
Citation: Piscitelli, L.; De Boni, A.;

Roma, R.; Ottomano Palmisano, G.

Carbon Farming: How to Support

Farmers in Choosing the Best

Management Strategies for

Low-Impact Food Production. Land

2024, 13, 5. https://doi.org/10.3390/

land13010005

Academic Editor: Xin Zhao

Received: 10 November 2023

Revised: 7 December 2023

Accepted: 12 December 2023

Published: 19 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

land

Article

Carbon Farming: How to Support Farmers in Choosing the Best
Management Strategies for Low-Impact Food Production
Lea Piscitelli 1 , Annalisa De Boni 2 , Rocco Roma 2 and Giovanni Ottomano Palmisano 2,*

1 CIHEAM Bari, Via Ceglie 9, Valenzano, 70010 Bari, Italy; piscitelli@iamb.it
2 Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via G. Amendola 165/a,

70126 Bari, Italy; annalisa.deboni@uniba.it (A.D.B.); rocco.roma@uniba.it (R.R.)
* Correspondence: giovanni.ottomanopalmisano@uniba.it

Abstract: The European Commission is directing efforts into triggering the storage of carbon in
agricultural soils by encouraging the adoption of carbon farming practices under the European Green
Deal and in other key EU policies. However, farmers that want to enter this production model
urgently need to define the sustainable practices required for increasing soil organic carbon without
overturning production systems and also need to adapt it for optimizing yields and improving carbon
stocks. However, there is still a lack of tools that are easy to use and interpret for guiding farmers and
stakeholders to find ways in which to increase soil organic carbon content. Therefore, this research
aims to set up a novel bottom–up approach, in terms of the methodology and analysis process, for
identifying tailored sustainable farming management strategies for the purpose of increasing soil
carbon. We investigated 115 real food production cases that were carried out under homogeneous
pedo-climatic conditions over a period of 20 years in the Apulia region (Southern Italy), which made
it possible to create a dataset of 12 variables that were analyzed through a decision tree (created with
the C4.5 algorithm). The overall results highlight that the treatment duration was the most crucial
factor and affected the carbon stock both positively and negatively. This was followed by the use
of cover crops alone and then those in combination with a type of irrigation system; hence, specific
agricultural management strategies were successfully identified for obtaining effective carbon storage
in the considered real food production cases. From a wider perspective, this research can serve as
guidance to help EU private actors and public authorities to start carbon farming initiatives, pilot
projects, or certification schemes at the local and/or regional levels.

Keywords: sustainable food systems; agricultural management strategies; climate-positive practices;
soil carbon stock; European policy; decision tree

1. Introduction

In 2021, the European Commission set out to shift to a climate-neutral economy by
2050. In the same year, the European Climate Law turned this target into a legal com-
mitment, specifically to a greenhouse gas (GHG) emission reduction of at least 55% by
2030 [1]. The agricultural sector is responsible for 10% of the total European Union (EU)
GHG emissions; as such, the EU’s commitment is crucial for increasing carbon seques-
tration and for achieving reductions in these emissions [2]. In addition to the mandatory
contribution of this sector, it is important to underline that agriculture can play a key role
in the achievement of EU targets thanks to agricultural soil’s function as a carbon sink [3].
Recently, the European Commission has been directing efforts into the storage of carbon
in agricultural soils and encouraging farmers to adopt practices that comply with this
aim. The Commission defines carbon farming as follows: “A green business model that
rewards land managers for taking up improved land management practices, resulting in
the increase of carbon sequestration in living biomass, dead organic matter and soils by
enhancing carbon capture and/or reducing the release of carbon to the atmosphere, in
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respect of ecological principles favorable to biodiversity and the natural capital overall” [4].
In brief, carbon farming consists of the management of carbon pools, flows, and GHG
emissions with the purpose of mitigating climate change. The increase in carbon storage
will, in turn, feed into the EU Emissions Trading System, which is an important instrument
for cost-effectively reducing GHG emissions [5].

