
Citation: Sun, P.; Yan, F.; He, Q.; Liu,

H. The Development of an

Experimental Framework to Explore

the Generative Design Preference of a

Machine Learning-Assisted

Residential Site Plan Layout. Land

2023, 12, 1776. https://doi.org/

10.3390/land12091776

Academic Editor: Chuanrong Zhang

Received: 18 July 2023

Revised: 5 September 2023

Accepted: 8 September 2023

Published: 13 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

land

Article

The Development of an Experimental Framework to Explore the
Generative Design Preference of a Machine Learning-Assisted
Residential Site Plan Layout
Pei Sun 1, Fengying Yan 1,*, Qiwei He 1 and Hongjiang Liu 2

1 School of Architecture, Tianjin University, Tianjin 300072, China; sun_814224622@tju.edu.cn (P.S.);
fslight@tju.edu.cn (Q.H.)

2 China Architecture Design & Research Group, Beijing 100044, China; hongjiang@tju.edu.cn
* Correspondence: fengying@tju.edu.cn; Tel.: +86-139-2030-9555

Abstract: Generative design based on machine learning has become an important area of application
for artificial intelligence. Regarding the generative design process for residential site plan layouts
(hereafter referred to as “RSPLs”), the lack of experimental demonstration begs the question: what
are the design preferences of machine learning? In this case, all design elements of the target
object need to be extracted as much as possible to conduct experimental studies to produce scientific
experimental results. Based on this, the Pix2pix model was used as the test case for Chinese residential
areas in this study. An experimental framework of “extract-translate-machine-learning-evaluate”
is proposed, combining different machine and manual computations, as well as quantitative and
qualitative evaluation techniques, to jointly determine which design elements and their characteristic
representations are machine learning design preferences in the field of RSPL. The results show that
machine learning can assist in optimizing the design of two particular RSPL elements to conform
to residential site layout plans: plaza paving and landscaped green space. In addition, two other
major elements, public facilities and spatial structures, were also found to exhibit more significant
design preferences, with the largest percentage increase in the number of changes required after
machine learning. Finally, the experimental framework established in this study compensates for the
lack of consideration that all design elements of a residential area simultaneously utilize the same
methodological framework. This can also assist planners in developing solutions that better meet the
expectations of residents and can clarify the potential and advantageous directions for the application
of machine learning-assisted RSPL.

Keywords: machine learning; generative design preference; planning design elements; Pix2pix
model; residential site layout planning; experimental framework

1. Introduction

With the growth of computer science, machine learning-based generative design has
become popular. This gives us new ways to learn about the generative design process
for RSPLs. Generative design is performed using a computer that generates new design
solutions in a given design space structure via random noise sampling. Machine learn-
ing, as a data-driven approach, is considered an effective method to apply to generative
design [1,2]. The current generative design, which is built on machine learning, has met
the need for devising a great number of design ideas. However, in the age of big data,
most automatic design methods only look at quantitative goals and constraints and ignore
qualitative design information, which is hard to describe mathematically [3,4].

Mining the generative design preferences of machine learning in the field of plan
layout can help determine the design inspirations of machine learning in the field of RSPL
design to explain the benefits of a machine learning-assisted plan layout. Generative design
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preferences can guide planners in developing solutions that better meet residents’ expecta-
tions. In recent years, investigation into the independent learning of generative preference
design has begun regarding machine learning-assisted plan layouts. This investigation
has two main paths for applying technical means and innovating research perspectives:
(1) Machine learning is a technical tool used for solving research problems. For example,
satellite images were used to identify land use changes [5], crime was assessed through
street images [6], COVID-19 plan distribution states for urban security risk assessment
were identified [7,8], and remote sensing images were used to detect forest carbon stocks
to predict their carbon sink development [9]. (2) Machine learning provides innovative
perspectives on extracting design elements to facilitate decisions. For instance, Silva et al.
used convolutional neural networks and YOLO algorithms to identify sites and extract
required elements (e.g., vegetation strips and buildings) to improve decision making for
urban design development [10]. Moreover, Chinazzi et al. employed machine learning
models to create a new method for generating scientific maps of knowledge, providing a
scientific method for classifying urban planning and other fields [11]. Additionally, the
creation of urban knowledge systems has been seen as an innovative result of the mutual
representation of artificial intelligence techniques and the extraction of targets [12]. These
earlier works have shown a strong link between machine learning and plan structure
in recognizing, perceiving, evaluating, and predicting. Additionally, they showed that
machine learning offers new ways to use technology to extract design elements to help
plan layouts during autonomous learning exploration. This process allowed planners to
determine the best practices for machine learning to assist with plan layout.

Each design element of an RSPL can be a generative design preference for machine
learning in residential layout planning and can exhibit an application value. Residential
design elements refer to each component of an RSPL, including design elements such as
housing, roads, landscapes, and green spaces. These are indispensable and important
components in the planning and design of residential spaces. Existing research of machine
learning-assisted RSPLs only involves the study of individual design elements. For example,
Xinyu Cong used CGAN to generate residential area layouts [13], Dai et al. used the Gray
Wolf optimization algorithm model to improve the impact of community public space
promotion from a child’s perspective [14], and Elariane used a machine learning model
to evaluate real estate website API data to determine the characteristics of long-term
rental apartment homes [15]. Therefore, we attempt to apply machine learning to RSPLs
through an experimental study of the totality of the design elements in residential planning,
allowing machines to learn autonomously to determine their preferred designs of interest
and their characteristic properties.

