of the study area changes at least once by 2097.

Figure 6e,f present each category’s derivation from 1971. Gain means an increase
when compared with 1971. Persistence means no change since 1971. Return means at least
one loss and then subsequent gain since 1971. Figure 6f displays the discrete change of the
Markov method where category sizes asymptotically approach constants.

4. Discussion
4.1. Comparison of Characteristics

The Flow and Markov matrices offer contrasting paradigms to describe and extrapolate
transitions among categories. Table 2 summarizes the characteristics of the Flow and
Markov extrapolation methods. The subsequent paragraphs elaborate on the characteristics
in Table 2 first for the Flow extrapolation and then for the Markov extrapolation.

Table 2. Characteristics of Flow and Markov extrapolations.

Characteristic Flow Markov

Necessary mathematical knowledge Line Matrix Algebra
Extrapolates at most one incident of change Yes No
Extrapolates through continuous time Yes No
Assumes constant size change per time change Yes No
Computes time point to reach zero persistence Yes No
Extrapolates to any desired time point Constrained Maybe
Extrapolates into the infinite future No Yes
Category sizes approach a steady state No Frequently
Category’s gain depends on sizes of other categories No Yes
Can extrapolate acceleration of change No No
Can extrapolate transitions that calibration lacks No Yes
Matches true systems through a time series Testable Testable

A fundamental difference between the Flow and Markov extrapolations is the mathe-
matical knowledge required to interpret their behaviors properly. The Flow extrapolation
requires the modeler to understand the equation of a line. The Flow matrix extrapolates
at most one incident of change for each observation, which allows the Flow matrix to
extrapolate through continuous time. If an extrapolation allows more than one incident
of change, then the extrapolation must designate distinct intermediate time points when
observations renew their candidacy for additional incidents of change. The Flow method
extrapolates a constant change of size per change of time, which is equal to the calibration
interval’s change of size per change of time. This implies a constant decrease of persistence
size per change of time, which allows the computation of the time point when a category
reaches zero persistence from the start of the calibration interval. Consequently, the Flow
extrapolation extends to any time point on the continuum from the end of the calibration
interval to the time point when a category reaches zero persistence. The Flow extrapolation
is constrained to not extrapolate the linear pattern beyond the first time point when a
category reaches zero persistence. If change exists during the calibration time interval,
then the Flow extrapolation does not extrapolate infinitely in the future, in which case the
category sizes do not approach a steady state.
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The Flow extrapolation’s annual size of gain to category j is independent of the sizes
of the categories that are not j from time t1 to T. This can be a helpful characteristic when
the sizes of the other categories are arbitrary, as is the case in Figure 3 for the Plum Island
Ecosystems (PIE) where the size of water is arbitrary. The spatial extent in PIE derives from
the bounds of a remotely sensed image, which contains an arbitrary size of water. The size
of water’s persistence in the eastern part of PIE does not influence the sizes of the annual
transitions during the Flow extrapolation. However, the inclusion of more persistence in
the spatial extent would extend the duration till a category reaches zero persistence.

The Flow extrapolation portrays a constant change in size per change in time and thus
portrays neither acceleration nor deceleration of change. This makes sense because the
calibration time interval has exactly two time points and thus cannot give evidence for
acceleration or deceleration of change. Furthermore, exactly two time points cannot give
evidence for more than one incident of change per observation. In these respects, the Flow
extrapolation does not assume a process of change that is more complicated than the two
time points of the calibration interval reveal. Consequently, if a transition from category i
to category j has zero size during the calibration interval, then the transition has zero size
during the Flow extrapolation.

