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Abstract: Influenced by historical background, regional economic development, and the frequent
occurrence of armed conflict, the human–earth relationship in the Central and Southern Peninsula,
which is located in a “fragmented zone”, is characteristic of the region. The Indochina Peninsula has
now become an area of interest for the study of spatial changes in production–living–ecological spaces
(PLES). Taking the Indochina Peninsula as the study area, this paper explores the evolution of the
spatiotemporal patterns of PLES and its driving mechanism in the Indochina Peninsula, from 2010 to
2020, based on a grid scale. Methods such as the land-use transition matrix, land-use dynamics index,
and geographically and temporally weighted regression (GTWR) were used in our model, which
will provide the basic data and reference for sustainable development planning across the Indochina
Peninsula. Our results show that, from 2010 to 2020, ecological space dominated the PLES pattern on
the Indochina Peninsula, but its area gradually decreased, accompanied by a sharp increase in the
areas of productive and living spaces. The area of PLES interconversion on the Indochina Peninsula
in 2010–2020 was 212,818.70 km2, and the intertransfer of production and ecological spaces was
distributed in a networklike manner throughout the Indochina Peninsula, while the transfer of living
space was distributed in a pointlike manner. The migration path of the center of gravity of PLES
on the Indochina Peninsula demonstrated a significant directional difference, and the direction and
extent of the standard deviation ellipse distribution of the ecological space was similar to that of the
production space. The PLES’s pattern evolution was affected by the degree of multiple factors, with
a significant spatial and temporal heterogeneity. The positive and negative feedback effects of the
factors were distributed in different areas and in different transfer directions.

Keywords: Indochina Peninsula; production–living–ecological spaces; GTWR

1. Introduction

Since the 1990s, there have been several mechanisms for geopolitical and economic
co-operation across the Indochina Peninsula; such co-operation exists between countries as
a top-level strategy and influences land-use changes on the Indochina Peninsula in different
forms and dimensions, and to different degrees [1]. As the trend in regional political and
economic integration intensifies and international attention to the Indochina Peninsula
continues to grow, transregional economic cooperation and projects such as “alternative
planting” and the construction of border roads have had a profound impact on land use
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and land cover in the area [2–4]. Due to its special location and economic development
mode, the Indochina Peninsula is now an active zone of land-use change [2]. Strengthening
the study of land-use change across the Indochina Peninsula is of great significance for the
improvement of its sustainable development, and for the ecological and environmental
benefits of the region.

Research on land-use and land-cover change (LUCC) in the Indochina Peninsula has
always been a hot academic topic, and previous studies have mainly focused on LUCC
simulation and prediction using different remote sensing data products and improving
the simulation accuracy to accurately assess the historical dynamics and future changes of
LUCC in the region [5–8]. Indochina Peninsula countries have inconsistent LUCC driving
factors due to differences in their social backgrounds, land systems, and topography, but
due to geographic proximity, there are some similarities in the driving factors, and results
of studies show that the LUCC in the Indochina Peninsula is mainly affected by the land
policy and the economic market [8,9]. Due to the specificity of the driving mechanism of
land-use change in border areas, some scholars selected the Indochina Peninsula borderline
to carry out LUCC research and found that the border land-use change was affected by
the local economy, policy, humanities, nature and the socio-economic development of the
bordering countries [2,10].

The most important feature of regional land-use change is the mutual transformation
between land-use types and their dominant functions, i.e., the mutual transfer between
three land-use function types, namely, production space, living space, and ecological
space [11–13]. PLES is a comprehensive territorial spatial division, which is based on the
multifunctional perspective of land use; PLES-related research is currently focused on
the Chinese context, but its essence is the deepening of the research and application of
land-use multifunctionality, and the related results have been widely studied at home
and abroad [14–20]. Production space refers to the land used for human survival and
livelihood and is an important aspect of the development of PLES; living space refers to
the land used for human social habitation, which is the core of PLES; and ecological space
refers to the natural environment on which human beings depend for their survival, and
which is the prerequisite and direction for the development of PLES [21,22]. As a result
of the evolution of the territorial system of human–land relation, exploring PLES driving
mechanisms can effectively explain the relationship between human activities and the
evolution of PLES patterns.

The study of PLES on the Indochina Peninsula has focused on changes in forest
ecological space in each country. Studies have shown that timber export is the main
economic source in Laos and Myanmar, and excessive logging has led to a decrease in
the forest area and an increase in the area of grassland, arable land, and built-up land in
northern Laos [23]. In Myanmar, deforestation and degradation are serious, forest area
is decreasing, and poppy cultivation is increasing year by year [24]. Northern Thailand
is dominated by rotational agriculture, which is gradually being commercialized as the
area under monoculture cash-crop rubber forest continues to expand [9]. In addition, the
conversion of forest land to cropland is very common in the Indochina Peninsula [25]. In
terms of impact factor studies, previous studies have explored the driving mechanism
of PLES from the aspects of physical geography, socioeconomics, the geo-environment,
and trade cooperation [10], the study areas have focused on hotspots and fragile areas,
and there are few studies on the driving mechanism of PLES in the Indochina Peninsula.
Currently, the driving mechanism behind PLES pattern evolution is studied using multiple
linear regression [26] and principal component analysis [27], but these methods only focus
on the mathematical logic among factors: they cannot explain the geographic logic of the
factors or the real spatial characteristics of the regression parameters; nor can they respond
to the spatial heterogeneity between the dependent variables and their influencing factors
in geographic phenomena [28]. Some scholars have extended ordinary linear regression by
using Geodetector [29], geographically weighted regression (GWR) [30], and multiscale
geographic weighted regression (MGWR) [31]; these explain the local spatial relationships



Land 2023, 12, 1767 3 of 28

and spatial heterogeneity of variables well [32]. However, the influencing factors involved
in PLES pattern evolution are both spatially and temporally nonstationary; because of
this, the traditional regression and constant-coefficient spatial econometric models cannot
satisfy the research need to identify the direction and strength of the drivers of PLES
pattern evolution under different spatial and temporal distributions. The geographically
and temporally weighted regression (GTWR) model proposed by Huang et al. [33] can
effectively deal with the problem of spatiotemporal heterogeneity and has been widely
used in the study of spatiotemporal heterogeneity of socio-economic and environmental
pollution drivers. Based on a grid scale, this paper applies the GTWR model to the analysis
of the driving mechanism of the spatial variation of territories in the Indochina Peninsula,
taking into account the spatial and temporal nonstationarity of the factors and proposing a
new research perspective.