In the current artificial intelligence boom, generative adversarial networks have de-
rived many new development-powered models such as CycleGAN [16], Pix2pix_HD [2],
Pix2pix, etc. However, after combing through the literature regarding the strengths and
weaknesses of each generative adversarial network model (as shown in Table 1), it was
found that the Pix2pix model outperforms the others in the image transcription and classi-
fication tasks [17]. The Pix2pix model was proposed by Phillip Isola et al. in 2017 based on
GANs, the earliest image recognition and generation applications. The most significant
difference between the Pix2pix model and previous GAN-derived models is that Pix2pix
optimizes the original input method to an imaging approach, enabling the image-from-
to-image learning process [18]. Its discriminator Patch design can reduce the dimension
of the input image significantly, reducing the number of parameters and increasing the
operation speed. This study then generates a one-to-one site plan of the settlement to
discover its design preference through labeled graphs. The Pix2pix model principle is to
realize one-to-one image mapping. In addition, the external sites of residential areas have
different shapes and scopes. In contrast, the Pix2pix model has no limitations regarding
image scale and size, thus allowing for an increase in the scalability of the Pix2pix model.
Therefore, the Pix2pix model was selected for the research in this paper. However, at the
same time, the Pix2pix model has the disadvantage of generating fuzzy and conflicting
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images. The existing research provides the following solutions: (1) increase the details of
labeled maps and (2) improve the quality of the parameters.

Table 1. Comparison of the advantages and disadvantages of generative adversarial modeling.

Model Advantage Disadvantage Reference Sources

Pix2pixGAN A generalized approach to
image-to-image translation

Generates images with blurred,
conflicting characteristics

Fu, B., et al. [19]
Zhao, C. W., et al. [20]

CycleGAN Solves the problem that the Pix2Pix
model requires image pairing Low quality of generated images Zhu J Y, et al. [21]

Pix2pix_HD Higher quality of generated images Still needs pair data Chen, J. S., et al. [22]

StarGAN Realization of multi-domain style
image transformation

The image’s label is entered into the
model so that the attributes can

be modified

Shen, Y., et al. [23]
Choi Y, et al. [24]

InfoGAN
The characteristics of the generated data

are controlled by setting the implicit
encoding of the input generator.

Training is unstable, and its performance
is susceptible to the prior distribution

and the number of noisy hidden
variables selected.

Wan, P., et al. [25]
Chen X, et al. [26]

LSGAN Solves the problem of training instability Lack of diversity in generated images Mao X., et al. [27]

ProGAN Generates high-resolution images Very limited ability to control specific
features of the generated image Karras T., et al. [28]

SAGAN Generated images more closely resemble
the original image

Poor quality of images for generating
local autocorrelation Zhang H., et al. [29]

Current research on applying the Pix2pix model has not been extended to other
residential design elements. The application of the Pix2pix model was initiated at the
beginning of Chaillou’s implementation of the apartment plan design process, involving
‘building plan contour’, ‘layout within the contour’, and ‘addition of furnishings’, using
multiple Pix2pix optimization models [30]. Pix2pix models were later optimized to evaluate
automated building simulation applications [31]. For example, David Newton explored
the challenge of generating layouts for Corbusier-style houses with a limited sample
size. He expanded the scope of analysis by introducing noise and rotation to enhance the
training effectiveness of GAN models [32] Yu et al. utilized traditional Chinese architectural
datasets to generate and identify building facades [33]. Additionally, Mostafavi et al.
employed machine learning to predict illumination and spatial daylight autonomy based
on residential building spatial layouts [34]. However, previous studies demonstrate that
the Pix2pix model has not been widely used in the design of RSPLs. While Gu D. et al. used
the Pix2pix model to evaluate wind damage to residential building windows for protection
against wind damage [35], their study focused solely on a single residential element. Few
studies have extended the application of this model to other residential design elements
and explored its diverse potential within the realm of RSPL.

Previous research has confirmed that machine learning can assist in generating and
optimizing RSPLs. However, given a machine in a residential site scheme, it is unclear
what the preferred design of machine learning in a residential site scheme is. This makes it
hard to determine where the benefits of machine learning-assisted RSPL lie. Integrating the
widespread use of large-scale data-assisted plan layouts and extracting the characteristics
of the design elements of residential site schemes allows researchers to look into empirical
methods to understand the potential for its use in “RSPL” from a machine learning point
of view. Thus, this will contribute to the urban planning discipline. Given the above, this
study presents an experimental framework for exploring Chinese residential areas. This
stems from the diversity of residential types in Chinese residential areas, reflecting the
universality of the research results. The proposed experimental framework was applied for
experimental demonstration with the Pix2pix model as the chosen generative adversarial
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network model. This provides a method for exploring design preferences in residential
layout planning and extending the application of the Pix2pix model in RSPLs.

The rest of the paper is organized as follows: Section 2 presents the experimental
framework for this study, including the residential area design element extraction process
and the data processor for analysis using this framework. To verify the effectiveness of
machine learning for residential layout planning, its learning results and limitations in this
study, as well as insights for future work are evaluated and discussed in Section 3; Section 4
illustrates the analysis and the conclusions.