In contrast to the linear Flow extrapolation, the Markov extrapolation requires model-
ers to understand the more complicated behavior of matrix algebra, which can be daunting.
Matrix multiplication generates a Markov chain that assumes a process for which a calibra-
tion time interval between exactly two points cannot give complete evidence. The Markov
extrapolation allows more than one incident of change, while the calibration interval cannot
reveal whether an observation experienced more than one incident of change in the system.
The Markov method extrapolates iteratively during n discrete time intervals allowing zero
or one incident per iteration. Thus, the Markov extrapolation can generate portions of the
extent that accumulate n incidents by time tn. An extrapolation that allows observations to
have more than one incident of change must have time points at which the observations
renew their candidacy for change. The Markov extrapolation allows an additional incident
of change by proceeding through time increments as the distinct bars of Figures 2, 4 and 6
show. Each additional time increment allows an additional incident of change. The Markov
matrix does not extrapolate through continuous time. The Markov extrapolation computes
the size of change during each time increment by multiplying a constant proportion of
each losing category times the size of the losing category at the start of the increment. This
frequently leads to a deceleration of the size of change, not a constant size change per time
change. If a category’s diagonal entry in the Markov matrix is neither zero nor one, then
persistence from the start of the calibration interval shrinks exponentially but does not reach
zero, so the Markov extrapolation cannot compute a time point when persistence reaches
zero. This allows the Markov extrapolation to extend into the infinite future via incremental
time steps. The Markov extrapolation frequently implies that change decelerates to zero as
the sizes of the categories approach a steady state dictated by a limiting distribution.

The size of Markov’s extrapolated gain to category j can be influenced by the sizes
of the categories that are not j. This creates a complication when the size of some of
the categories are arbitrary, such as the size of water in the PIE example. The arbitrary
size of water’s persistence in PIE influences the extrapolated sizes of all the transitions
in PIE. This characteristic is especially problematic in the popular application to urban
growth simulation models where non-urban transitions to urban while urban persists. The
shrinkage of non-urban dictates the gain of urban during the Markov extrapolation, but
the size of non-urban is frequently arbitrary.

The calibration interval has exactly two time points. Two time points cannot give
evidence of whether change is accelerating, decelerating, or neither. Nevertheless, Markov
extrapolations tend to compute decelerating change and cannot portray accelerating change.
Researchers frequently select a study site because change is accelerating in a manner
that cannot continue indefinitely, in which case it makes little sense to use a Markov
extrapolation that shows decelerating change that approaches a steady state in the infinite
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future. The Markov extrapolation assumes a process of change that is more complicated
than the two time points of the calibration interval can reveal. For example, consider
three land categories: Forest, Agriculture, and Urban. The calibration interval over a short
duration might show zero transition from Forest to Urban but positive transitions from
Forest to Agriculture and from Agriculture to Urban. The Markov extrapolation across two
time intervals would show a transition from Forest to Urban. In this manner, the Markov
extrapolation across multiple time intervals can show transitions that do not exist during
the shorter calibration time interval.

4.2. Extrapolation to Specific Time Points

Discrete incremental extrapolation is necessary to allow more than one incident. The
Markov matrix allows more than one incident by extrapolating incrementally using discrete
time intervals that are equal in duration to the calibration time interval. This can cause a
mathematical challenge when a modeler wants to extrapolate for a duration that is not a
whole-number multiple of the duration of the calibration interval. For example, consider
a calibration interval from the year 2000 to the year 2008, where the modeler wants to
extrapolate from 2008 to 2010 and 2020. The modeler wants to extrapolate beyond the
calibration time interval across durations that are not multiples of the duration of the
calibration interval. The modeler must convert the 8-year Markov matrix to a Matrix
that extrapolates during intervals of both 2 years and 12 years. It would be helpful to
have a method to convert the 8-year Markov matrix to an equivalent Markov matrix that
portrays an arbitrary duration, such as 1, 2, or 12 years. However, the procedure to convert
a non-annual calibrated Markov matrix to an equivalent annual Markov matrix might
lack a unique solution where the entries in the annual Matrix have real values on the
inclusive interval from zero to one. For some matrices, the only solutions have negative
numbers or numbers that involve the square root of negative one, which defies practical
interpretation [22,23]. For other matrices, multiple solutions exist.

Equation (20) gives an example where M is a 2-by-2 Markov matrix that derives from a
calibration time interval that has an even number of years, during which 0.18 of Category 1
transitions to Category 2 while 0.18 of Category 2 transitions to Category 1. Two solutions
exist when computing a Markov matrix for half of the duration of the calibration time
interval. Equation (20) shows that one solution is when 0.1 of Category 1 transitions to
Category 2 while 0.1 of Category 2 transitions to Category 1. The matrix on the extreme
right in Equation (20) shows that a second solution is where 0.9 of Category 1 transitions
to Category 2 while 0.9 of Category 2 transitions to Category 1. If m11 + m22 > 1, then no
real-numbered solutions exist to compute a Markov matrix that has a duration half of the
calibration interval’s duration.

