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Abstract: Soil organic carbon (SOC) sequestration assessment requires accurate and effective tools
for measuring baseline SOC stocks. An emerging technique for estimating baseline SOC stocks is
predictive soil mapping (PSM). A key challenge for PSM is determining sampling density require-
ments, specifically, determining the economically optimal number of samples for predictive soil
mapping for SOC stocks. In an attempt to answer this question, data were used from 3861 soil organic
carbon samples collected as part of routine agronomic soil testing from a 4702 ha farming operation
in Saskatchewan, Canada. A predictive soil map was built using all the soil data to calculate the
total carbon stock for the entire study area. The dataset was then subset using conditioned Latin
hypercube sampling (cLHS), both conventional and stratified by slope position, to determine the
total carbon stocks with the following sampling densities (points per ha): 0.01, 0.05, 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, and 0.8. A nonlinear error function was then fit to the data, and the optimal number of
samples was determined based on the number of samples that minimized soil data costs and the
value of the soil carbon stock prediction error. The stratified cLHS required fewer samples to achieve
the same level of accuracy compared to conventional cLHS, and the optimal number of samples was
more sensitive to carbon price than sampling costs. Overall, the optimal sampling density ranged
from 0.025 to 0.075 samples per hectare.

Keywords: predictive soil mapping; soil sampling density; precision agriculture

1. Introduction

Soil organic carbon (SOC) sequestration, as part of global climate change mitigation
strategies, is of increasing focus. The 4 per mille Soils for Food Security and Climate
Initiative has revealed that 20–35% of global anthropogenic greenhouse gas emissions could
be offset by soil carbon sequestration [1]. Effective programs that incentivize producers
to adopt strategies that increase SOC stocks require cost-effective methods for monitoring
and quantifying changes in SOC stocks. Recent advances in soil mapping that incorporate
remote sensing data with point measurements [2–7] suggest that there is potential to make
cost-effective SOC stock mapping feasible. The current methodologies for assessing SOC
stocks for carbon credits lack detail on required sampling amounts and designs beyond
recommending landscape stratification for sampling designs for stock assessments [8].

Predictive soil mapping (PSM) has been an area of increasing research interest over the
last twenty years as a cost-effective tool for generating fine-scale spatial soil data. Predictive
soil mapping uses remote sensing covariates related to soil forming factors along with point
measurements and machine learning models to generate finer resolution soil class and
property maps [9]. Decision tree-based machine learning models have been determined
to be particularly good performers in PSM [10]. A range of remote sensing covariates are
used in PSM, with terrain and radiometric data as primary input variables [10–17]. The
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recent advances in cloud computing have enabled multitemporal remote sensing datasets
to be easily utilized for PSM, which further improves PSM model performance [18].

Specific recommendations for sampling design and density remain uncertain in
PSM [19]. Traditional soil sampling approaches focus on judgement, random, or strat-
ified random design approaches, depending on the end use of soil data [20]. More recently,
sampling designs have been developed for PSM purposes that attempt to ensure that sam-
pled locations effectively characterize covariate feature space [21]. The most widely used
approach is conditioned Latin hypercube sampling (cLHS) [22–27]. Recently, approaches
that distribute samples more widely across feature space have been suggested [28].

Despite these improvements in sampling design, there is still uncertainty regarding
sampling densities. Studies on this topic have often focused on mapping over wide
geographic extents [28–30]. There has been less attention paid to small extent mapping [31]
that can enable precision agriculture or detailed soil carbon stock assessments on a more
localized basis. Malone et al. (2019) revealed that the number of samples for PSM studies
is often based on budgets and is arbitrary. They proposed using the Kullbeck–Liebler
divergence values to estimate the number of samples that will sufficiently characterize
PSM covariate space. Recent work in Canada has also focused on developing techniques to
determine the optimal number of samples using different divergence metrics [32]. While
this may be a statistically optimal approach, there are still outstanding questions about
what is economically optimal for carbon stock assessments.