2. Materials and Methods
2.1. Study Area

The sources of the residential schemes for this study were CAD drawings of completed
residential schemes collected from major Chinese design websites (shown in Appendix A
Table A1). From these sources, we selected 300 design schemes for the experiment from
residential areas in various provinces in China. The residential schemes we chose were all
established settlements with a size ranging from 40 to 80 hectares and a predominantly
rectilinear dwelling arrangement. The housing types were categorized based on their
height: low-rise, multi-story, medium-high-rise, and high-rise. The plans of some of
the residential schemes are illustrated in Figure 1. On average, the selected sample had
10.7 floors, a mid-level building density of 31.3%, an average floor area ratio of 1.9, and an
average study area of 67.86 hectares (as shown in Table 2). We simplified the schemes and
corrected them for code non-compliance and apparent errors.

Land 2023, 12, x FOR PEER REVIEW  5  of  24 
 

 

Figure 1. Scheme plans for residential areas. 

2.2. Methodological Framework 

To  explore  the  “machine  learning  generative  design  preferences  in  RSPL.”,  a 

framework  of  “extraction‐translation‐machine  learning‐evaluation”  was  proposed 

(shown in Figure 2). The experimental framework is as follows: in the first step, design 

elements in China’s Urban Residential Planning and Design Standard GB 50180‐2018 [36] 

(hereafter  referred  to as  ʺCURPADSʺ) were  summarized  into  five  categories: housing, 

green  space,  supporting  facilities,  roads,  and  other  elements.  In  the  second  step, we 

translated the scheme into an image recognized by the Pix2pix model using an RGB color 

block assignment of the image. The Pix2pix model was used in the third step to learn the 

residential area scheme, aiming to obtain an optimal parameter performance and a sam‐

ple  augmentation  solution.  Subsequently,  the  results  of  the  generated  solutions were 

evaluated  through standard and design dimensions  in  the  fourth step. The evaluation 

process represents the preferred design determination process. 

Figure 1. Scheme plans for residential areas.



Land 2023, 12, 1776 5 of 22

Table 2. Summary of basic information in residential schemes.

Basic Information Characteristics Classification of the Basic Information Characteristics Count

Floors

The highest number of floors 32 F

The lowest number of floors 1 F

Average floors 10.7 F

Building density
Maximum building density 39.4%

Minimum building density 20.1%

Average building density 31.3%

Plot ratio

Maximum floor area ratio 4.4

Minimum floor area ratio 0.7

Average plot ratio 1.9

Floor area

Maximum floor area 87.3 ha

Minimum floor area 41.6 ha

The average floor area 67.86 ha

2.2. Methodological Framework

To explore the “machine learning generative design preferences in RSPL.”, a frame-
work of “extraction-translation-machine learning-evaluation” was proposed (shown in
Figure 2). The experimental framework is as follows: in the first step, design elements in
China’s Urban Residential Planning and Design Standard GB 50180-2018 [36] (hereafter
referred to as “CURPADS”) were summarized into five categories: housing, green space,
supporting facilities, roads, and other elements. In the second step, we translated the
scheme into an image recognized by the Pix2pix model using an RGB color block assign-
ment of the image. The Pix2pix model was used in the third step to learn the residential area
scheme, aiming to obtain an optimal parameter performance and a sample augmentation
solution. Subsequently, the results of the generated solutions were evaluated through
standard and design dimensions in the fourth step. The evaluation process represents the
preferred design determination process.

2.3. Step 1: Extraction

Based on the current classification of “CURPADS”, design elements of housing, green
space, and other design elements (including square, water, inlet, and outlet), supporting
facilities (commercial and other supporting facilities) and road elements were extracted as
the design elements of RSPL that needed to be learned via machine learning for in-depth
analysis in this study (as depicted in Figure 3). “CURPADS” has modified the requirements
for the residential environment and supporting facilities. It incorporates housing, green
space, and public space to enhance the quality of the residential environment, and it divides
supporting facilities into different levels to align with the creation of residential areas of
varying scales. In the latest residential design process, there is greater emphasis on im-
proving the quality of the environment within residential areas while meeting mandatory
design standards. Simultaneously, the quality of residential planning and design is ensured
through a scientifically sound, green, and ecologically balanced spatial structure. “CUR-
PADS” serves as the standard observed in Chinese residential planning and design. The
residential design elements derived from it represent the accumulated practical experience
of Chinese residential planning and hold significant importance.
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2.4. Step 2: Translation

Since the Pix2pix model performs image-to-image recognition, the residential design
elements must be translated into residential images for machine learning. This is accom-
plished by translating the settlement design elements through assigning different RGB
color values into images easily recognized and learned by the machine (as in Table 3). The
final results of the labeled images are shown in a JEPG format with 512 pixels by 256 pixels
and a resolution of 300 dpi.

Table 3. Different RGBs for different design elements.