In March 2020, the Commission adopted the new Circular Economy Action Plan
(CEAP), which is one of the main building blocks of the European Green Deal [6]. This plan
highlights that carbon removal can be nature-based by putting into place several strategies,
including carbon farming. Additionally, as announced in the CEAP, the Commission
intends to incentivize the uptake of carbon and increase its circularity by developing a
regulatory framework for the certification of carbon storage based on robust and transparent
carbon accounting. Furthermore, as stated in the EU Farm to Fork Strategy, the Commission
adopted the Communication on Sustainable Carbon Cycles in December 2021 to motivate
the agricultural sector to tackle climate change [4,7]. The Communication defines actions
to upscale carbon farming with the aim of rewarding farmers who implement practices
for carbon sequestration. These actions are as follows: (i) the promotion of carbon farming
practices in the frame of the EU Common Agricultural Policy (CAP) and other funding
programs (e.g., LIFE and Horizon Europe), particularly within the Mission “A Soil Deal for
Europe” and national funding programs; (ii) the implementation of standard and reliable
methodologies for accounting and monitoring carbon farming; and (iii) the advancement
of farmers’ knowledge about data collection and processing and the provision of ad hoc
consultancy services [4]. Also, the Commission carried out a two-year study from 2018 to
2020 on setting up and implementing carbon farming in the EU [3]. Based on the results
of the study, as well as those of thematic projects and events, the European Commission
launched their carbon farming initiative at the end of 2021. This study stated that carbon
farming practices can contribute to the EU’s efforts in tackling climate change through
the sequestration and storage of carbon. Also, carbon farming has been recognized as an
innovative green business model that generates a novel form of income for bioeconomy
actors, thereby taking into account the climate benefits they provide [3,8]. Furthermore,
carbon farming has been promoted by the new EU Common Agricultural Policy 2023–2027
(CAP), which informs about and rewards good agronomic practices. Within the approved
CAP 28 Strategic Plans, carbon farming is included among the eco-schemes targeted at soil
conservation [9], while certain agricultural practices (e.g., the use of leguminous crops, crop
diversification, tillage restrictions, and green cover in permanent crops) are recommended
to increase soil carbon sequestration ability [10].

Increasing soil organic carbon (SOC) and endorsing carbon farming produce multiple
benefits for farmers that span from improvements in soil quality to increases in produc-
tivity [11]. This is particularly true in certain territories where the agricultural sector is
threatened by several issues, such as natural resource erosion and impoverishment [12],
extreme weather events [13], and increased production costs [14]. According to the The-
matic Group on Carbon Farming, knowledge and understanding of effective agricultural
practices for SOC are of paramount importance in order to increase farmers’ interest and
involvement in this initiative [15]. Many efforts have been made by the scientific commu-
nity to find fast and easy ways to determine SOC content while producing low amounts
of dangerous wastes or to predict CO2 fluxes [16–19], but recent research has focused
more on predicting the effects of certain agricultural practices on SOC [20–23] rather than
on supporting farmers in choosing the most suitable management strategies for carbon
stock improvement. Currently, the United Nations is pushing to contrast climate change
by suggesting an increase in SOC [24], and the FAO is providing a tool for illustrating
how much CO2 is sequestrable in soils and for informing on good practices to maintain
SOC stocks [25]. In this view, the scientific community has focused attention on SOC
increase or maintenance, but in many pieces of research, data mining or machine learning
approaches have been adopted for mapping current SOC levels [26–28], predicting SOC
ecological dynamics [29–31], or tuning analytical methods for quantitative SOC determina-
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tion [32–34]. Consequently, there is still a lack of tools that are easy to use and interpret for
guiding farmers and stakeholders in finding and suggesting ways to increase SOC content.
The above aims, targets, and approaches relapse on farmers and stakeholders; as such, a
bottom–up standpoint should be considered for supporting these final actors in making
the proper choices.

Considering this complex scenario, this paper aims to provide a concrete decision
support tool tested on real farming experiences that can offer to farmers multiple choices
(besides economic feasibility or agricultural productivity alone) related to adoptable agri-
cultural practices or management strategies that increase SOC storage. In turn, this can
allow farmers to not have to overturn the existing production system but rather adapt it
for optimizing yield and increasing SOC. More than 100 real food production cases were
carried out over a period of 20 years in the same pedo-climatic conditions, and these were
used for the purpose of creating a dataset that includes several agricultural practices and
three classes of SOC variation. Then, this dataset was processed through a decision tree
(i.e., the C4.5 algorithm) [35].

This paper is organized as follows: After describing the materials and methods in
Section 2, the results and their discussion are reported in Section 3. Finally, Section 4
presents the conclusive remarks.

2. Materials and Methods
2.1. Data Collection

The data used in this research were collected from the library of CIHEAM Bari (Valen-
zano, Apulia Region, Southern Italy) by consulting 50 documents that are publicly available,
including master’s and PhD theses, scientific papers, and project reports, whose related ac-
tivities were carried out in the experimental field of CIHEAM Bari (41◦03′16′′ N 16◦52′33′′ E,
Figure 1) from 2001 to 2021.
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Figure 1. The location of the experimental field at CIHEAM Bari (41◦03′16′′ N 16◦52′33′′ E).

This field was chosen because of the homogeneity of its soil physical parameters and
certain chemical characteristics. It extends for about 4.5 ha; it is almost plain and moderately
stony; and the soil is clay–loam according to the USDA classification [36], characterized by
sub-alkaline pH (between 7.5 and 8), low nitrogen content (<1.5 g·kg−1), and poor levels of
organic matter (<20 g·kg−1). The climate is typically Mediterranean with hot dry summers
and humid, cool winters with rapid heavy rains or strong winds from the southeast and
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northwest [37]. The specific climate data from 2001 to 2021 are as follows: an average
winter temperature of 8 ◦C, an average summer temperature of 25 ◦C, and an average
rainfall equal to 600 mm.