This paper takes the Indochina Peninsula as the study area and explores the evolution
of the spatial pattern of the Indochina Peninsula and its driving mechanism from 2010
to 2020 based on a grid scale using the land transfer matrix, the land use dynamic index,
and the GTWR model. This will enrich the study of PLES on the Indochina Peninsula as a
whole and inform planning for sustainable development in the area.

2. Materials and Methods
2.1. Site Description

Due to factors such as historical background, regional economic cooperation, and
frequent armed conflicts, human–land relations across the Indochina Peninsula are typified
by regional characteristics. The overall region is known as a fragmented zone in the
world [34,35]. In this paper, Myanmar, Vietnam, Laos, Thailand, and Cambodia, all located
on the Indochina Peninsula, were selected as the study area (Figure 1). As a relatively
independent geographic unit, the Indochina Peninsula has an important geopolitical and
economic strategic value and is an important arena for competition and power games
among extra-regional powers [36,37]. The implementation of many international economic
cooperation and resource development projects, especially the “Golden Four Corners”
program and the “Alternative Cultivation” policy shared by China, Myanmar, Thailand,
and the Lao People’s Democratic Republic, brought about significant change in the land
use/cover status of the region [10,38]. Together, the special characteristics of land-use
patterns [23,39], tropical rain forests in Southeast Asia, and widely distributed alternative
plantation crop areas [40] make the Indochina Peninsula an area of great interest to many
international organizations studying LUCC and the ecological environment.

2.2. Data Source

Data were gathered from the GlobeLand30 land cover/land use dataset (http://www.
globallandcover.com/ accessed on 2 June 2023) and the SEDAC population density dataset
(https://sedac.ciesin.columbia.edu/ accessed on 4 June 2023) for 2010 and 2020. The data
were preprocessed and reclassified to obtain the 2010 and 2020 PLES data for the Indochina
Peninsula; the classification system is shown in Table 1 [41,42].

In this paper, road networks, water systems, population densities, night lighting,
precipitation, the normalized difference vegetation index (NDVI), and armed conflict
events were selected as the influencing factors for the evolution of the PLES patterns
in the Indochina Peninsula region from four aspects: human location, socio-economics,
natural environment, and geopolitics. Road networks affect land use in a unique way.
On the one hand, road construction promotes the development of construction land;
on the other hand, it takes up a large amount of forest and grassland, resulting in the
reduction in forest and grassland areas. At the same time, slope greening and ecological
protection undertaken in the process of road construction were shown to increase the area
of shrubs and bushes [43]. In addition, proximity to a river system affects the distribution
of productive space: the closer the river, the more productive the space [44]. Population
density is another factor directly influencing the spatial distribution of land use/cover in

http://www.globallandcover.com/
http://www.globallandcover.com/
https://sedac.ciesin.columbia.edu/
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the study area, with more densely populated areas having higher levels of living-space
development. Furthermore, the nighttime lighting index reflects the level of regional
economic development and compensates for the lack of GDP data. Precipitation impacts
the ecological space’s spatial distribution, while the NDVI directly reflects the changes in
forest land, grassland, cultivated land, and other land types. Finally, geopolitics is also an
easily overlooked influence for the Indochina Peninsula, where the location and frequency
of armed conflict events have a dramatic effect on land-type change [45]. The data sources
for each influencing factor are shown in Table 2.

Land 2023, 12, x FOR PEER REVIEW  4  of  30 
 

 

Figure 1. Schematic of the study area. 

2.2. Data Source 

Data  were  gathered  from  the  GlobeLand30  land  cover/land  use  dataset 

(http://www.globallandcover.com/ accessed on 2 June 2023) and the SEDAC population 

density dataset (https://sedac.ciesin.columbia.edu/ accessed on 4 June 2023) for 2010 and 

2020. The data were preprocessed and reclassified to obtain the 2010 and 2020 PLES data 

for the Indochina Peninsula; the classification system is shown in Table 1 [41,42]. 

Table 1. Classification system of PLES. 

Primary Category  Secondary Category  Data Source 

The production space 

1—Agricultural production 

space; 
GlobeLand30: cropland 

2—Industrial production 

space; 

GlobeLand30: artificial surface 

(excluding the range of living 

space defined by SEDAC) 

The living space 

3—Urban living space; 
SEDAC: the population density 

is greater than 1500/km2 

4—Rural living space; 
SEDAC: the population density 

is 300–1500/km2 

The ecological space 
5—Forest ecological space;  GlobeLand30: forest, bush 

6—Grassland ecological space;  GlobeLand30: grass 

Figure 1. Schematic of the study area.

Table 1. Classification system of PLES.

Primary Category Secondary Category Data Source

The production space

1—Agricultural production space; GlobeLand30: cropland

2—Industrial production space;
GlobeLand30: artificial surface
(excluding the range of living

space defined by SEDAC)

The living space
3—Urban living space; SEDAC: the population density

is greater than 1500/km2

4—Rural living space; SEDAC: the population density
is 300–1500/km2

The ecological space

5—Forest ecological space; GlobeLand30: forest, bush
6—Grassland ecological space; GlobeLand30: grass

7—Water ecological space;
GlobeLand30: wetlands, water,
glaciers, and permanent snow

cover
8—Other ecological spaces GlobeLand30: tundra, bare land
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Table 2. Driving factors and data sources.

Datatypes Parameter Factor Introduction to Data Data Source

Humanistic location

X1 Distance to railway
Indicates the distance from

the center of each pixel to the
nearest railway line

https://www.
openstreetmap.org

(accessed on 10 July 2023)
https://www.

naturalearthdata.com/
(accessed on 7 July 2023)

X2 Distance to road
Indicates the distance from

the center of each pixel to the
nearest road

Socioeconomic Data and
Applications Center |
SEDAC (columbia.edu)

https://www.
openstreetmap.org

X3 Distance to river
Indicates the distance from

the center of each pixel to the
nearest river

https://www.
openstreetmap.org

Social economy

X4 Night lights Indicates the nighttime light
value within each pixel

VIIRS Nighttime Light
(mines.edu)
geodata.cn

X5 Population density
Denotes the value of the

population density within
each pixel

https://sedac.ciesin.
columbia.edu/ (accessed

on 4 June 2023)

Natural environment

X6 Precipitation Indicates the value of rainfall
within each pixel

Climatic Research
Unit—Groups and Centres

(uea.ac.uk)

X7 Normalized difference
vegetation index (NDVI)

Indicates the NDVI value
within each pixel

https://ladsweb.modaps.
eosdis.nasa.gov/ (accessed

on 8 July 2023)

Geopolitics X8 Armed conflict events
Indicates the number of

deaths from armed conflicts
in each pixel.