Extraction Elements Function Type of Elements RGB Value

Housing

Villa (1–3 F) R:80 G:120 B:80

Low-rise (4–6 F) R:255 G:0 B:255

Mid-rise (7–11 F) R:150 G:100 B:75

Mid-rise (12–18 F) R:180 G:0 B:255

High-rise (over18 F) R:255 G:150 B:150

Commercial supporting facilities R:150 G:255 B:255
Supporting facilities

Other supporting facilities R:255 G:150 B:0

External road R:255 G:0 B:0
Road

Internal road R:150 G:150 B:150

Green space Greenery landscape R:150 G:255 B:150

Water R:0 G:0 B:255

Site R:0 G:0 B:0

Square R:150 G:150 B:0
Other

Inlet and outlet R:255 G:255 B:0

2.5. Step 3: Machine Learning
2.5.1. Pix2pix Model

The model used for this machine learning is Pix2pix, which operates with the under-
lying logic of a U-NET architecture [37] and consists of 16 layers of convolutional neural
networks for the generator and a PatchGAN architecture [18], as well as five layers of
convolutional neural networks for the discriminator (shown in Figure 4). The generator
extracts the input image information containing various elements through a convolutional
neural network. It conducts it through 16 different layers of neural networks, one layer
at a time, to translate the image information into computer language before passing it to
the next layer. Later, after receiving the training data forward propagated by the inputter
through the deconvolution layer, the generated image is transmitted to the discriminator
and bridged to the input image to determine the similarity of the generated image to the
input image.
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2.5.2. Learning Process

To maintain the optimal learning effect of machine learning during the experiment, the
Pix2pix model needs to be optimized via multiple debugging. A machine learning process
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under the computational mutual feedback system (shown in Figure 5) was proposed. This
process comprises two parts: one is the tuning calculation, i.e., the parameter adjustment to
determine its optimal parameters, and the other is the mutual data feed, i.e., the internal
data augmentation to optimize its learning results.
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• Parameter adjustment:

Parameters: loss function, hyperparameters, and metrics. The loss function referred
to a function within the model, and the hyperparameters and metrics were used to tune
the model and measure its performance, respectively. A total of five groups of tuning
experiments, A, B, C, D, and E were carried out in this experiment.

Hyperparameters can influence the training and output performance of the model.
Two main parameters were involved in this experiment: Epoch and Decay.

a. Epoch. The Pix2pix model learns all samples once during the learning process. A
complete cycle is called one Epoch, through which the whole training process of the model
is divided into several segments, and more iterations indicate a better learning effect. In
this study, we selected epoch values of 100, 300, 500, and 700 for setting.

b. Decay. The decay degree represents the decay rate of the learning rate during the
iterative process, and its purpose is to prevent overfitting. The optimal learning rate, which
was immense initially and gradually decreased during the training process, could better
approximate the optimal point. In the current work, we selected 50, 200, 250, 150, and
100 decay values for the setting.

Metrics were employed to evaluate the performance of different model algorithms.
PSNR, SSIM, and LPIPS were chosen as the metrics for this experiment.

c. PSNR: Peak signal-to-noise ratio is a reference value of image quality that measures
the difference between the maximum signal and background noise. It is the most common
and widely used objective evaluation index for images and is usually defined by the sum
mean square error (MSE) of the image. In detail, MSE is expressed as

MSE =
1

H×W

H

∑
x=1

W

∑
y=1

(X(x, y)− Y(x, y))2 (1)

H aH and W represent, respectively, the length and width of the image, X denotes the
original image, and Y indicates the generated image. X(x, y), Y(x, y) represents the (x, y)
pixel value of the image X, Y in coordinates. PSNR is defined as [38]
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PSNR = 10·log10

(
MAX2

L
MSE

)
(2)

where MAXL is the most probable maximum pixel value of the image. In the default red,
green, and blue (RGB) images, this value equaled 255. MSE indicates the mean square error
between the original and generated images. PSNR is measured in decibels (dB), and one of
the objectives to this study is to generate image results with a high PSNR.

d. SSIM. The structural similarity index measure was used to compare the proximity
of the original sample to the generated sample image with respect to brightness, contrast,
and structure [39]. The SSIM algorithm was designed to consider the variation of structural
information in the image in human perception [40]. The model also introduced perceptual
phenomena and structural information related to perceptual variation. Structural infor-
mation refers to the fact that pixels have internal dependencies on each other, especially
spatially close pixel points [41]. These dependencies carry essential information about the
visual perception of the target object, and therefore SSIM is more suitable than PSNR to
evaluate the perceptual effects of images. Its definition is shown as

SSIM(x, y) =

(
2µxµy +C1

)(
2σxy +C2

)(
µ2

x + µ2
y +C1

)(
σ2

x + σ2
y +C2

) (3)

where µx is the mean of x; µy indicates the mean of y; σx and σy are the variances of x and
y; σxy is the covariance of x and y; and C1 and C2 are constants. The proposed Pix2pix
model aims to make the SSIM value as close to 1 as possible.

e. LPIPS. Learning Perceptual Image Block Similarity, also known as “loss of percep-
tion”, was adopted to measure the difference between two images [42]. This metric learns
the reverse mapping of the generated image to Ground Truth, forcing the generator to learn
to reconstruct the reverse mapping of the real image from the fake image and prioritize
perceptual similarity between them. LPIPS is more consistent with human perception than
traditional methods (like L2/PSNR, SSIM, and FSIM). On the other hand, LPIPS can better
reflect the perception advantage [43] of the images generated by GAN. A lower value
of LPIPS indicates that the two images are more similar, and vice versa, the greater the
difference. For a given neural network F, Figure 6 can represent how LPIPS is computed.
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The image was inputted to network F. Each convolutional layer was feature extracted
and cell normalized in the channel dimension. For the L layer, the result would be written
as ŷι, ŷι

0 ∈ RHι×Wι×Cι . Meanwhile, each channel was scaled using the vector W and L2
distance was calculated. Finally, the perceptual distance result was obtained by averaging
in the spatial dimension and summing in the channel dimension with the expression of
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d(x, x0) = ∑
ι