Out of the 50 documents consulted, 21 of them were selected because they reported a
variation in the SOC across 115 real food production cases (RFPCs) that were carried out
in the experimental field. In addition, these 21 documents were suitable for constructing
a dataset of variables that describe the common practices affecting the SOC content in
the 115 RFPCs. The final dataset consisted of 12 categorical variables, including at least
two and at most seven possible categorical values, which were selected considering their
relevance in soil organic carbon dynamics [38]. Below is a list of the 12 variables that made
up the dataset:

• Site (S). This includes the RFPCs that were carried out in open fields or under tunnels;
• Treatment duration (TD). This classifies the crops according to their lasting time,

namely 1, 2, or 3 trimesters;
• Nutrients management (NM). This includes the management of N, P, and K under

conventional or organic agriculture and also the practice of adding no nutrients to the soil;
• Nutrients and amendments distribution techniques (N/A D). This describes the

choices in fertirrigation, soil incorporation, and foliar spray and also the practice
of no nutrients and amendments distribution;

• Green manuring (GM). This variable is concerned with whether green manuring has
been carried out or not;

• Amendments (A). These include biochar, compost, cow manure, chicken manure,
leonardite, or their combinations as well as no amendment additions;

• Biomass (B). This highlights the use of green manuring, the incorporation of plant
residues after food harvest, or the use of spontaneous plants and waste biomass;

• Crop type (CT). This includes break crops, start crops, and impoverishment crops;
• Soil coverage (SC). This describes the type of mulching used (plastic layer or cover crop);
• Irrigation (I). This considers drip, partial root zone drying, sprinklers, emergency

drought systems, or no irrigation;
• Weeding (W). This includes hand and manual weeding or the use of a rototiller for

weed removal as well as the use of mulching or cover cropping for weed control;
• Soil organic carbon evolution (∆SOC). This is the target variable and is measured as

the difference in SOC amounts before and after the application of agricultural practices
and the food harvest. Furthermore, the SOC values were grouped into three classes to
facilitate clarity and correct interpretation of the results. Specifically, the “NEGATIVE”
class explains the reductions in SOC that are lower than −0.5 g·kg−1, the “NEUTRAL”
class includes all the variations between −0.5 and +0.5 g·kg−1, and the “POSITIVE”
class reports increments in SOC that are higher than 0.5 g·kg−1.

2.2. The Decision Tree

The decision tree is an adaptable, flexible, and scalable data mining tool for decision
making implemented through the definition of courses of actions and various outcomes [39].
It deals with complex problems and provides a visual representation that is easy to inter-
pret [40]. The decision tree is applied more than other data mining methods in soil science
thanks to its higher reliable results and lower interpretation bias, and it is most often used
to map SOC levels and soil organic matter dynamics [41,42]. The decision tree has the
shape of a flowchart, where a variable is examined within every step [43,44]. The items of
the decision tree are nodes and branches. The nodes are classified into the following three
different categories [45–47]: (i) The root node is intended as the first question, whereby a
choice is made involving two options or more. It only shows outgoing edges. (ii) Child
nodes result from splitting a node into new ones. As such, they are possible choices that
become a specific level of the tree. For each child node, there is only one incoming edge
and at least two outgoing edges. (iii) Leaf nodes show the final answer to a combination of
decisions or events. These nodes do not split any further. As such, they have one incoming
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edge and no outgoing edges. A branch is a tree subsection that connects nodes; thus, a
branch is a possible alternative at a specific point of the tree [39,46,48]. Every pathway that
involves all the nodes identifies one classification rule, which is presented as an “if-then”
rule. For example, “if condition 1 and condition 2 and condition . . . and condition k occur,
then outcome j occurs” [45].

A decision tree is created by following three phases, namely splitting, stopping, and
pruning. Splitting divides a node into at least two purer child nodes; the nodes’ splitting
order is determined by a parameter called purity [39]. There can be input variables that
repeat several times across different levels of the tree, whereas certain variables cannot be
included at all. This is because only the input variables related to the target variable are
involved in splitting the nodes into purer child nodes [45]. The splitting ends when all
child nodes are made of uniform records or upon meeting certain criteria for stopping or
pruning [48]. There are several methods for performing the splitting based on decision tree
algorithms, including information gain, gain ratio, the Gini index, normalized impurity-
based criteria, the DKM criterion, and the Twoing criterion [48–50].