ACLED | Bringing Clarity
to Crisis (acleddata.com)

2.3. Data Preprocessing

The humanistic location data require geometric repairing, cropping, merging, fusing,
etc., and Euclidean distances must be calculated. Armed conflict events require data
cleansing and interpolation. Compared to other interpolation methods, inverse distance
weighting (IDW) is a precision interpolation and ensures that the predicted value at the
sampling point is completely consistent with its real value. In this study, IDW was used to
spatialize fatalities in armed conflicts. All factor data were standardized, with a uniform
scale, and projected to the “Krasovsky_1940_Albers” coordinate system with a resolution of
250 m. The resolution of the PLES data was 30 m, which facilitated subsequent processing.

To verify whether initially selected influencing factors can be used for modeling the
regression model, a covariance line analysis of the influence factors is required [46,47]. In
this paper, the variance inflation factor (VIF), eigenvalue, etc., were selected to determine
whether there was covariance among the influencing factors. When the VIF is greater than
10, it indicates that there is covariance among various factors; this must be eliminated to
render the next modeling more feasible [48]. As shown in Table 3, the VIF values of the
influencing factors were less than 10, so there was no multicollinearity; accordingly, they
can be used for modeling the regression model.

https://www.openstreetmap.org
https://www.openstreetmap.org
https://www.naturalearthdata.com/
https://www.naturalearthdata.com/
https://www.openstreetmap.org
https://www.openstreetmap.org
https://www.openstreetmap.org
https://www.openstreetmap.org
https://sedac.ciesin.columbia.edu/
https://sedac.ciesin.columbia.edu/
https://ladsweb.modaps.eosdis.nasa.gov/
https://ladsweb.modaps.eosdis.nasa.gov/
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Table 3. Collinearity diagnostics.

VIF X1 X2 X3 X4 X5 X6 X7 X8

2010 1.125 1.068 1.069 1.283 1.326 1.061 1.104 1.035
2020 1.140 1.121 1.068 1.065 1.088 1.072 1.077 1.040

2010–2020 1.131 1.077 1.063 1.166 1.196 1.06 1.085 1.038

After preprocessing the driver data, a 15 km × 15 km fishing network was generated
based on the ArcGIS platform; 8539 sampling points were obtained in the five-country re-
gion of the Indochina Peninsula. Factors were resampled uniformly up to 15 km, and factor
attribute values were extracted based on the sampling points. The area and percentage
of the PLES within the unit grid were counted to obtain information on the evolution of
the PLES (dependent variable) and the data on the driving factors (independent variables).
The driving mechanisms behind the PLES pattern evolution in the five countries of the
Indochina Peninsula were analyzed using the GTWR model.

2.4. Research Methods
2.4.1. Transfer Matrix of PLES

The land-use transition matrix was used to analyze the evolution of PLES patterns.
The essence of the transfer matrix is to use the transfer probability of a Markov chain and
the steady-state equation to analyze the dynamic characteristics and development trends
of land-use change [49], with the following expression:

Sij =

S11 . . . S1n
. . .

Sn1 . . . Snn

 (1)

where Sij is the number of transfers from spatial type i to spatial type j in the study area,
and Snn is the PLES-type area.

2.4.2. Land-Use Dynamics Index

Land-use dynamics refers to the quantitative change in land-use types in a certain
period of time, mainly reflecting the intensity of land-use change and regional differences
in the rate of change and characterizing the impact of human activities on regional land
use, so as to better guide regional land use [50]. It is mainly divided into single land-use
dynamics and comprehensive land-use dynamics: single land-use dynamics is used to
describe the change in a certain land-use type in the region within a certain time frame,
while comprehensive land-use dynamics describes the overall rate of land-use change in
the entire region [51].

K =
Ua −Ub

Ua
× 1

T
× 100% (2)

where K is the single dynamic index of a land-use type in the study period, Ua is the area
of a land-use type at the beginning of the study, Ub is the area of the land-use type at the
end of the study, and T is the time interval.

Lc =

[
∑n

i=1 ∆LUi−j

2 ∑N
I=1 LUi

]
× 1

T
× 100% (3)

where Lc is the comprehensive land-use dynamics index in the study area, LUi is the area
of land-use type in the previous period, ∆LUi−j is the absolute value of the area of land of
category i converted to land-use type j in the study time period, and T is the time interval.
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2.4.3. Standard Deviation Ellipse Model

Using the center of gravity, the long and short axes and the azimuthal angle of the
standard deviation ellipse can portray the overall distribution characteristics, the degree
of agglomeration, and the center of agglomeration of each type of territorial spatial area.
The smaller the area of the ellipse and the standard distance between the x and y axes,
the higher the degree of agglomeration, and vice versa [52]. In this study, the analysis of
the standard deviation ellipse of production space, living space, and ecological space was
conducted to explore the distribution range and directional trend of each space and further
analyze the evolution characteristics.

X =
1
N ∑n

i=1 xi (4)

Y =
1
N ∑n

i=1 yi (5)

tan θ =

(
∑n

i=1 x̂2
i −∑n

i=1 ŷ2
i
)
+
√(

∑n
i=1 x̂2

i −∑n
i=1 ŷ2

i
)2

+ 4
(
∑n

i=1 x̂2
i ŷi
)2

2 ∑n
i=1 x̂l ŷi

(6)

where X and Y denote the coordinates of the center of gravity position of the spatial unit of
the land-use type, xi and yi denote the value of the coordinates of the spatial unit, θ denotes
the angle of the ellipse, x̂i and ŷi denote the deviation from the center coordinates to the
center of gravity coordinates of each spatial unit, respectively. The main parameters of a
standard deviation ellipse are the position of the center point, the long axis, the short axis,
and the angle of rotation.