1
HιWι

∑
H,W
‖ Wι

⊙(
ŷι
HW − ŷι

0HW
)
‖2

2 (4)

• Data Enhancement:

Data augmentation refers to making a limited amount of data produce more value
without substantially increasing the data [44]. In this work, the solution with a better
effect on the generation side of experimental groups A, B, C, D, and E was added to the
original sample to achieve sample augmentation. Combining the original sample and the
generated sample increases the diversity of the data set, improves the generalization ability
and robustness of the training model [45], and thus enhances the value of the existing
data. For the screening of sample set augmentation, the following process was mainly
adopted: (1) an overall judgment was made about whether the scheme was complete
and whether each design element in each scheme was easily distinguishable, etc., (2) a
judgment of each design element was performed (Figure 7). If a design element could not
be judged, other design elements would be combined to make a comprehensive judgment.
If the generated images conformed to the judgment process, they would be mixed into the
original sample set. Otherwise, the solution would be filtered and discarded. Finally, we
selected 285 images from the 1500 generated results (experimental groups A, B, C, D, and
E) and blended them into the original sample set for data enhancement.
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2.6. Evaluation

Since machines cannot judge the quality of image design, each result in machine
learning requires metrics for evaluation. According to Recio et al., it was found that in
emotion, the high arousal effect performance of positive words leads to a faster visual
perceptual response [46] and more easily obtained merits of the target object at the visual
level. In addition, the positive evaluation words mentioned in the book “Designing Cities:
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Basics-Principles-and Practice” were the first to utilize this evaluation in urban design [47]
and were able to precisely identify design solutions. Hence, based on this reference, an
evaluation scale for a design dimension was proposed in this study. The evaluation of
this study was divided into two dimensions: the design dimension and the standard
dimension. The design dimension proposes diversity, simplicity, relative property, and
totality to evaluate the square paving, green landscape space, commercial facilities, and
other public facilities (as shown in Table 4). For the standard dimension, three aspects of
plot ratio and building density, as well as the proportion of square paving, green landscape
space, commercial facilities, and other public facility activity-occupied land, were selected
to evaluate the results.

Table 4. Classification of the evaluation dimensions.

Evaluative Dimension
Evaluate Elements Square Paving Landscape Green

Space
Commercial

Facilities
Other Public

Facilities

Design dimension

Diversity 1©Structured; 2©Detailed; 3©Various;
Simplicity 1©Well-balanced; 2©Self-existed; 3©Concise;

Relative property 1©Sequential; 2©Heterogeneous;
Totality 1©Compact; 2©Unified; 3©Balanced; 4©Uniform;

Standard dimension Plot ratio Density of the building The proportion of paved plazas/landscaped green
areas/commercial facilities/other public facility activity sites

3. Results and Discussion
3.1. Optimal Parameter Determination

We compared the experimental results in the five groups of parameters by selecting
one of the residential area schemes (as in Figure 8). It was found that the PSNR and SSIM
index scores reached the highest level in experimental group E, while the LPIPS index
showed the lowest also in experimental group E. Subsequently, the generated results from
the five experimental groups were compared using the mean opinion scoring method,
which is a subjective image quality assessment index that rates the visual perceptual quality
of the generated images on a scale from 1 (worst quality) to 5 (best quality). The final
score is calculated as the arithmetic mean of the scores provided by all the raters. In this
case, the highest mean score for Group E was 3.7, based on the ratings from 30 raters (see
Appendix A Table A2). Based on these results, Group E is considered to have performed
the best. Additionally, this group had the highest number of iterations, and the degree of
decay was maintained in a gradually decreasing state. Consequently, these parameters will
be used in the subsequent model training for scheme learning.

3.2. Generative Preference Design Element Determination

Once the parameters for extracting the generative design preferences of machine
learning in the design elements of “RSPL” were determined, a visual method was employed
to quantitatively compare the number of element changes between the original sample
A1 and the generated sample B1 (as shown in Table 5). Since not all residential schemes
contain all design elements, it is necessary to perform a classification count before tallying
the number of element changes. The statistics are as follows: water and supporting
infrastructure are classified to initially count the number of original sample sets with
or without such elements. Subsequently, the number of schemes with or without these
elements was counted through machine learning to discern the differences.

For example, in the original sample A1, the percentage of residential schemes with
other supporting facilities was 39.7%. However, in sample B1, which was generated
after machine learning, the percentage of residential schemes with commercial supporting
facilities increased to 62.1%. Conversely, the proportion of residential schemes without
other facilities in the original sample A1 accounted for 60.3%, while in sample B1 generated
by machine learning, the proportion of residential schemes without commercial facilities
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decreased to 39.7%. This indicates that the number of residential schemes with other
supporting facilities increased after machine learning.
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Since spatial structure, landscaped green space, and road design elements are present
in each sample, statistical classification is necessary for these three design elements based on
their types. In this study, both elements were categorized into three groups: concentrated,
dispersed, and centralized-dispersed, using a visual method. Statistics were conducted
based on the difference in the number of types before and after their generation. For
instance, in the original sample A1, 52.7% of residential schemes in green landscape
regions were decentralized. After machine learning, 55.1% of residential schemes with
decentralized landscape green areas were generated in sample B1. The proportion of
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residential schemes with concentrated landscape green space increased from 8.5% to 11.6%.
However, the proportion of residential schemes with scattered landscape green space
decreased from 38.3% to 33.3%. In the original sample A1, 29.7% of residential schemes
featured axial roads, while 41.8% featured axial roads in machine-learned sample B1.
Furthermore, the residential schemes in sample B1 generated by machine learning reached
41.8%. In contrast to the residential schemes with an axial-ring road (17.3% to 0.7%),
the proportion of residential schemes with a ring road increased from 53.0% to 57.5%.
According to the above methodologies, only public facilities and spatial structure differed
above 10% in the number of changes in all categories.