Stopping or pruning procedures are usually applied to avoid an overly complex
decision tree. A stopping procedure determines when to end splitting [39] by using several
parameters that are based on the research goal and the features of the dataset, i.e., the
minimum number of records in a leaf or in a node before splitting as well as the number of
steps of a leaf from the root node [45,50].

A pruning procedure reduces the size of a tree for better predictive accuracy. This
is achieved by removing the child nodes that have low importance or classification mag-
nitude [39], namely tree sections that may be based on inaccurate or incomprehensible
data [49]. A further reason for using pruning is to obtain an accurate and simple description
of the decision tree [48]. There are various pruning techniques according to the algorithm
behind the decision tree; some of these examples include the following: reduced error
pruning, minimum error pruning, error-based pruning, and optimal pruning [48].

Many decision tree algorithms have been developed over the last 30 years [44], in-
cluding CHAID [51], CART [52], ID3 [53] (and its evolution C4.5 [35,54]), and conditional
inference trees [55]. The algorithm used in this research is the C4.5, a milestone among
decision tree algorithms [50] as it possesses the following general advantages: (i) it se-
lects the most pertinent input variables for making a final decision; (ii) once relevant
variables are identified, it identifies the key variables; (iii) continuous and discrete variables
can be processed; (iv) it can work with missing data; and (v) it provides logical rules of
classification [40,45].

Considering these general advantages together with the aim of the research, C4.5
was applied to identify clearly the most suitable combinations of practices leading to
SOC increase. This was performed following the procedure proposed by Quinlan [54],
Salzberg [56], and Wu et al. [57] as well as by using the software “Orange data mining”
(version 3.36). Given the data collected and arranged in the dataset described above, the
SOC variation was selected as a target variable, while the other variables were considered
as input variables. Moreover, the specific C4.5 parameters set for building the decision tree
were as follows: four records per node, gain-ratio method for the splitting procedure, and
reduced error pruning for reducing over-fitting. Also, the confusion matrix was computed
to define the classification performance of the algorithm through the calculation of the
classification accuracy [50,58,59]. Generally, a classification algorithm performs well when
this parameter is higher than 70% [60], while Ba’abbad et al. [61] highlighted that the
application of the C4.5 algorithm for analyzing soil nutrients leads to reliable results with a
classification accuracy of 68%.

3. Results and Discussion
3.1. Dataset Description

The distribution of the categorical values assumed by the 12 variables is summarized
in Table 1. Generally, it is important to underline that the values classified as “No” mean
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the absence of that specific practice in an RFPC. Even though the crops were not clearly
specified, their characteristics were considered in terms of crop duration and types through
the variables “treatment duration” (TD) and “crop type” (CT). Indeed, the TD distinguished
crops according to the time of management they took, and most of the considered RFPCs
(66 out of 115) took three trimesters. The variable CT considered the crops’ function in
rotation; impoverishment effects on soil physical properties and soil organic carbon were
found in 7 RFPCs, while beneficial effects were observed in 32 RFPCs.

Table 1. Distribution of the categorical values assumed by each variable reported as a percentage. These
categorical values were based on the information gathered from the selected documents (Source: authors’
elaboration from the 21 selected documents publicly available at the library of CIHEAM Bari).

Var. Percentage Values Var. Percentage Values Var. Percentage Values

S 90%—Open field
10%—Tunnel GM 82%—NO

18%—YES SC
3%—Plastic layer
3%—Cover crops
94%—NO

TD
12%—1 trimester
30%—2 trimesters
58%—3 trimesters

A

3%—Biochar
28%—Compost
3%—Manure + compost
56%—NO
6%—Manure
2%—Chicken manure
2%—Leonardite

I

5%—Emergency
76%—Drip
3%—Drought
7%—NO
6%—Sprinkler
3%—Partial root zone
drying

NM
34%—NO
49%—Organic
17%—Conventional

B

6%—Waste biomass
18%—Cover crop
1%—Spontaneous cover
75%—NO

W

48%—Manual
11%—Hand
20%—Rototiller
9%—NO
2%—Chemical
7%—Mulching
3%—Cover cropping

N/A D

31%—Fertirrigation
41%—Soil incorporation
1%—Foliar spray
19%—NO
8%—Fertirrigation + soil
incorporation

CT
27%—Break crop
67%—Start crop
6%—Impoverishment crop

∆SOC
13%—NEGATIVE
22%—NEUTRAL
65%—POSITIVE

Note: S = site; TD = treatment duration; NM = nutrients management; N/A D = nutrients and amendments
distribution techniques; GM = green manuring; A = amendments; B = biomass; CT = crop type; SC = soil coverage;
I = irrigation; W = weeding; and ∆SOC = soil organic carbon evolution.