The global greenhouse gas market places a priority on greenhouse gas reduction
certainty. Currently, soil carbon assessment protocols have targets of 15 percent uncertainty
with 95 percent confidence [8]. When a credit has uncertainty attached to it, typically, some
sort of discounting is applied [33]. The discounting of credits and concerns over market
failures have led to increasing concern about certainty in the carbon offset market [33].
Generators of soil carbon-based greenhouse gas offsets therefore have a direct incentive to
consider carbon stock estimate accuracy; increased stock uncertainty is likely to directly
result in a reduction in payment due to offset credit discounting.

The overall goal of this study was to identify an economically optimal approach to
soil sampling for SOC stock assessments in the Canadian Prairies. Previous studies have
established approaches for determining statistically optimal sampling densities; however,
no studies have evaluated sampling densities from a cost–benefit perspective. To support
this goal, two objectives were defined for this study. The first and main objective of this
study was to determine the optimal sampling intensity for soil mapping that accounts for
economic costs and benefits. The second objective was to test the approaches that distribute
samples more evenly across landscape slope positions than cLHS. This was implemented
to identify if such approaches can improve PSM performance and utility for SOC stock
mapping in Saskatchewan, as slope position is a major driving factor for soil variation in
the Canadian Prairies.

2. Materials and Methods
2.1. Soil Data and Sampling Design

Spatially explicit soil organic carbon data were provided from a farm in Saskatchewan
(Figure 1), with soil organic carbon values ranging from 0.54% to 3.71% (Table 1). The total
study area was 4702 ha. The study area is characterized by Chernozemic soils formed in
loamy glacial till [34]. The area is hummocky with slopes that generally range from two to
five percent. The average total precipitation is 503 mm, and the average daily temperature
is 3.0 ◦C [35]. Data from 7220 point locations were provided; however, only 3861 locations
were on land where high-resolution light detection and ranging (LiDAR) digital elevation
model (DEM) data were available. All samples were collected using a grid sampling design,
which set varying sample spacing to ensure the characterization of slope positions across
the site. The study was limited to those areas, as high-resolution DEMs are important
for accurate mapping in the Saskatchewan prairies [36]. The soil data were collected as
part of standard agronomic soil testing activities, where soil organic matter values were
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determined using the loss-on-ignition method and converted to SOC using the standard
0.58 [37]. The uncertainty associated with this estimation did increase the error of the final
models. However, as SOC stocks were required for cost functions, and the error in the SOC
predictive model was likely the main driver of the SOC stock estimate error, the error was
assumed to be acceptable.

Land 2024, 13, x FOR PEER REVIEW 3 of 17 
 

positions across the site. The study was limited to those areas, as high-resolution DEMs 
are important for accurate mapping in the Saskatchewan prairies [36]. The soil data were 
collected as part of standard agronomic soil testing activities, where soil organic matter 
values were determined using the loss-on-ignition method and converted to SOC using 
the standard 0.58 [37]. The uncertainty associated with this estimation did increase the 
error of the final models. However, as SOC stocks were required for cost functions, and 
the error in the SOC predictive model was likely the main driver of the SOC stock estimate 
error, the error was assumed to be acceptable. 

 
Figure 1. Overview map indicating the location of the study. All soil samples were collected within 
the areas indicated with the red squares. The dashed black line is the provincial boundary for the 
province of Saskatchewan. The red squares indicate the specific study areas. The base map is the 
median Landsat 7 2000 to 2020 May-to-October median surface reflectance. The coordinates are in 
UTM Zone 13N (EPSG: 26913). 

Table 1. Soil organic carbon values. 

Parameter Min 25th Percentile Median 75th Percentile Max 

Soil organic carbon (%) 
0.64 2.09 2.49 2.96 3.71 

Mean Standard Deviation Coefficient of Variation Kurtosis Skewness 
2.52 0.59 0.23 2.44 −0.01 

Soil samples were collected from the 0 to 15 cm soil profile depth increment. Alt-
hough bulk density was not collected as part of this dataset, a constant value was used in 
its place as bulk density was required to calculate SOC stocks, and SOC stocks were 

Figure 1. Overview map indicating the location of the study. All soil samples were collected within
the areas indicated with the red squares. The dashed black line is the provincial boundary for the
province of Saskatchewan. The red squares indicate the specific study areas. The base map is the
median Landsat 7 2000 to 2020 May-to-October median surface reflectance. The coordinates are in
UTM Zone 13N (EPSG: 26913).