Table 5. Comparison of element classification and quantitative statistical results.

Extraction Elements Classification of
Elements

The Proportion of
Elements in the

Original Sample A1

The Proportion of
Elements in the

Generated Sample B1

Water
Yes 60.6% 54.4%

No 39.4% 45.6%

Supporting facilities

Commercial
supporting facilities

Yes 60.3% 78.6%

No 39.7% 21.4%

Other supporting
facilities

Yes 39.7% 62.1%

No 60.3% 37.9%

Road network structure

Axis 29.7% 41.8%

Ring 53.0% 57.5%

Axis-ring line 17.3% 0.7%

Space structure

dispersed 32.0% 58.2%

concentrated 28.0% 15.4%

centralized-dispersed 40.0% 22.8%

Landscape greening structure

dispersed 52.7% 55.1%

concentrated 8.5% 11.6%

centralized-dispersed 38.8% 33.3%

Based on the methodological statistics mentioned above, it is evident that machine
learning exhibits a preference for designing two major elements: other public facilities and
spatial structure. Delving deeper into the reasons for their prominence, our concept of
other public facilities in this study is defined as independent and large-area facilities such
as kindergartens, elementary schools, and cultural activity centers. These facilities offer
certain advantages in the image translation process when compared to other public facilities:
(1) There are no additional elements surrounding them that could cause interference. In
fact, our original sample set indicates that most elements of other public facilities exist
in isolated corners and do not blend with other elements, minimizing interference with
machine learning; (2) Due to their larger size, other public facilities are also represented
by RGB pixel values in the original sample set; (3) These facilities tend to exhibit better
contrast, resulting in improved machine learning results due to more pronounced shaping.
This study assessed spatial structure based on the combination of square paving and green
landscape elements. Furthermore, these two elements exhibited various characteristics,
such as fragmented connectivity, scattered distribution, and a substantial plan area, during
our labeling process. A combination of square paving and green landscape was utilized
to evaluate spatial structures. Machine learning for spatial structure design elements
tends to generate decentralized spatial structures. The learning effect is more favorable
because these two elements exhibit diverse characteristics, including fragment connectivity,
scattered distribution, and a large plan area. While Ma et al. concluded that uniformly
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distributed spatial facility service components were crucial in shared rental housing [48], a
thorough analysis of the generated sample set by machine learning yielded a programmatic
surface effect that prefers a balanced layout for each design element. This confirms that the
results align with the flat characteristics of an RSPL [49].

3.3. The Design Dimension Determines Preferred Generative Design Features

Among the 12 display schemes selected (as in Figure 9), we chose two for successive
comparative evaluations of the machine learning process. The original sample for Scheme
52 featured a core spatial structure comprising water and a square, with supporting facilities
distributed to the right and left of the entrance. In contrast, the generated result sample
52-B1 exhibited significantly higher building density. Furthermore, it used other supporting
facilities and water as the core spatial design elements within the residential area. Some
commercial facilities were added to the south side to complement the design along the
residential interface, but the design of the square landscape green space needed to be
incorporated. On the other hand, the generated sample 52-B2 featured a core residential
space composed of water, square landscaping, and other supporting facilities. It positioned
commercial facilities and a larger other supporting facility on the side of the main road.
The original sample 92 had a simpler design, with only water and small squares as the core
space, along with some small supporting facilities distributed along the residential area. In
sample 92-B1, the core residential space consisted of a large square and green area, which
required more control over its scale due to its substantial size. The core residential space in
sample 92-B2 was formed by other supporting facilities and a square landscape. While the
inner ring road from the original sample was retained, a portion of the open square was
designed by extending it along the left side of the main road towards the exterior. Upon
comparing the two solutions above, it became evident that the generated sample B2 placed
greater emphasis on shaping spatial structure and green landscape space compared to B1.
Additionally, the overall solution was more mature, encompassing all the elements of a
residential planning study. Its spatial structure and green landscape space were shaped
with greater flexibility and diversity than the original sample, featuring better scale control
and a more complete form.