“Site” (S) was another variable describing the agricultural conditions; only 12 RFPCs
were carried out under tunnels. Regarding the variable “amendments” (A), the majority of
the RFPCs were not amended, and the most used amendment was compost, despite the
scarce number of RFPCs under conventional farming (19 out of 115) and the several RFPCs
that did not supply any “nutrients management” (NM) to the crops (39 out of 115). Both
amendments and fertilizers (the variable “nutrients and amendments distribution”, N/A
D) were distributed mostly by soil incorporation and fertirrigation (47 and 36 RFPCs out of
115, respectively).

Only 21 RFPCs were anticipated by “green manuring” (GM), whereas 29 RFPCs
were anticipated by the use of “biomasses” (B), like waste biomasses, cover crops, and
spontaneous cover (7, 21, and 1 RFPCs, respectively). Most of the RFPCs (107 out of 115)
had no “soil coverage” (SC), the water was supplied (variable “irrigation”, I) mainly by
drip irrigation (87 out of 115 RFPCs), and “weeding” (W) was performed mostly by manual
uprooting (55 out of 115 RFPCs). Furthermore, cover cropping was a possible value within
different variables (biomass—B, soil coverage—SC, and weeding—W) and can be explained
by the several advantages provided by this agricultural practice that can work for weed
control [62], covering the soil [63], and soil improvement [64].
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The initial SOC was, on average, 11 g·kg−1, while the final one was 13 g·kg−1. The
highest initial SOC value was 11.8 g·kg−1 and the lowest was 6.7 g·kg−1, while the highest
and lowest final SOC values were 17.7 and 6.7 g·kg−1, respectively (Figure 2A). The highest
increase was 5.4 g·kg−1 and the highest decrease was equal to 3.4 g·kg−1. The ∆SOC
values led to negative impacts in 13% of the RFPCs, 22% of the RFPCs reported neutral
values, while positive impacts were observed in 65% of the RFPCs (showed in Table 1 as a
percentage and in Figure 2B as a number of RFPCs). Among the positive cases, the average
increase was about 2 g·kg−1, which is a good amount for agricultural soils but still little for
a secondary succession under a Mediterranean climate [65].
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Figure 2. Box plot diagrams for the descriptive statistics of the initial and final SOC values: (A). The
distribution of ∆SOC values (B) were distinguished according to their negative (red), neutral (blue),
and positive (green) effects (source: authors’ elaboration from the 21 selected documents publicly
available at the library of CIHEAM Bari).

Despite the variation in the SOC being equal to 2 g·kg−1 perhaps appearing negligible
(from the initial 11 g·kg−1 to the final 13 g·kg−1), it also corresponded to 12 additional tons
of soil organic carbon per hectare in a short period of time. Considering a price of permits
on the European Union’s carbon market that is equal to EUR 93 per ton of carbon (quoted
on 19 July 2023), farmers may obtain an additional income of about EUR 1000 per hectare
and for each crop [66].

3.2. Decision Tree Interpretation

The decision tree that resulted from the application of the C4.5 algorithm showed
3 main branches, 7 levels, and 30 nodes (Figure A1). Out of the 12 variables, 3 were not
included, namely “site” (S), “green manuring” (GM), and “crop type” (CT). Specifically,
the boxes (i.e., the leaves) in red indicate the negative SOC variation, the green and orange
highlight the positive and neutral SOC variations, respectively, while the increasing color
intensity indicates the “magnitude” of the SOC variation. There are also white boxes,
representing negative, neutral, and positive SOC variations that were supported by up to
50% of the RFPCs.

The variable that primarily affected positive SOC variation (i.e., the root node) was
“treatment duration” (TD) associated with 75 RFPCs out of 115; it generated three branches
as the number of categorical values assumed by this variable. To understand this more in
depth, the RFPCs lasting only one trimester showed negative SOC variation (10 RFPCs out
of 14), while the RFPCs lasting two and three trimesters led to an increase in the SOC in
21 RFPCs out of 35 and in 52 RFPCs out of 66, respectively.

When focusing on the RFPCs lasting one trimester, the negative SOC variations
occurred with no nutrients management (four RFPCs out of six) and when there was



Land 2024, 13, 5 8 of 16

management under organic agriculture (six RFPCs out of eight). Despite the priming effect
that rapidly hit the exogenous organic matter [67], the decomposition of easily soluble
compounds may have occurred already after one month under Mediterranean climate
conditions [68]. This could be the case because many other factors can interfere with this
process. Indeed, Lehmann et al. [69] suggested that high molecular diversity, large spatial
separation, and rapid temporal variability may slow down organic matter decomposition.
This may explain why the SOC did not increase in cases where complex molecules were
added (such as when additives were used in organic farming).