Table 1. Soil organic carbon values.

Parameter Min 25th Percentile Median 75th Percentile Max

Soil organic carbon (%)

0.64 2.09 2.49 2.96 3.71

Mean Standard Deviation Coefficient of Variation Kurtosis Skewness

2.52 0.59 0.23 2.44 −0.01

Soil samples were collected from the 0 to 15 cm soil profile depth increment. Although
bulk density was not collected as part of this dataset, a constant value was used in its place
as bulk density was required to calculate SOC stocks, and SOC stocks were required for the
error cost function evaluation. A constant bulk density of 1.2 Mg m−3 was assumed, as
this corresponds to the average bulk density in the Canadian National Pedon Database for
Saskatchewan [38]. While it is an important variable for SOC stock calculations, the focus
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of this study is on sampling intensity effects on the SOC mapping error. Although bulk
density is very important for carbon stock estimates, it is not available for this historical
dataset, and there is value for assessing optimal sampling numbers based on variance in the
SOC content mapping alone. While the variance in bulk density is not accounted for with
this hypothetical analysis, it should be accounted for during practical application [39], and
accounting for bulk density may change the solution as to what sample number is optimal.

Two sampling designs were tested as part of this study to determine the economically
optimal number of soil samples and preferred sampling approaches for the Canadian
Prairies. The first sampling design was the standard cLHS approach [22] using the cLHS
package in R [40], hereafter referred to as the conventional cLHS. In the second approach,
the landscape was segmented into five slope positions, and then an equal number of sam-
ples were placed within each slope position using the cLHS method [40]. This approach is
hereafter referred to as stratified cLHS. The same covariates were used for both approaches:
normalized height, Sentinel-2 Band 2, Sentinel-2 Band 4, Sentifnel-1 VH, standard deviation
of NDVI, bare soil composite imagery Band 5, multiresolution ridge top flatness, Sentinel-2
Band 3, bare soil composite imagery Band 11, median May-to-October NDVI, and median
July NDVI.

Slope position classification was based on the normalized height terrain derivative [41]
calculated from the LiDAR DEM, which was resampled from its original 0.5 m resolution
to 5 m. Normalized height was calculated using the System for Automated Geoscientific
Analyses (SAGA GIS) [42], with a t-value set to 1000 to reflect relationships with more
localized valleys and peaks. The resulting normalized height raster was then separated into
five classes: depression (normalized height less than 0.2), lower slope (normalized height
between 0.2 and 0.4), mid-slope (normalized height between 0.4 and 0.6), upper slope
(normalized height between 0.6 and 0.8), and crest (normalized height greater than 0.8).

2.2. Environmental Covariates

All radiometric data were acquired using Google Earth Engine [43]. Sentinel-1 and
cloud-free pixels from Sentinel-2 imagery from 1 May 2017 to 31 October 2022 were ob-
tained. Median backscatter and reflectance values were calculated for each raster stack
and exported. The resampling of all data to a 10 m spatial resolution using the nearest
neighbor was conducted to match the 10 m spatial resolution of the finest scale Sentinel-2
bands (Table 2). Bare soil composite imagery was also generated using Google Earth Engine
for the same time period using Bands 8 (near infrared), 11 (shortwave infrared 1), and
12 (shortwave infrared 2) from the Sentinel-2 imagery [44].

Table 2. Remote sensing variables.

Feature Date

Sentinel-2 bare soil composite imagery
• Band 8 (near infrared)
• Band 11 (shortwave infrared 1)
• Band 12 (shortwave infrared 2)

Median of bare soil pixels from April to October from 2017
to 2022.