2.4.4. GTWR Model

GTWR is a regression analysis method that incorporates temporal and spatial in-
formation on the basis of an ordinary linear regression (OLR) to study spatiotemporal
heterogeneity; it is capable of reflecting the change patterns in the spatiotemporal non-
stationarity of the regression coefficients [33]. The formula is:

yi = β0(ui, vi, ti) + ∑k βk(ui, vi, ti)Xik + εi (7)

where (ui, vi) denotes the latitude and longitude coordinates of the ith sample point, ti
denotes the time of observation, yi denotes the value of the dependent variable for the ith
sample point, and Xik denotes the kth explanatory variable for the ith sample point. εi is
the model error term, β0(ui, vi, ti) denotes the regression constant for the ith sample point,
and βk(ui, vi, ti) denotes the regression coefficient of the kth explanatory variable for the ith
sample point. This is expressed as follows:

β̂(ui, vi, ti) =
[

XTW(ui, vi, ti)X
]−1

XTW(ui, vi, ti)Y (8)

where W(ui, vi, ti) denotes the weight of spatiotemporal location i. The GTWR model
determines the weight of the influence of the values of other sample points on the regression
sample points by constructing a spatiotemporal weight matrix.

The process of constructing a weight matrix based on spatiotemporal distance is shown
below. First, the spatial distance between the sample points is calculated by applying the
Euclidean distance formula.

Since the different units of measurement for temporal and spatial distances are prone
to affect the results, the temporal and spatial distances are calculated as follows:

(dST)
2
= λ(dS)

2
+ µ(dT)

2
(9)
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The weight function is usually chosen as either a Gaussian or a bisquare function;
these can be transformed into a weight function after substitution, and the weight matrix is
calculated as follows:

Wij = exp{−
[(ui − uj)

2 +
(
vi − vj)

2]+ τ(ti − tj)
2

(hs)
2 } (10)

where τ = µ/λ,µ,λ are the weights used to balance the different effects, dST
ij is the spa-

tiotemporal distance between the sample points, and h is a non-negative parameter called
the spatiotemporal bandwidth.

3. Results
3.1. Analysis of the Dynamics of Spatiotemporal Patterns in PLES

Ecological space dominates the PLES of the Indochina Peninsula. In the 10-year period
from 2010 to 2020, the areas of production and living spaces increased dramatically, while
the area of ecological space decreased correspondingly; the trend in change is consistent
with the characteristics of the regional resources and economic development (Figure 2).
From the point of view of changes in the area of each type of space, with population growth
and economic development, both urban and rural living spaces expanded, with additional
areas of 3460 and 2029 km2 in the 10-year period, respectively. The Indochina Peninsula is
relatively backward in terms of economy and industry but has developed its agriculture.
Traditional means of farming such as slash-and-burn and straw burning, combined with
the expansion of plantations and economic forests, such as rubber forests, commercial
logging, land reclamation and regional economic cooperation, have contributed to the rapid
expansion of agricultural and industrial production spaces, while the ecological spaces of
woodland and grassland have decreased at different levels, with woodland decreasing by
26,549 km2 and grassland decreasing by 3624 km2, making woodland ecological space the
land-use type with the greatest change in area on the Indochina Peninsula.
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Figure 2. Land-use dynamics index for PLES on the Indochina Peninsula.

There are spatial differences in the rate of change in PLES in the Indochina Peninsula
region (Table 4). From 2010 to 2020, the integrated land-use dynamics of the Indochina
Peninsula was 0.16%, and those of Myanmar, Vietnam, Laos, Cambodia, and Thailand were
0.07%, 0.3%, 0.14%, 0.71%, and 0.13%, respectively. Cambodia had the fastest rate of change
in the spatial pattern of PLES, Laos the next fastest, and Myanmar the slowest. The rate of
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spatial pattern change was influenced by regional economic development. The Indochina
Peninsula experienced a rapid expansion in industrial production space with a motivation
of 9.84%, followed by urban living space with a motivation of 3.44%. Rural living space
was relatively stable in area, having a low growth rate with a motivation of 0.18%. Forest
land, grassland, and other ecological spaces had a motivation of −0.24%, −0.36%, and
−0.42%, respectively, with other ecological spaces decreasing at the fastest rate.

Table 4. Land-use dynamics index for PLES in the five countries on the Indochina Peninsula.

ID Category Laos Cambodia Myanmar Thailand Vietnam The Indochina
Peninsula

1 Agricultural production space 0.80% 1.97% −0.14% 0.01% 0.47% 0.25%
2 Industrial production space 63.19% 7.56% 5.50% 13.69% 10.85% 9.84%
3 Urban living space 2.53% 6.63% −0.42% 7.45% 2.12% 3.44%
4 Rural living space 3.14% 1.12% 1.64% −1.59% 0.42% 0.18%
5 Forest ecological space −0.18% −1.23% −0.05% 0.00% −0.55% −0.24%
6 Grassland ecological space 0.10% −0.70% −0.02% −1.05% −0.58% −0.36%
7 Water ecological space 1.96% 0.42% 0.37% −0.51% 1.57% 0.34%
8 Other ecological spaces 1.40% −2.62% 422.08% 8.21% −0.42%

Comprehensive land-use dynamic index 0.14% 0.71% 0.07% 0.13% 0.30% 0.16%

From 2010 to 2020, the industrial production space of the Lao PDR was expected to
change at the highest rate of 63.19%, following the Lao Government’s active promotion of
the strategy for “resources for capital”. Thailand’s other ecological spaces were expected
to undergo drastic changes, with a 422.08% change in dynamics; this was mainly influ-
enced by Thailand’s national development strategy driven by commercial logging, urban
development, and the acquisition of international benefits [53].

3.2. Spatiotemporal Analysis of the Evolutionary Process of PLES
3.2.1. Quantitative Analysis of Land-Use-Type Shifts in PLES

From 2010 to 2020, the Indochina Peninsula had an area of 212,818.70 km2 of intercon-
version of PLES utilization, manifested in the conversion of ecological space into production
space, and the interconversion of woodland and grassland ecological spaces (Figure 3).
The transfer in of industrial production space came predominantly from agricultural pro-
duction space, accounting for 49.48% of the industrial production land by 2020. Transfer
out was mainly converted to agricultural production space, accounting for 76.11% of the
total transfer out of industrial production. The change in woodland ecological space was
predominantly attributed to grassland ecological and agricultural production spaces; by
2020, the transfer in accounted for 3.62% and 1.87% of the area of woodland ecological
space, respectively. The area of forest ecological space converted to grassland ecological and
agricultural production spaces was 39,470 km2 and 41,370 km2, respectively, accounting for
43.69% and 45.79% of the total transfer out of forest land. The water ecological space was
predominantly converted to agricultural production space, accounting for 54.21% of the
transfer out of water ecological space.