The SOC increases were recorded under a treatment duration (TD) that lasted two
or three trimesters; this complied with the EU Common Agricultural Policy since the
diversification of the crops as well as the extension of soil coverage were included among
the greening practices inside direct payments [70]. Moreover, adopting RFPCs and a related
crop management that lasts two or three trimesters in a long-term crop rotation will favor
SOC increase and maintenance [71].

Among the RFPCs lasting two trimesters, the second key variable was “weeding”
(W). In this regard, the most positive option in terms of SOC increase was the absence
of weeding (6 RFPCs out of 6), followed by hand weeding (9 RFPCs out of 11), manual
weeding (6 RFPCs out of 13), and the case of a rototiller labeled as neutral (since the SOC
was not altered in 3 RFPCs out of 5). It is well known that the minimization of tillage
may reduce SOC loss because of decreased oxidation [72–74]. This clearly explains our
results from a completely positive SOC level to a neutral SOC level, achieved by the lack of
weed management.

In the case of hand weeding, plants are removed and left on soil; thus, the decomposed
plant biomass contributes to SOC gain in the case of conventional nutrients management,
where rapidly available nutrients are provided [75]. When no nutrients management was
performed, the SOC increases may have been determined by the soil disturbance [76].
Concerning manual weeding, the absence of weed uprooting made manual weeding
comparable to mowing, and this was because both practices did not impact directly on
the below-ground biomass; thus, the results can be compared with those of Malamataris
et al. [77], who found an increase in SOC by using mowing.

Moreover, the presence of an irrigation system (variable “irrigation”, I) together with
manual weeding may explain the negative effect on SOC due to leaching [78] as well as the
positive effect in the case of emergency irrigation that stimulates dissolved organic matter
movement [79]. The positive effect of emergency irrigation on SOC could be explained by
the occurrence of the Birch effect, and the mineralization of organic materials was likely
triggered by the rewetting of the dry soil [80]. Finally, mechanical interventions, like the
use of rototillers, had an effect on the SOC content, albeit only a minor one, as the larger
soil aggregates were destroyed [76]. Although hand and manual weeding provided better
SOC increases than using rototillers, it was not possible to suggest the use of these two
practices to farmers that manage wide agricultural surfaces, despite the fact that both of
them showed positive results at plot scale. Moreover, it should be considered that the use of
rototillers in dry conditions may favor the wind erosion of soil. Thus, a comparison should
be conducted between the absence of weed management and the use of rototillers, and the
first one should be preferred. No tillage is applied to 4% of the EU‘s arable land [81,82],
although this complies with the European Biodiversity strategy [83]. However, since the
use of rototillers did not decrease SOC, it should be preferred over herbicides, which
decreases SOC and whose use should be reduced in accordance with the EU Farm to Fork
strategy [7,77].

When looking at the RFPCs lasting three trimesters, the irrigation technique (variable
“irrigation”, I) was the most important agricultural practice. In particular, the RFPCs that
were irrigated with sprinklers and those without any irrigation at all were completely
positive in terms of SOC increase (seven RFPCs out of seven and eight RFPCs out of eight,
respectively). Also, the drip irrigation technique led to SOC increase, although this was
only observed in 37 RFPCs out of 51. These findings are in line with Emde et al. [84],
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who noted that sprinkler and drip irrigation increased the SOC in the first 10 cm of soil
depth by their direct effect on crop and non-crop plant biomass increase. In addition, other
scholars have found that SOC oxidation is reduced in the case of no irrigation because of
low microbial biomass presence or development [85]. Despite the SOC increases with drip
irrigation (Figure A1), the practice was supported by less RFPCs when compared to the
sprinkler method. Moreover, drip irrigation should be preferred for its implication with
other European targets. Indeed, this system has a high water-use efficiency, especially when
compared to sprinkler systems [86]. Furthermore, this efficient use complies with the aims
of the EU Common Agricultural Policy in protecting water by ensuring and encouraging
good management practices [87].

The SOC variation under drip irrigation was further explained by its combination
with the variable “soil coverage” (SC). Plastic mulch did not increase SOC stock; indeed,
certain pieces of research have reported a negative impact of plastic mulch on SOC content,
and they have underlined that this is due to the temperature increases in the top layer of
soil and the conservation of moisture, which are two important conditions for losses in
SOC [88–91]. In hot climate conditions, the temperature under the plastic mulch increases to
a point at which neither plants nor microorganisms will be able to settle or grow. According
to Mo et al. [92], precipitation is the factor guiding the SOC’s fate when under plastic
mulching. The scarce precipitation in Mediterranean climates can explain the positive to
neutral effects of soil coverage on the SOC observed in the decision tree. Furthermore,
cover crops represented a strong positive influence on SOC increase (four RFPCs out of
four), and they also complied with several other scientific works [93–96]. This may be due
to the possible recruiting of beneficial soil microbiota, the improvement in soil aggregation
or structure, and the addition of new organic matter [97].