Sentinel-2 imagery
• Band 2 (blue)
• Band 3 (green)
• Band 4 (red)
• Band 5 (red edge 1)
• Band 6 (red edge 2)
• Band 7 (red edge 3)
• Band 8 (near infrared)
• Band 8a (red edge 4)
• Band 11 (shortwave infrared 1)
• Band 12 (shortwave infrared 2)

Median of pixels from May to October from 2017 to 2022.



Land 2024, 13, 114 5 of 16

Table 2. Cont.

Feature Date

Normalized difference vegetation index derived from
Sentinel-2 imagery
• May-to-October NDVI
• May NDVI
• June NDVI
• July NDVI
• August NDVI
• September NDVI
• October NDVI
• Max NDVI minus minimum NDVI
• Standard deviation of NDVI

Median of pixels from May to October from 2017 to 2022.

Sentinel-1 Data
• Vertical–vertical polarization (VV)
• Vertical–horizontal polarization (VH)
• Normalized difference of VV and VH polarizations

Median of pixels from May to October from 2017 to 2022.

Terrain attributes
• Normalized height [41]
• Slope height [41]
• Saga wetness index [41]
• Multiresolution ridge top flatness index [45]
• Multiresolution valley bottom flatness [45]
• Plan curvature
• Profile curvature

Derived from light detection and ranging digital elevation
model. The original DEM resolution was 0.5 m, and it was
resampled to 5 m.

In addition to the raw bands, the band ratios were calculated and included as potential
PSM environmental covariates. The median normalized difference vegetation index (NDVI)
values were calculated for May to October, May, June, July, August, September, and October,
along with the maximum NDVI minus the minimum NDVI. These months were chosen to
identify if vegetation at different stages helped better distinguish soil types, specifically
green-up, peak photo synthetic activity, and senescence. The standard deviation of NDVI
from 1 May to 31 October was also calculated. All Google Earth Engine scripts are available
on GitHub [46].

The LiDAR DEM was used to calculate the terrain attributes to include as model
covariates. The DEM had an initial spatial resolution of 0.5 m. The LiDAR DEM was
median focal level filtered with a 5 × 5 window and then resampled to a spatial resolution
of 5 m to reduce noise in the dataset. The terrain attributes were calculated using SAGA
GIS [42], and the full list of terrain attributes determined is provided in Table 2.

2.3. Model Development

Prior to analysis and model building, the dataset was separated into a training dataset
(75 percent) and a test dataset (25 percent) using the Kennard–Stone algorithm on all model
covariates using the prospectr package in R [47]. An initial soil organic carbon model was
developed using all 100 percent of site data to create a reference map to determine the error
of the models built with varying amounts of data points used as training data. As there
is no way to cost-effectively establish a definitive true measure of the carbon stock in the
project area, the carbon stock estimate determined using 100 percent of the dataset was
assumed to represent the true carbon stock. Differences between this carbon stock estimate
and those generated by subsampling the data were then assumed to represent the error in
the SOC stock estimate. The root-mean-square error on a per-point basis was not sufficient
for estimating the total stock error, as over- and underestimations within the project area
were averaged out during the total stock calculations. Additionally, calculating SOC stocks
by averaging all the sample point values within an area is also incorrect as that assumes
each point represents an equal area of soil.
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The optimal features were first selected using a recursive feature elimination process
using only the training dataset [48]. The first step of this process involved testing for
correlation amongst features. Features that were highly correlated with another feature
(based on a threshold correlation value of 0.9) were excluded, so that only one of the
correlated features was included in model training. All remote sensing and terrain features
were then included in a single random forest model using the ranger package in R [49].
The importance of each feature was determined based on minimizing the variance of
the responses. The recursive feature elimination process then sequentially built random
forest models where the least important feature was removed, with the importance values
recalculated at each step. The final features were those that minimized the out-of-bag
error. The final features selected using the training data samples for all sites included the
following factors in order of importance: normalized height, Sentinel-2 Band 2, Sentinel-2
Band 4, Sentinel-1 VH, the standard deviation of NDVI, bare soil composite imagery Band 5,
multiresolution ridge top flatness, Sentinel-2 Band 3, bare soil composite imagery Band 11,
median May-to-October NDVI, and median July NDVI.