M =

[
m11 m12
m21 m22

]
=

[
.82 .18
.18 .82

]
=

[
.9 .1
.1 .9

]2

=

[
.1 .9
.9 .1

]2

(20)

Equation (21) shows a case for categories that cycle with each other, such as in shifting
cultivation. The two time points that bound the calibration interval might show no change,
in which case the calibration matrix is the Identity matrix I. If the calibration interval is
6 years, then one solution for an annual Markov matrix is I because I raised to any whole
numbered power is I. However, several solutions exist that show change during annual
time steps. Equation (21) gives five solutions for an annual matrix when raised to the power
6 produces the Identity matrix I. The two time points that bound the calibration interval
lack information to determine a single solution.

I =

0 1 0
0 0 1
1 0 0

6

=

0 0 1
1 0 0
0 1 0

6

=

0 1 0
1 0 0
0 0 1

6

=

1 0 0
0 0 1
0 1 0

6

=

0 0 1
0 1 0
1 0 0

6

(21)
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The Land Change Modeler in the TerrSet software uses a regression-based approxi-
mation to extrapolate to any time point, even when the time point does not derive from a
whole number multiple of the duration of the calibration interval [12]. The regression-based
method quickly produces a unique solution that is plausible for applications to land change
modeling. The DINAMICA software can also compute a Markov matrix for a time interval
that does not equal the calibration time interval [7]. Furthermore, both DINAMICA and
TerrSet’s Land Change Modeler allow modelers to enter a customized matrix that portrays
change to any particular time point. Therefore, modelers may enter the Flow extrapolation
into the software, which will then distribute the Flow transitions spatially. We used Excel
to compute the results in our manuscript because pre-programmed software packages do
not yet include the Flow matrix. We encourage readers to use this manuscript’s equations
to write code for the Flow matrix.

4.3. Which Method to Choose?

Modelers will naturally wonder whether to use the Flow, Markov, or some other ex-
trapolation method. The answer depends on the purpose of the modeling. If the purpose is
to communicate to a non-technical audience, then the Flow extrapolation has the advantage
of being easier to explain and understand. If the purpose is to extrapolate more than one
change during sequential time intervals of the extrapolation, then the Flow matrix is insuffi-
cient while the Markov matrix is an option. However, the simulation modeling applications
that we know simulate at most one change in a pixel. If the purpose is to extrapolate the
pattern of change, then the modeler should examine the pattern of change through multiple
time intervals to find the extrapolation that is a better fit. Several methods examine the
patterns of change across sequential time intervals [27,28]. For example, transition-level
Intensity Analysis compares the Markov matrix for each time interval to see whether the
transition intensities are stationary across time intervals [29,30].

If empirical analysis reveals that a Markov process has been operating across several
time intervals, then it might make sense to apply a Markov process to extrapolate change.
However, if a Markov process has been operating across several time intervals, then
the sizes of the categories may have already approached a steady state, in which case
extrapolation will not produce substantial additional changes.

If the purpose is to simulate the hypothesized process of change, then the modeler
must match the mathematical behavior of the extrapolation with the hypothesized process
of change. We have no reason to assume that natural or human-managed landscapes
follow the Flow matrix or the Markov matrix. If modelers lack a hypothesized process
of change, then modelers can use an empirically based pattern of change. The Flow
and Markov matrices offer distinct ways to describe the patterns during the calibration
interval. Modelers could apply both the Flow and Markov extrapolations to see whether
the difference between them has practical importance.

5. Conclusions

The Flow matrix is a novel and straightforward method to describe and extrapolate
transitions among categories. The Flow matrix avoids the mathematical problems of
the popular Markov matrix. Our case studies demonstrate the differences between the
Flow and Markov matrices concerning the temporal characteristics of extrapolation, the
temporal extent of the extrapolation, the sensitivity to persistence during the calibration
interval, and the allowance of a category’s start size to equal zero. The Flow matrix
expands the possibilities for how a modeler can envision system dynamics. Each matrix
has distinct characteristics that might be advantages, disadvantages, or neither, depending
on the modeler’s goals. Modelers should consider the trade-offs of each approach when
extrapolating transitions among categories.
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