The SOC variations under no soil coverage were further described by combinations
with the variable “biomass” (B). In particular, a strong SOC increase was found in four
RFPCs out of four, in which the waste biomasses were used directly on the soil, including
olive mill wastewater, spent mushroom substrate, spent barley grain, and coffee chaff.
Independently from their chemical nature, the impact of all these waste biomasses on the
SOC was positive, and, according to the European Environmental Agency, they can easily
enter the circular economy by reuse or recycling [98].

Also, no biomass addition led to SOC increases in 11 RFPCs out of 17. Within these
cases, the organic material was supplied by compost. Indeed, the SOC variation under
the no biomass addition condition was described further through its combination with the
variable “amendments” (A). No amendment application had a neutral effect, while compost
application determined a SOC increase in five RFPCs out of seven in only 9 months and in
spite of the compost’s recalcitrance to the decomposition [99]. In this case, three trimesters
were sufficient for the increase in SOC because of the possible occurrence of the priming
effect in the early months of application [100]. The compost was also undergoing a new
valorization trend during the period of study since the European Commission has been
looking at biodegradable plastics and packaging for their proper reuse in the composting
process [101,102].

Moreover, the use of cover crops increased the SOC content in 15 RFPCs out of 21,
which was further investigated trough the combination of the variable “nutrients and
amendments distribution techniques” (N/A D). Cover crops, even if not incorporated into
soil, led to an increase in the SOC in 100% of the RFPCs (six out of six), which could be due
to the increased nutrient availability from the enriched microbial activities [103,104].

Soil incorporation registered a neutral influence on SOC increase in two RFPCs out of
four. This can be explained by the difference between fertilizers and amendments, both of
which are considered within this variable. However, it must be noted that amendments
provide organic matter while fertilizers provide only nutrients [105].

The positive effect of fertirrigation (6 RFPCs out of 10) was strictly dependent on
the management of the main nutrients (variable “nutrients management”, NM). In the
case of fertirrigation under conventional agriculture, no influence on the SOC content was
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found in four RFPCs out of six. This was because the fertilizers were synthetic and were
supplied independently from their organic or inorganic chemical nature. On the other hand,
fertirrigation under organic agriculture led to SOC increases in all of the RFPCs since the
compost tea brought organic compounds together with nutrients [106]. This finding is in
line with the target of the European Green Deal regarding the increase of 25% in organically
farmed agricultural land by 2030 [107].

The classification rules were extracted after the creation of the decision tree. These
rules provided a linguistic interpretation of the decision tree, thereby becoming a valuable
support through which to understand the combination of agricultural practices that lead to
SOC increase and decrease. Table 2 shows some of the exemplary rules related to the highest
negative and positive SOC variations. The rules are based on a unique structure, in which
the root and child nodes are listed at the beginning of the rule (If condition. . .), whereas a
specific leaf node is listed in the second part (then class . . .). For example, the classification
rule describing the most negative SOC variation (rule no. 1) should be interpreted as
follows: “If the treatment duration is equal to 1 trimester and the nutrients management is
performed under organic agriculture, then the SOC variation is NEGATIVE”. In the same
way, the rule describing the most positive SOC variation and including the highest number
of agricultural practices (rule no. 9) should be read as follows: “If the treatment duration is
equal to 3 trimesters, water is supplied by drip irrigation, there is no soil coverage, biomass
is incorporated into soil through a cover crop, the nutrients and amendments distribution
is carried out through fertirrigation and the nutrients management is performed under
organic agriculture, then the SOC variation is POSITIVE”.

Table 2. The exemplary classification rules related to the highest negative and positive SOC variations.

Rule No. If Condition Then, ∆SOC Class

1 treatment duration = 1 trimester AND nutrients management = organic NEGATIVE
2 treatment duration = 2 trimesters AND weeding = NO POSITIVE

3 treatment duration = 2 trimesters AND weeding = hand AND nutrients
management = NO POSITIVE

4 treatment duration = 3 trimesters AND irrigation = NO POSITIVE
5 treatment duration = 3 trimesters AND irrigation = sprinkler POSITIVE

6 treatment duration = 3 trimesters AND irrigation = drip AND soil
coverage = cover crops POSITIVE

7 treatment duration = 3 trimesters AND irrigation = drip AND soil
coverage = NO AND biomass = waste biomass POSITIVE

8
treatment duration = 3 trimesters AND irrigation = drip AND soil
coverage = NO AND biomass = cover crop AND nutrients and
amendments distribution techniques = NO

POSITIVE

9

treatment duration = 3 trimesters AND irrigation = drip AND soil
coverage = NO AND biomass = cover crop AND nutrients and
amendments distribution techniques = fertirrigation AND nutrients
management = organic