A final model was then built using these variables in a random forest model with the
ranger package in R [49]. For all random forest models, the number of trees was set at 500,
importance was determined based on impurity, and the split rule was set as extra trees.
The total soil organic carbon stock from 0 to 15 cm for the study area was then predicted.
Models were built using the datasets subsampled from the total training dataset using cLHS
and stratified cLHS. For the testing dataset, 108 sample points were randomly subsampled
from the data withheld from the training dataset for each of the five slope positions, for a
total of 540 sample points in the final testing dataset. This approach was used to ensure that
model performance evaluation was balanced equally across landscape slope positions. All
model performance analyses were compared using the slope position-balanced test dataset.

Predictive soil mapping models were built using the same methodology and covariates
used in the initial model that was built using all data. For each cLHS approach, soil sample
points were selected from the total training dataset pool of 2896. The number of points
was selected to correspond to the following sampling densities: 0.01, 0.05, 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, and 0.8 points per ha. For each sampling density, the entire subsampling and
mapping process was repeated a total of 100 times. A predictive model was built for each
subsampling event, and performance was evaluated using the testing dataset to determine
R2, concordance correlation coefficient (CCC), root-mean-square error (RMSE), and bias
metrics. The entire study area was mapped, and the total SOC stock was calculated from
0 to 15 cm, assuming a constant bulk density of 1.2 Mg ha−1. The absolute SOC stock
error for the entire study area on a per Mg ha−1 basis was estimated by determining the
difference between the total carbon stock from the map using subsampled data and the
reference map generated using all the soil data available. Given the constant bulk density,
it is important to reiterate that this analysis aimed to optimize the mapping process and
not generate a SOC stock estimate for the study area. The model process is illustrated in
Figure S1.

The performance of the conventional cLHS and the stratified cLHS was evaluated
with a generalized least-square (GLS) model using the nlme package in R [50]. The R2

values were compared between the two sampling approaches, with the number of points
included as a first-order autocorrelation structure. The R2 values between the two sampling
approaches were compared for the overall testing dataset, as well as by slope position
within the testing dataset.

2.4. Cost–Benefit Analysis

Following the iterative predictive soil mapping model generation, the median SOC
stock error was calculated for each sampling density. A nonlinear least-square model was
then fit to the error as a function of the sampling density using the nls function with a self-
starting biexponential model in R [51]. This was then used as part of a cost minimization
function for both the conventional cLHS and the stratified cLHS sampling approaches to
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determine the optimal number of samples that minimized the total cost of sampling and the
total cost of the carbon prediction error over the study area (Equation (1)). For this study,
the total soil carbon stock error was assumed to be discounted from the final payment to
the credit producer.

Total Cost = (Sampling Cost × n) + (Soil Carbon Stock Error × Carbon Price × Total Area) (1)

where

(1) Sampling cost is the cost to obtain a soil sample;
(2) The n parameter is the number of soil samples;
(3) Soil carbon stock error is the soil organic carbon stock error on a Mg ha−1 basis as a

function of the number of samples;
(4) Carbon price is the price of carbon the producer receives;
(5) Total area is the total area of interest on a hectare basis.

The number of samples needed to minimize the total cost was calculated using a range
of sampling costs and carbon prices. Sampling costs were randomly generated for each
run based on a normal distribution with a mean of CAD 95 per sample, with a standard
deviation of CAD 10. The mean price was estimated based on an assumed cost of CAD
50 per point to collect the samples, and CAD 45 for laboratory analysis. The price of carbon
for each run was randomly generated based on a normal distribution with a carbon price
of CAD 30 per tonne, with a standard deviation of CAD 10. The mean price for carbon
was based on Indigo Agriculture’s published carbon payment price [52]. In total, this
calculation was repeated one million times for both the cLHS and the stratified cLHS. The
median, 10th percentile, and 90th percentile sampling densities were then calculated based
on the sampling cost and carbon price. The optimal sampling density refers to the sampling
density that minimizes the sum of the total sampling cost and the SOC stock error value
(Equation (1)).