Agricultural production space and woodland ecological space are the main land types
in the five countries of the Indochina Peninsula, and from 2010 to 2020, there were shifts
in the various types of PLES. In Myanmar and Laos, the most drastic land transfer of
three biospatial land types was the interconversion of woodland and grassland ecological
spaces, followed by the interconversion of woodland ecological and agricultural production
spaces. Thailand’s land transfer of PLES mainly focused on the interconversion of wood-
land ecological and agricultural production spaces, being 8334.99 km2 and 7700.08 km2,
respectively. The interconversion of three biospatial land types in Cambodia and Viet-
nam focused on the transfer of woodland ecological to agricultural production spaces.
The quantitative transfer mainly focused on the conversion of woodland ecological space
into agricultural production and grassland ecological spaces, with the areas of woodland
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converted to agriculture being 11,810.08 km2 and 9744.81 km2, respectively. The areas of
land converted to grassland were 2551 km2 and 7455.21 km2, respectively. The reason for
this may be that changes in various types of land areas from expansion to contraction, or
from contraction to expansion, corresponded to the transformation in the stage of regional
economic development [54]. With the construction of the regional economic corridor, the
five countries of the Indochina Peninsula changed from traditional agricultural methods to
commercial agricultural production, and the center of gravity tilted from the primary indus-
try to the secondary and tertiary industries: this had a direct impact on the transformation
of ecological and production spaces.
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3.2.2. Analysis of the Process of Transferring Land-Use Types in PLES

The conversion of production and ecological spaces is distributed as a network
throughout the Indochina Peninsula, and the conversion of living space is distributed
as points (Figure 4). The conversion of forest and grassland ecological spaces is distributed
in the western region of Myanmar, the northeastern and southern regions of Thailand, and
the entire territories of Vietnam and Cambodia. From 2010 to 2020, the conversion of forest
ecological space into agricultural production space was uniformly distributed across the In-
dochina Peninsula. The conversion of agricultural production space into rural living space
was distributed in a pointlike manner in the southern region of Yangon and the central
region of the Sagaing region in central Myanmar, Chonburi Province in Thailand, Batuyi,
Battambang, and Kandan provinces in Cambodia, Binh Duong, Ðồng Nai, Bạc Liêu, and Sóc
Trăng provinces in Vietnam, and the western region of Laos. The conversion of agricultural
production space into industrial production space was distributed in Myanmar, Vietnam,
central Thailand, and central Cambodia, but with almost none in Laos. The conversion of
grassland ecological space into agricultural production space was concentrated throughout
the eastern and central regions of the Indochina Peninsula, with very little distribution in
the southwestern region. The conversion of rural living space into agricultural production
space was concentrated in the central region of Thailand and the southeastern region of
Cambodia. The conversion of the water ecological space and agricultural production space
into each other was evenly distributed across the Indochina Peninsula. The exception
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to this was Laos, where the main food crop is rice: some cultivated land and forested
land were converted into agricultural production space in order to improve agricultural
production conditions. Rice is the main food crop across the Indochina Peninsula, and in
order to improve agricultural production conditions, some areas of cultivated and forest
land have been converted into paddies. The conversion of industrial production space into
agricultural production space is discretely distributed across the Indochina Peninsula from
northwest to southeast in the middle of Myanmar, Cambodia, and Thailand.
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The long half-axis of the ellipse indicates the direction of the data distribution, and
the short half-axis indicates the range of the data distribution; the larger the difference
between the values of the long and short half-axes, the more obvious the direction of the
data is [52]. The migration path of the center of gravity of PLES on the Indochina Peninsula
demonstrates significant directional differences, and the long semi-axis is geographically
oriented north–south with both Laos and Vietnam (Figure 5). Overall, from 2010 to 2020,
the production space migrated to the southwest, the living space to the northeast, and
the ecological space to the east (Table 5). Compared with the living space, the production
and ecological spaces experienced a more directional tendency, were more influenced
by Myanmar, Thailand, and Cambodia, and exhibited a more centralized trend in the
distribution of ecospatial data. PLES migrated to the southwest, and the center of gravity
of the production space was located in the north of Thailand and moved insignificantly, the
standard deviation ellipse area did not change much, the X-axis decreased, and the Y-axis
increased, indicating that the production space distribution across the Indochina Peninsula
was more balanced, and mainly in the northwest–southeast direction. The center of gravity
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of the living space was located in the east of Thailand, shifting towards the northeast, and
the standard deviation ellipse area for the living space decreased in both the X- and Y-axes,
indicating that the living space had a tendency to shrink in all directions; this shows a
tendency to shift from a discrete to an agglomerated distribution, this phenomenon being
mainly concentrated in the regions of Thailand, Laos, and Vietnam. The direction and
extent of the standard deviation ellipse distribution of the ecological space was similar to
that of the production space, indicating that the trend in the living space was stronger in
the northwest–southeast direction than in the northeast–southwest direction. The center
of gravity of the ecological space was located in the middle of Thailand and shifted to
the east, and the direction and extent of the standard deviation ellipse distribution was
similar to that of the production space, indicating that the development trend of the living
space was stronger in the northwestern–southeastern direction than in the northeastern–
southwestern direction.
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Table 5. Elliptic standard deviation parameter.