After comparing and evaluating the generated results from parameter set E (B1) with
the generated results (B2), which were obtained by mixing the training of the newly gener-
ated sample set of 285 solutions, it was evident that, from an overall perspective of diversity
and contrasting learning, the design dimension was more effective in generating samples
B1 and B2. This suggests that machine learning can generate innovative solutions and
provide design ideas, aligning with the concept that machine learning can generate innova-
tive building graphics and section designs through 3D models, as previously confirmed
by other studies [50]. The results also verified that positive terms used for evaluating
the solutions generated at the diversity level were primarily “structured” and “formally
diverse”. “Structured” implies that machine-learned solutions produced monocentric or
polycentric spatial structures, while “diverse” signifies the diverse spatial structures formed
by combining amenities, squares, and green spaces. It was noteworthy that the positive
word “diverse” appeared more frequently in the sample B2 generation than in sample B1,
suggesting that the performance of the data-enhanced design solutions was more inspir-
ing to designers. At the “relative property” level, the positive words for the generated
schemes were mainly “heterogeneous”. Interestingly, some of the solutions that exhibited
“sequential” positive words in generation sample B1 transformed into “heterogeneous” in
generation sample B2 (as shown in Figure 10). This indicates that after data enhancement,
machine learning for scheme results displayed more design flexibility and showcased the
innovative potential of square pavement and landscaped green space to conform to the
building layout. For example, Schemes 212 and 109 demonstrated the design flexibility of
paving and landscaping in response to the building layout.
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The results of this study primarily emphasize the autonomous exploration of RSPL
in generative design preferences. In contrast, earlier studies focused on analyzing how
machine learning can assist in optimizing and reconfiguring the spatial structure of planned
designs [51]. This novel approach to applying machine learning in plan layouts allows
for a more robust exploration of the potential of machine learning-assisted applications
in RSPLs.

3.4. Standard Dimension Determines Generative Preferred Design Features

By analyzing the 12 selected display solutions and considering specification indicators
such as plot ratio, building density, and active land use proportion, it became evident that
the building density in the original sample set A1 and the generated sample sets B1 and B2
is identical and complies with the relevant design specifications (Figure 11a). However, the
fluctuation range of the building density of the generated sample B2 is smaller than that
of both the original and generated sample B1 (ranging from 25% to 39%). In contrast, the
building density in the original sample A1 exhibits a fluctuation range between 20% and
39%. Although this plot ratio is lower than the original sample set, its fluctuation range
is also smaller, maintained between 1.1–and 3 (as shown in Figure 11b). In contrast, the
plan area ratio of the original sample A1 and the generated sample B1 has a fluctuation
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range exceeding 3. This phenomenon is presumably linked to the selection of more mid-
rise building height solutions, indicating that the machine learning-generated solutions
predominantly feature mid-rise building heights. Nevertheless, it is also confirmed that the
performance of the machine-generated residential area scheme becomes more stable after
data enhancement.
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Regarding the machine learning effect on the land of each activity, the generated
square pavement and green landscape space became more or less concurrent compared to
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the original sample. In contrast, the commercial and other supporting facilities appeared
smaller or converged than in the original sample (Figure 8). However, according to the
statistics presented in Table 2, the commercial facilities and other supporting facilities in
the generated sample B1 increased compared to the original sample. It is important to note
that these statistics pertain to the proportion of occupied land, demonstrating that the scale
of commercial facilities and other supporting facilities in the generated samples B1 and
B2 is smaller than that in the original sample. This aligns with the previously explained
machine learning-generated design scheme, which pursues a more balanced layout effect.
When comparing, it becomes apparent that a significant portion of the square paving and
landscaped green space in generated sample B2 converged to a greater or lesser extent
when compared to generated sample B1. Commercial facilities tended to be fewer or more
condensed, while other supporting facilities mostly remained unchanged (Figure 12). It
appears that the machine learning effect may have been more successful in replicating the
commercial facilities lined up along the street in the machine learning scheme, as most of
the generated schemes did not exhibit this particular performance characteristic. This could
be attributed to the fact that most of the commercial facilities in this study were commercial
facilities lined up along the street. However, the results of our generation sample B2 were
influenced by a mixture of the five groups A, B, C, D, and E with better experimental results,
which were then re-generated. Consequently, the likelihood that the machine needed to
learn about commercial facilities increased. This might explain why the generated sample
B2 had fewer converging commercial facilities compared to the generated sample B1.
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As mentioned earlier, following machine learning, residential design elements exhibit
varying effects, with other public facilities and spatial structures proving to be the most
influential and displaying diverse characteristics. Therefore, it is crucial to explore how
to fully harness the potential and direction of applying design elements related to other
public facilities and spatial structures. “CURPADS” focuses more on creating living circles
in residential areas. It advocates the division of amenities into internal communities and
settlements [52,53] and attaches more attention to public facilities to guide and define
the division of residential communities. This study confirmed that the amenities in the
generated scheme fulfill the role of guiding the spatial structure of the settlement that
machine learning can achieve. Consequently, the machine learning preference design
was considered to optimize the creation of living circles in residential areas. In studies
concerning the configuration and layout of public facilities and green landscape spaces in
urban planning, Khodaparasti et al. introduced an “integrated location-allocation” model
to optimize the equity and efficiency of medical service facility locations [54]. Wang et al.
used machine learning algorithms and POI data to select the location of elderly facilities in
Wuhan [55]. The green space network of Lijiang City was constructed by Ren et al. using
satellite images to design green space as a multimodal space of points, linear bars, and
irregular shapes [56]. Also, the studies above can be used to analyze the design preferences
and characteristics of residential areas found in this study. This allows for the studies
above of public facilities, landscape green space layout, and different types of spaces to
help create urban public facilities and landscape green spaces. As a result, their application
potential would be expanded while contributing to the development of the urban planning
discipline. In the future, we can explore additional applications of the Pix2pix model within
RSPL as a specific application area, thus uncovering further value-added possibilities for
the Pix2pix model.