An Important point to note is that detecting changes over time in a manner that
avoids Type 1 and Type 2 errors is an important consideration for SOC sequestration
accounting [39]. Accounting for the value of the error associated with a single point of
time mapping does not capture the full costs of uncertainty. The statistical power required
for confidence in detecting changes over time largely depends on the magnitude of the
effect, which is heavily dependent on the time between measurement events. Therefore,
this analysis should be considered a hypothetical exercise.

2.5. Analysis of Statistically Optimal Number of Points

To compare the economically optimal number of samples with the statistically optimal
number of samples, the statistically optimal number of samples was determined using
the methodology and R code from Saurette (2023) [53]. This methodology is based on
using divergence metrics to determine an optimal number of samples to characterize the
covariate space of a predictive soil mapping area, as described in Saurette et al. (2023) [32].
The clhs_min function from the opendsm package (Saurette 2023) [53] was used to calculate
the statistically optimal sample sizes using 90, 95, and 99 percent confidence intervals. The
covariates used were the same covariates used for the final predictive soil mapping used in
this study.

3. Results and Discussion

The conventional cLHS and the stratified cLHS performed similarly based on model
validation metrics (Figure 2). Generally, the performance between the two methods was
similar at sampling densities below 0.15 points per ha. The stratified cLHS approach was
slightly better for sampling densities of approximately 0.15 to 0.3 points per ha, and the
conventional cLHS approach outperformed the stratified approach at sampling densities
above 0.3. Overall, the performance between the two models was almost identical, with
the GLS results indicating an increase in the R2 for the stratified cLHS of 0.002 compared to
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the conventional cLHS (Table 3). The R2 values for the mid-slope and the upper and crest
slope positions were similar, with a maximum average R2 effect of 0.01. The differences
were greater for the lower slope positions, where the stratified cLHS decreased R2 by −0.03
for lower slopes, and increased R2 by 0.05 for depressions (Table 3).
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When looking at the overall average soil organic carbon stock error, the stratified
cLHS had consistently lower error across sampling densities than the conventional cLHS
(Figure 3). A potential explanation for the improved performance of the stratified cLHS
at estimating total stocks is that SOC contents are higher in the lower slope positions
(Figure 4), with the highest values occurring in the depressions. The stratified cLHS led
to more accurate predictions of depression positions, which likely led to a lower overall
error in the model given their importance to the overall landscape SOC stocks. Lower
slope positions with higher SOC stocks have been documented by others in the Canadian
Prairies, with even greater differences between crest and depressions reported than those
observed in this study [54].
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Table 3. Generalized least-square model results comparing R2 between conventional and stratified
conditioned Latin hypercube sampling (cLHS) designs with the number of points as a first-order
autocorrelation structure. The results for the conventional cLHS are embedded in the intercept term,
and the stratified term indicates the difference compared to the conventional cLHS.

Slope Position Value Standard Error t-Value p-Value

Overall
Intercept 0.37 0.0008 459.63 <0.01

Type: Stratified 0.002 0.0005 3.39 <0.01

Depression
Intercept 0.27 0.0003 678.68 <0.01

Type: Stratified 0.05 0.0005 92.10 <0.01

Lower slope
Intercept 0.24 0.0008 277.14 <0.01

Type: Stratified −0.03 0.001 −24.45 <0.01

Mid-slope
Intercept 0.30 0.0005 565.07 <0.01

Type: Stratified 0.004 0.0006 6.56 <0.01

Upper slope
Intercept 0.35 0.0005 693.31 <0.01

Type: Stratified −0.004 0.006 −7.37 <0.01

Crest
Intercept 0.44 0.0008 535.06 <0.01

Type: Stratified −0.01 0.0009 −9.88 <0.01
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Figure 4. Soil organic carbon concentrations across slope positions within the study area.