Id Category Center X Center Y

1 The production space 2020 101.075225 18.664372
2 The production space 2010 101.064734 18.789373
3 The living space 2020 104.048867 16.76586
4 The living space 2010 104.001003 16.56669
5 The ecological space 2020 101.289046 17.13435
6 The ecological space 2010 101.024312 17.142921

3.3. Analysis of PLES Spatiotemporal Pattern Evolution Drivers

In this study, road networks, water systems, population densities, night lighting,
precipitation, NDVI, and armed conflict events were selected as the influencing factors in
the evolution of PLES spatiotemporal patterns in the Indochina Peninsula region from the
four aspects of humanistic location, socio-economics, natural environment, and geopolitics.
Covariance diagnostics and standardization were performed on the influencing factors,
and the results demonstrated that all the factors satisfied the model construction criteria.
The GTWR model was applied to a regression analysis of the sample data to obtain the
regression coefficients of each influencing factor on the evolution of the PLES pattern,
based on the grid scale from 2010 to 2020. The model was used to analyze the degree
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of influence of each factor on the evolution of the PLES pattern at different spatial and
temporal locations under the double effect of time and space. The GTWR model was
applied to simulate the eight spatial types: different R2 and bandwidths were obtained,
with an optimal model fit of 0.56 and a mean value of 0.4, the lowest fit being that of
the watershed ecological space. The magnitude of the regression coefficients represents
the degree of influence of each influencing factor on the evolution of the three spatial
patterns (Table 6). The transfer of land-use types in the PLES of the Indochina Peninsula
was influenced by social context and regional environment. Population density (X5) was
the factor that most influenced the changes in pattern of the three living spaces; regions
with a high population density were prone to an expansion of production and production
space, and ecological space was prone to being squeezed. In 2020, the factors influencing
the agricultural production space and the ecological space of the forest land had opposing
roles. Increased population density promoted the development of agricultural production
space, while inhibiting the development of woodland ecological space. The armed conflict
factor (X8) had a positive feedback effect on urban living space and inhibited the conversion
of other spatial types into the promotion of agricultural production space, woodland, and
other ecological space. This is because the political and ethnic conflicts in Myanmar, as well
as turbulence in Thailand’s political environment, and the potential for social instability,
etc., intensified the outbreak of armed conflict events to a certain extent, affecting the
environment of human life and production. Furthermore, in 2020, possibly because of the
move to promote agricultural production space, it appears that agriculture was not affected
by the waves of armed conflict. Instead, agriculture production space played a facilitating
role to a certain extent. The distance to the road network (X1, X2) factor was positively
related to the ecological space of the woodland, which may be due to the increase in green
environments such as street trees, shrubs, and grasses on both verges on the sides of the
road. Border road construction improves accessibility, but road planning and construction
also encroach on productive living space to some extent. The distance from the water
system factor (X3) and precipitation (X6) were positively proportional to the ecological
space of forest land, and inversely proportional to other spatial types. The Indochina
Peninsula is rich in precipitation, has a dense water network, is rich in forest resources,
and tropical rainforest occupies a wide range of areas; however, this inhibits the expansion
of production space. Night lighting (X4) was proportional to the relationship between
industrial production space and human life space, reflecting the regional economic level:
the higher the level of economic development, the more frequent the human activities,
and the closer to the urban built-up area. NDVI (X7) reflects the vegetation cover, which
was positively proportional to the ecological space of the forest land and grassland; an
increase in the vegetation cover indicates the expansion of the ecological space of forest
land and grassland.

The evolution of the spatial pattern of agricultural production was affected by factors
with significant spatial and temporal heterogeneities (Figure 6). The influence of each
factor on the spatial quantitative changes in agricultural production created both positive
and negative spatial distributions. Factor X3 was mainly positively related to the spatial
relationship of agricultural production on the Indochina Peninsula, but negatively related
to the spatial relationship of agricultural production in southern Myanmar, northwestern
Thailand, and northern Laos; the positive feedback expanded northward over time. In
2020, factor X2 showed a large area of negative feedback; in 2010, however, there had
been positive feedback in the cities of northern and southern Vietnam. By 2020, positive
feedback was only evident in the cities of northern Vietnam. In 2010, factor X1 had an
inverse effect on the spatial quantity change in agricultural production; in that year, it
was distributed in the south of Laos and the center of Vietnam; by 2020, it had spread
southward to the central and southern cities of Laos and Vietnam. For factor X5, there
was little change in the distribution areas of the positive and negative effects; the negative
feedback areas were distributed in the south of Myanmar, Cambodia, and Thailand, as
well as in Vietnam. Factor X6 demonstrated a negative feedback area distributed in the
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center of Thailand, Myanmar, Vietnam, Laos, and the northern region of Cambodia. The
positive feedback area grew from 2010 to 2020 and was focused on the central region of
the Indochina Peninsula. Factor X8 changes showed a decreasing trend in the negative
feedback areas, with decreasing areas concentrated in Vietnam and southern Thailand; the
negative feedback area in central and northern Myanmar remained almost unchanged. The
negative feedback area for the nighttime lighting factor decreased, with the area in northern
Myanmar and Laos decreasing, and the negative feedback area in Cambodia moving to
the south. The negative feedback area for factor X7 was larger in size, and the positive
feedback area was concentrated in northern Myanmar, the distribution area of negative
feedback gradually decreasing in the period from 2010 to 2020.

Table 6. GTWR model estimation result.

Year Category X1 X2 X3 X4 X5 X6 X7 X8

2010

Agricultural production space −0.264 −0.169 0.011 −3.810 4.692 −0.250 −0.478 −0.286
Industrial production space −0.021 −0.034 −0.010 0.038 0.617 −0.002 −0.018 −0.063

Urban living space −0.127 −0.119 −0.092 −1.857 6.327 −0.079 −0.038 1.049
Rural living space −0.001 −0.043 −0.012 0.626 1.574 −0.023 −0.007 −0.075

Forest ecological space 0.384 0.314 0.158 3.360 −13.91 0.344 0.551 −0.203
Grassland ecological space 0.045 −0.012 −0.033 −0.710 0.056 −0.033 0.019 −0.280

Water ecological space −0.002 0.060 −0.028 0.539 −0.142 0.000 −0.044 −0.121
Other ecological spaces 0.000 0.002 −0.003 0.016 0.043 −0.002 −0.002 −0.005

2020

Agricultural production space −0.301 −0.551 −0.013 −6.364 5.143 −0.191 −0.448 1.449
Industrial production space −0.024 −0.081 −0.008 0.346 0.623 −0.003 −0.021 −0.044

Urban living space −0.106 −0.291 −0.061 2.112 6.758 0.041 −0.038 −2.406
Rural living space −0.001 −0.059 −0.007 1.461 1.575 −0.021 −0.009 −0.151