POSITIVE

Finally, the confusion matrix computed by “Orange data mining” is reported in
Table 3. This enabled us to calculate the accuracy of the classification of the C4.5 algorithm
in relation to the dataset as a ratio between the correct classified RFPCs (into the diagonal
of the matrix) and all of the RFPCs [58]. The matrix rows include the RFPCs in an actual
class, whereas the columns report the RFPCs in a predicted class [59]. Table 3 shows
that the classification accuracy was equal to 0.73, which means that 73% of the RFPCs
were classified correctly in terms of SOC variation. In particular, matches between the
predicted and actual negative ∆SOC class were observed in 13 RFPCs out of 15 (86.6%),
and correspondence between the predicted and actual neutral ∆SOC class was found in
6 RFPCs out of 25 (24%); meanwhile, correspondence between the predicted and actual
positive ∆SOC class was found in 65 RFPCs out of 75 (86.6%). These results suggested that
the C4.5 algorithm performed an overall reliable classification; thus, the results are valid
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particularly for negative and positive ∆SOC. The lower classification performance related
to neutral ∆SOC may be explained by the fact that this class included both negative and
positive values (from −0.5 g·kg−1 to +0.5 g·kg−1).

Table 3. The confusion matrix. Each column reports the RFPCs in a predicted ∆SOC class, while each
row includes the RFPCs in an actual class. Correct classified RFPCs are reported in the diagonal.

PREDICTED

Negative Neutral Positive Tot.

ACTUAL

Negative 13 2 0 15

Neutral 7 6 12 25

Positive 4 6 65 75

Tot. 24 15 76 115

4. Conclusions

In this research, 115 real food production cases (RFPCs) were carried out over a period
of 20 years in the same pedo-climatic conditions. The RFPCs were investigated for the
purposes of understanding the effects and the roles of different combinations of agricultural
practices on SOC variation. Twelve variables were identified, and the resulting dataset
was processed through the C4.5 algorithm. Treatment duration was identified as the first
factor that affects SOC; however, when excluding the RFPCs that took one trimester, the
differences between the practices and their combinations on SOC content could be inferred.
The RFPCs with the highest increase in SOC were recorded for the nutrients distributed
by fertirrigation under organic management, and the practices that mostly affected SOC
positively were cover crops and drip irrigation. On the other hand, the practices that
negatively affected SOC were found within weed management run by rototillers and when
manual weeding was combined with drip irrigation.

The dataset description was mandatory for running and interpreting the decision tree;
however, it should be noted that these RFPCs are examples through which one can validate
the method for future uses in different contexts. Besides the specific results, this approach
can be replicable, adaptable, scalable, and designed for farmers, thereby supporting them
in the transition to new and more sustainable management strategies. The proposed
method differs from the previous pieces of research since it relies on a bottom–up approach
that offers farmers and stakeholders the opportunity to design management strategies
that mostly address their specific needs while not neglecting SOC increase. Indeed, from
the farmers’ point of view, it is important to underline that the approach can support
them to look at previous food production experiences and to define new combinations
of practices for increasing SOC. Moreover, the flexibility of the proposed approach may
enable farmers to create tailored strategies, including other factors or constraints, such as
feasibility, economic convenience, mechanical availability, and law restrictions, which can
be included as additional variables through which to analyze a decision tree.

From a wider perspective, this research can serve as guidance to help EU private actors
and public authorities to start up carbon farming initiatives, pilot projects, or certification
schemes at local and/or regional levels. Indeed, EU policies and funding programs are cru-
cial instruments for bringing about widespread carbon farming. For instance, the approved
CAP 28 Strategic Plans expect to incentivize carbon farming through eco-schemes aimed at
soil conservation. Also, the Circular Economy Action Plan within the European Green Deal
promotes the diffusion of carbon farming in terms of carbon uptake and circularity, and this
is to be achieved through the development of a regulatory framework for the certification
of carbon storage. In the same way, EU programs like Horizon, LIFE, and Interreg can
fund projects that are aimed at fostering carbon farming through several activities such as
the following: the development of approaches for assessing and monitoring SOC at the
farm level; the development of certification schemes for food produced through farming
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practices that improve SOC; the organization of training programs for farmers, advisers,
and public–private actors regarding the practices that one has to adopt for increasing SOC
and the related benefits; the creation of European networks of farmers and actors for repli-
cating project results and tools; and the development of a voluntary carbon market that is
based on carbon stored at the farm level. Besides the environmental and economic benefits,
changing to farm management practices that are oriented toward increasing carbon storage
may trigger some social co-benefits, such as improved interactions between farmers for the
purpose of knowledge sharing via a perspective of a “community of practice” as well as
through the major involvement of advisers, technicians, and suppliers for the effective im-
plementation of certain farming practices (e.g., irrigation, use of biomass for soil coverage,
weeding, nutrient and amendment distribution, etc.).
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