An explanation for the lower performance of the standard cLHS in depression posi-
tions is that cLHS aims to mimic the original distribution of the sampled population [22],
thereby leading to fewer samples in landscape positions that constitute a minority of the
landscape. Having few samples in lower slope positions is a concern for predictive map-
ping in Canadian Prairie landscapes as significant variability in soil properties can occur in
lower slope positions due to differences in hydrology [55] Additionally, distributing sam-
ples evenly across feature space has been identified as important for random forest model
performance [28]. Recently, feature space coverage sampling, which distributes samples
more evenly across feature space, has been proposed [27]. This technique was not assessed
as part of this study as it is computationally much more intensive than conventional cLHS.
As 100 iterations of each sampling density were run, assessing the performance of fea-
ture space coverage sampling with this approach was not feasible given the computing
resources available at the time of this study.

Overall, there were diminishing model performance returns for mapping SOC content
based on the number of training sample data, with gains becoming increasingly marginal
after 0.4 points per ha (Figure 3). Overall, with an average sampling cost of CAD 95 per
sample and CAD 30 per tonne to the producer, the optimal sampling density for which the
total cost was minimized was 0.1 points per ha for the conventional cLHS (Figure 5) and
0.04 points per ha for the stratified cLHS (Figure 6). Such a large difference between the
two approaches was not expected and is likely a result of the better performance of the
stratified cLHS in lower slope positions, which contain more carbon in the landscape. For a
quarter section, which is the typical unit of land management in the Canadian Prairies, this
corresponds to 6.5 or 2.6 points per quarter section, respectively. Note that this assumes



Land 2024, 13, 114 11 of 16

that a quarter section is included as part of a larger mapping campaign because six or seven
sample locations are not enough for predictive soil mapping with machine learning models.
Further research is needed to determine the optimum minimal mapping areas for carbon
stock assessment programs. This is significantly less than the optimal number of samples
calculated for a 26 ha field in Ontario for which, depending on the particular criteria used,
an optimal sampling density of approximately 6 points per ha has been found [32]. A
likely reason for the higher density of samples in that study is the smaller area of study,
compared to this project. Despite the size, a minimum number of samples is required for a
PSM model, and the project scale in that study also likely involved characterizing variation
at finer scales than in this study.
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Figure 5. Optimal sampling density for the conventional conditioned Latin hypercube sampling
design based on the cost of sampling and the price of carbon. The shaded grey ribbon corresponds
to the 10th and 90th percentile sampling densities for a given sampling density (points ha−1). For
the top panel, the optimal sampling density is presented as a function of sampling cost, and for the
bottom panel, the optimal sampling density is presented as a function of the price of carbon. The
grey confidence intervals indicate the variability in optimal sampling density based on variability in
carbon price for the top panel and sampling cost for the bottom panel.

The optimal number of samples as a function of the price of carbon and the cost of
sampling is the average given that the other variable is held constant. The confidence
envelopes in Figures 5 and 6 indicate the relative influence of the other variable compared
to the variable of interest. Variations in the sampling cost had less influence on the optimal
sampling density, ranging from just under 0.05 samples per ha at a sampling cost of CAD
60 to just over 0.025 samples at a cost of CAD 120 for stratified cLHS (Figure 6). Variations
in the price of carbon had more influence on the optimal sampling density, ranging from
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just over 0.025 samples at CAD 10 per tonne to just under 0.075 samples at CAD 70 per
tonne (Figure 3). The price of carbon had more influence, as indicated by the relatively
narrower confidence envelopes.
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Figure 6. Optimal sampling density for the landscape stratified conditioned Latin hypercube sampling
design based on the cost of sampling and the price of carbon. The shaded grey ribbon corresponds
to the 10th and 90th percentile sampling densities for a given sampling density (points ha−1). For
the top panel, the optimal sampling density is presented as a function of sampling cost, and for the
bottom panel, the optimal sampling density is presented as a function of the price of carbon. The
grey confidence intervals indicate the variability in optimal sampling density based on variability in
carbon price for the top panel and sampling cost for the bottom panel.