Finally, this paper not only explores generative design preferences at the plan image
design level but also considers how to enable the machine to discover generative design
preferences for spatial design from the spatial planning level, which is a topic for future
research experiments. Ideally, in the future, we will continue to optimize the performance
of the Pix2pix model to enhance the stability of its training, leading to improved image
resolution in generated designs. This will increase the generalizability of the Pix2pix model
and expand its application value in the field of RSPL on a larger scale. In addition, we
attempted to optimize the algorithm for LPIPS metrics to derive a machine learning visual
perception evaluation metric that aligns more closely with human design thinking. The goal
is to use this as a classification basis to score generated balanced layout surfaces, conduct
an in-depth classification study of their balanced layout characteristics, and explore the
applicability of balanced layout effects in various urban design schemes.

4. Conclusions

In this study, we conducted an experimental exploration of machine learning genera-
tive design preferences in RSPL using the Pix2pix model. The aim was to uncover machine
learning’s generative design preferences in RSPL and assess its feature performance, with
the potential to enhance applications in residential planning and urban planning devel-
opment. By analyzing design and feature performance choices, government authorities
can identify the most promising urban planning areas. The following conclusions and
reflections can be drawn from this experimental study on a case study of residential areas
in China:

1. The experimental framework of the “extraction-translation-machine learning-evaluation”
proposed in this study addressed the deficiency of simultaneously considering all
design elements of residential areas within the same methodological framework.
This methodological framework integrated both machine and manual computations,
as well as quantitative and qualitative evaluation techniques, to jointly determine
research outcomes and comprehensively characterize the scientific nature of this study.
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Furthermore, this experimental framework established a methodological paradigm
for machine learning-assisted plan layout explorations.

2. Machine learning favors the generation of a balanced layout and showcases the
innovative design potential of various elements in harmony with housing design
components. When comparing the residential area before and after machine learning,
it was observed that the generated plan exhibited less fluctuation in terms of building
density, floor area ratio, and active land ratio compared to the original plan. Further-
more, the comparison of two design elements, square paving and green landscape
space, reveals that machine learning aligns well with the building layout and offers
innovative and diverse design perspectives. This, in turn, provides inspirational ideas
for residential area layout design and promotes the enhancement of environmental
quality within the residential area.

3. Machine learning exhibits a more pronounced generative preference for two design
elements: other public facilities and spatial structures. When comparing the generated
designs before and after machine learning, there was an increase in the number of
design elements. RGB pixels were assigned to form large blocks of other public
facilities and spatial structures that were connected and distributed in fragments.
Furthermore, the machine-learned design element of other public facilities highlights
the master-centered nature of the site. In the process of learning spatial structure,
both monocentric and polycentric characteristics of residential spatial structures were
generated, resulting in various forms of spatial structure design. Ultimately, this can
aid planners in developing schemes that better align with residents’ expectations. It
also contributes to the discipline of urban planning by offering design ideas for the
layout of urban infrastructure, public facilities, landscaped green spaces, and diverse
spatial configurations.
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Appendix A

Table A1. Residential schemes collection website source.

Residential area scheme
collection website source

https://www.om.cn/ accessed on 9 April 2022

https://www.doczhi.com/ accessed on 16 April 2022

https://www.gstarcad.com/ accessed on 23 April 2022

https://www.znzmo.com/ accessed on 28 April 2022

Table A2. Five sets of experiment generated results were scored.

Score Information
Group A Score Group B Score Group C Score Group D Score Group E Score

Score Identity Number
Non-urban

planning major
students

1 3.6 2.8 3.8 3.2 4.2

2 1.5 2.7 3.1 3.4 3.9

https://www.om.cn/
https://www.doczhi.com/
https://www.gstarcad.com/
https://www.znzmo.com/
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Table A2. Cont.

Score Information
Group A Score Group B Score Group C Score Group D Score Group E Score

Score Identity Number

Non-urban
planning major

students

3 3.5 2.9 3.2 2.3 3.4

4 2.5 2.3 2.7 3.0 3.2

5 3.9 3.7 4.0 4.2 4.5

6 2.6 2.6 3.3 3.6 3.8

7 3.7 3.4 3.8 4.1 4.8

8 1.9 2.3 3.4 3.7 4.4

9 2.8 2.9 3.5 3.1 3.6

10 3.8 4.2 4.1 4.3 4.7

11 2.7 3.6 3.4 3.8 4.1

12 1.6 2.4 3.0 3.3 3.7

13 0.8 1.3 2.5 2.7 3.1

14 2.1 2.5 2.8 3.1 3.4

15 1.1 1.6 2.1 2.6 2.9

Urban planning
major students

16 2.0 1.8 2.3 3.5 3.9

17 2.3 3.0 3.8 3.2 4.2

18 1.7 2.9 2.3 3.7 3.8

19 2.6 2.1 3.7 3.1 3.9

20 1.9 2.8 3.6 4.3 4.7

21 2.3 2.4 3.3 3.7 3.9

22 2.6 2.7 3.1 3.8 4.1

23 1.2 2.1 2.7 3.3 3.7

24 2.5 2.9 2.4 3.1 3.5

25 2.8 3.6 3.4 4.1 4.3

26 2.4 3.2 3.9 4.5 4.7

27 1.4 2.2 2.7 3.0 3.3

28 2.2 3.6 3.4 4.2 4.6

29 1.8 2.5 3.3 2.2 3.6

30 0.9 1.8 2.9 2.7 3.2

average value 2.25 2.3 3.35 2.95 3.7
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