Forest ecological space 0.409 0.726 0.126 4.707 −16.17 0.161 0.561 0.653
Grassland ecological space 0.056 −0.002 −0.023 −1.960 0.604 −0.006 0.012 −0.095

Water ecological space −0.009 0.112 −0.021 −0.546 0.269 −0.003 −0.043 −0.152
Other ecological spaces 0.000 0.001 −0.001 0.010 0.045 −0.001 −0.002 0.001

Factor X1 was mainly positively related to the forest ecological space; the negative
feedback areas for this factor decreased with time, the decreased areas being concentrated
in the northern region of Thailand and on the border of Myanmar (Figure 7). Factor X3 was
mainly positively related to the ecological space of the forest land; the negative feedback
areas for factor X3 were concentrated in the central region of Myanmar and the eastern
region of Thailand and decreased to the northeast with the change over time. Factor X2
experienced a decrease in negative feedback areas with the change over time. In 2020, the
negative feedback areas for factor X2 were mainly in Cambodia’s Battambang Province
and Siem Reap Province, and Thailand’s Surat Thani. The factor X5 positive feedback
areas shifted from the provinces of Kandal and Takeo in Cambodia to Bangkok in Thailand.
The negative feedback areas related to factor X6 spread out in all directions, and the
positive feedback areas were concentrated on the Indochina Peninsula, rather than the
center. Positive feedback areas for factor X8 were to the west of the Indochina Peninsula,
while negative feedback areas were to the east. The negative feedback areas for this factor
spread from the southeast to the northwest, being concentrated in the southern region
of Myanmar. Factor X4 positive feedback areas were larger, and negative feedback areas
expanded northwards. Positive feedback areas for factor X7 expanded northwards, and
negative feedback areas were concentrated in the southern region of Laos. Factor X8 positive
feedback areas spread northwards, while negative feedback areas were concentrated in
the southern region of Laos. Positive feedback areas for factor X9 spread northwards. The
negative feedback regions were concentrated in Phôngsali, Laos and the southern region
of Burma.
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Factor X1 led to a large change in the positive feedback area for industrial production
space; this mainly occurred in Thailand, with a decrease in the distribution in the northwest
and a concentration in the east (Figure A1). The change resulting from X2 was a decrease
in the positive feedback areas in the central region of Vietnam and the western region
of Thailand. The changes in the distribution of the X3 factor were a shift in the positive
feedback area from the periphery to the middle of the Indochina Peninsula and a decrease
in the northern region of the positive feedback area in Vietnam. The change resulting
from factor X4 was the 2020 conversion of negative feedback to positive feedback in
northern Myanmar, northern Thailand, and southern Yunnan. The changes in factor X5
were the shrinkage of positive feedback in Myanmar and Thailand to the northeast, and
the expansion of positive feedback in Cambodia to the west. The change resulting from
factor X6 was the expansion of positive feedback to the south. The changes created by
factor X7 were the shrinkage of positive feedback in northern Myanmar, the expansion
of positive feedback to the north in Thailand, and the addition of positive feedback in
southern Vietnam. The change created by factor X8 demonstrates that the positive feedback
areas spread from the center to the east and west.

In Myanmar and Cambodia, the influence of X1 on the negative feedback of grassland
ecological space changed greatly. The distribution in Myanmar changed from the central
region to the western and eastern regions, while the negative feedback area in the eastern
region of Cambodia decreased (Figure A2). The change brought by the X2 factor was that
the negative feedback region spread from the central region to the surrounding region. By
2020, the spatial change created by X3 was that a new positive feedback area was added
in the southern region of Laos, while the change wrought by X4 was that the negative
feedback region expanded to the eastern region of the country. In 2020, positive feedback
areas on grassland ecological space for factor X5 were mainly concentrated in northeast
Myanmar and Laos, and positive feedback areas appeared in northern Cambodia. The
change resulting from factor X6 was that positive feedback areas developed from being
discrete to being clustered in Cambodia and Laos, while the change created by X7 was that
positive feedback areas spread from the perimeter to the center. By 2020, the change brought
by X8 was positive feedback areas appearing in southern Myanmar and northern Vietnam.

In terms of rural living space, positive feedback areas for factor X1 all increased on the
Indochina Peninsula (Figure A3). The change resulting from factor X2 was that positive
feedback areas in Thailand expanded to the northeast, while the change created by factor
X3 was that positive feedback areas expanded to the northwest. For factor X4, the change
was that positive feedback areas expanded to the northeast. The factor X5 change was that
negative feedback areas in Thailand expanded in a fan shape to the northeast; for factor
X6, negative feedback areas in northern Vietnam converted to positive feedback areas. For
factor X7, the change was that positive feedback areas in northern Thailand converted to
negative feedback areas. For factor X8, the change was that negative feedback areas in
northern Vietnam changed to positive feedback areas in northern Thailand. The change
was that the negative feedback region in northern Vietnam converted to a positive feedback
region, while in northern Thailand, it was the positive feedback region that changed to a
negative feedback region. The X7 change was that the positive feedback region in Myanmar
expanded to the south, while the positive feedback region in Thailand decreased to the
south. The X8 change was larger, with the positive feedback regions in Myanmar and Laos
shifting to the northeast, and the positive feedback region in Vietnam disappearing.

In 2010, positive feedback for X1 on urban living space was distributed in Thailand,
northern Vietnam, and central Laos, and by 2020, also in Cambodia (Figure A4). Factor X2
still resulted in negative feedback, although negative feedback in Myanmar and Cambodia
had weakened. The change resulting from X3 was that the negative feedback areas in
northern Thailand and central Laos converted to positive feedback, and the change created
by X4 was that the negative feedback areas in northern Laos and Cambodia also converted
to positive feedback. Factor X5 did not create significant change, with all areas still showing
positive feedback. Factor X6 caused a change as the positive feedback areas in Thailand
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decreased to the northeast. The positive feedback areas in the southern cities of Vietnam
expanded to the northeast. The change caused by factor X7 was that the positive feedback
area in Vietnam spread from the center to the north and south, while that caused by factor
X8 was that the positive feedback area spread to the center.