The literature examining the optimal number of samples for predictive soil mapping
is quite limited, with many studies using arbitrary approaches [23]. Typically, the number
of samples collected reflects the maximum number that can be collected for a given project
budget. Studies that have focused on identifying the optimal sampling densities for broad-
scale mapping projects have suggested that much lower data densities can be collected
than what is recommended as economically optimal in this study. This includes studies
that have utilized extensive existing datasets such as the LUCAS dataset [28]. For example,
a study investigating predictive soil mapping with limited sample data attempted mapping
using 10 and 22 sample points (0.001 to 0.003 points per ha) for a study area of 60 km2 [29].
Another study suggested an optimal sample size of 200 to 300 samples (0.007 to 0.01 points
per ha) for a 30,000 ha area [30], whereas this study would suggest on average 1200 would
be needed for a 30,000 ha area.

The current published literature on selecting the optimal number of soil samples
has been restricted to statistical optimization approaches. In particular, the study by
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Malone et al. (2019) focused on identifying the statistically optimal number of samples for
a 100 ha field using cLHS and determined that the optimal sample size was 110 using
the Kullbeck–Liebler distances. This corresponds to an inspection density of 1.1 samples
per ha. A study in Ontario, Canada, revealed that the optimal number of points for
predicting soil carbon for a 26 ha field was 146 or 154 samples, depending on whether
RMSE or CCC was used for the assessment metric [32]. This corresponds to inspection
densities of approximately 5.6 and 5.9 points per ha. Given that random forest models
require a minimum number of samples to generalize well, the inspection densities using
the methodologies in the study by Saurette et al. (2023) [32] can be hypothesized to
decrease if applied to larger areas. Additionally, that study characterized variance at
finer scales than this study, which may mean the sampling densities in this study were
undercharacterized with subhectare variability. When determining the statistically optimal
sampling density, depending on the confidence level, the mean sampling density was
0.09 points per ha for 90 percent confidence, 0.12 points per ha for 95 percent confidence,
and 1819 for 99 percent confidence (Table 4). For comparison, the study sites examined here
had economically optimal sampling densities ranging from approximately 0.025 to 0.075 or
from 0.075 to 0.15 samples per ha depending on the sampling design methodology used.
For conventional cLHS, this would mean that the economically optimal sampling density
is between 90 and 95 percent confidence using the methodology from Saurette (2023) [32]
depending on the price of carbon and sampling costs.

Table 4. The statistically optimal number of samples and sample densities to characterize the covariate
space at 90, 95, and 99 percent confidence.

Percent
Confidence

Minimum (Sam-
ples/Density)

Mean (Sam-
ples/Density)

Median (Sam-
ples/Density)

Maximum (Sam-
ples/Density)

Standard Deviation
(Samples/Density)

90 92/0.02 438/0.09 327/0.07 1089/0.23 287/0.06

95 92/0.02 578/0.12 428/0.09 1783/0.37 425/0.09

99 92/0.02 1819/0.38 695/0.15 13151/2.80 2821/0.60

4. Conclusions

This study highlighted that the economically optimal number of samples for predictive
soil mapping to support carbon stock assessments in the Canadian Prairies depended on
the price of carbon and the cost of sampling. Additionally, the stratified cLHS had lower
error than the conventional cLHS for a given number of sample points, likely due to
better performance for depressional slope positions, which have the highest carbon stocks.
Overall, attempting to characterize 99 percent of the variance in the covariate space likely
will result in more samples being collected than is economically optimal. Predictive soil
mapping studies should broadly consider the end use of the map, the cost associated with
mapping error, and the cost to reduce that error, when determining project sample numbers.
Further work is needed to determine the economically optimal number of samples without
a priori soil data for an area, the minimum economically feasible mapping area, and the
optimal quantity of data for detecting stock changes over time. Additionally, further work
is needed to evaluate the optimal number of samples required for estimating SOC stock
changes over time using bulk density data.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/land13010114/s1. Figure S1: Data processing flow diagram.
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