In terms of the watershed ecological space, the X1 positive feedback influence ex-
panded from the northeast to the southwest (Figure A5). The changes related to the X2
factor were that the negative feedback area in Myanmar spread to the east, while the
positive feedback area in Thailand expanded to the west. For X3, the positive feedback area
expanded to the east. The change associated with factor X4 was that the positive feedback
area in Myanmar transformed from being dispersed in the surroundings to being clustered
in the center, while the change in Cambodia and Myanmar was the opposite. For factor
X5, the change was that the positive feedback area spread to the southwest. One X6 factor
change was that the negative feedback areas in Myanmar and Laos spread to the north.
The other X6 factor change for these countries was that the positive feedback regions in
Myanmar and Laos also expanded to the north. For factor X7, the change was that the
positive feedback area narrowed downward to the north. The X8 factor negative feedback
region spread to the southwest of Myanmar and Thailand.

Regarding the other ecological space, the X1 impact was on the expansion of the
positive feedback area in Thailand in 2020 (Figure A6). The changes associated with X3
were the spread of the positive feedback area in Myanmar to the north, and the expansion
of the positive feedback area in Vietnam to the south. The changes brought by X4 were
the conversion of positive feedback to negative feedback in the south of Vietnam, and
the change from the negative feedback area to a positive feedback area in the north; the
positive feedback area in Myanmar spread to the south. For X5, the positive feedback area
in Cambodia disappeared, and the positive feedback areas in Myanmar were concentrated
in the center. The X6 positive feedback area spread to the southwest, with the X6 positive
feedback region spreading to the south. The X7 positive feedback region spread to the
southwest. The X8 positive feedback region expanded from the north of Myanmar and the
south of Laos to the south, while the negative feedback region in Thailand converted to a
positive feedback region.

4. Discussion

PLES is a comprehensive territorial spatial division, which is based on the multifunc-
tional perspective of land use; PLES-related research is currently focused on the Chinese
context, but its essence is the deepening of the research and application of land-use multi-
functionality, and the related results have been widely studied at home and abroad [14–20].
Previous studies have mainly focused on LUCC simulation and prediction using different
remote sensing data products and on improving the simulation accuracy to accurately
assess the historical dynamics and future changes of LUCC in the region [5–8]. Studies of
PLES in the region have focused on ecological spatial and borderland land-use changes in
national woodlands, at the national scale, with few analyses of the Indochina Peninsula as
a whole. Studies have shown that timber export is the main economic source in Laos and
Myanmar, and excessive logging has led to a decrease in the forest area and an increase
in the area of grassland, arable land, and built-up land in northern Laos [23]. Northern
Thailand is dominated by rotational agriculture, which is gradually being commercialized
as the area under monoculture cash-crop rubber forest continues to expand [9]. In addition,
the conversion of forest land to cropland is very common in the Indochina Peninsula [25].
This study also found that the Indochina Peninsula as a whole is experiencing a decrease in
the area of forest ecological space and an increase in the area of living space and productive
space, indicating that the area of forested land is decreasing while the area of land types
such as cropland and built-up land is increasing. These changes are mainly caused by eco-
nomic policies and demographic, socio-economic, and environmental changes [6,55], which
are similar to the drivers of this paper. The difference is that the natural environmental
factors in this paper only considered precipitation and NDVI and did not consider other
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environmental factors such as soil properties and light radiation. In addition, this paper
incorporated the events of armed conflict into the system of impact factors to express the
role played by geopolitics in the land-use change of the Indochina Peninsula.

In terms of influencing factors, previous studies have explored the driving mechanisms
of PLES from the aspects of physical geography, socio-economics, geo-environment, trade
cooperation. The study area generally focuses on hotspots and fragile areas, and there
have been few studies of the driving mechanisms of PLES on the Indochina Peninsula
as a whole, which is not conducive to land resource planning and integrated regional
development [2,10]. Therefore, it was necessary to carry out research on the evolution of
the three land uses’ spatial patterns and driving mechanisms of the Indochina Peninsula.

The innovation of this paper lies in the introduction of the GTWR model considering
the spatial and temporal nonstationarity of the factors, exploring the evolution of the
PLES pattern and the driving mechanism of the Indochina Peninsula based on a grid
scale, and exploring the land transformation of the region from the perspective of human–
land relationship, so as to provide a reference for the subsequent research on the driving
mechanism of the land-use change, ecological assessment, and simulation and prediction
of the Indochina Peninsula. Previous scholars introduced the GTWR model, and the
research scale was mostly based on administrative divisions or meteorological monitoring
stations [56,57], which only considered socio-economic factors or natural meteorological
conditions, and could not finely express the influencing roles of various factors in the
evolution of PLES. In this paper, we considered exploring the influence of four types of
factors, namely, humanistic location, social economy, natural environment, and geopolitics,
on PLES from the grid scale, which makes the research scale more refined and the factors
more comprehensive.

In the actual development process, due to the changes in the complexity of PLES
caused by multiple factors, factors such as regional investment level, government policies,
and soil properties should be considered in the future to improve the parameters and make
the GTWR model fit better.

5. Conclusions

This study focused on the evolution of spatial and temporal patterns of PLES on the
Indochina Peninsula from 2010 to 2020. It explored the developmental changes in human–
land relations, analyzed the driving mechanisms of PLES changes, considered the spatial
and temporal nonstationarity of the driving factors, and portrayed the spatial and temporal
distributions of, and changes in, the drivers. It, therefore, provides reference information
for the land-use function of the Indochina Peninsula and provides new perspectives for the
study of driving mechanisms and changes. The conclusions are as follows:

1. The area of interconversion of PLES utilization types in the Indochina Peninsula from
2010 to 2020 was 212,818.70 km2, which was manifested in the conversion of ecological
space into productive space and the interconversion of woodland ecological space and
grassland ecological space.

2. There was a spatial variation in the rate of change in spatial patterns, with Cambodia
having the fastest rate of change in PLES, followed by Laos and Myanmar the slowest.

3. The migration path of the center of gravity of PLES on the Indochina Peninsula
demonstrates significant directional differences. In 2010–2020, production space
migrated to the southwest, living space shifted to the northeast, and ecological space
shifted to the east.

4. The transfer of PLES functional types throughout the Indochina Peninsula was in-
fluenced by social context and regional environment, the degree of influence of each
factor having significant spatial and temporal heterogeneities. The distribution areas
of positive and negative feedback effects for each factor were different, as were the
transfer directions.
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Figure A3. Spatiotemporal distribution of the effects of factors on rural living space.
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Figure A6. Spatiotemporal distribution of the effects of factors on other ecological space.
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