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Abstract: Biodiversity is profoundly influenced by habitat quality, and Harbin, a provincial cap-
ital situated in a cold climate zone, stands out as one of China’s regions most susceptible to the
repercussions of climate change. To ensure the city’s continued sustainable growth, a thorough
assessment of habitat quality must be conducted. This study employs a comprehensive approach
integrating the InVEST model, the PLUS model, a landscape pattern analysis, geographic detector,
and a geographically weighted regression model. The goal is to assess how land use and habitat
quality have changed in Harbin City, investigate factors contributing to spatial heterogeneity in
habitat quality, thoroughly examine evolutionary patterns under the inertial development scenario
from 2030 to 2050, and propose spatial optimization strategies. There are four key findings. First,
from 2000 to 2020, agricultural land and forest were Harbin City’s two most prevalent land use types.
The most notable transition occurred from forest to grassland, and the expansion of construction land
primarily resulted from its encroachment into agricultural areas. Second, within the area of study,
the landscape heterogeneity increased while simultaneously experiencing a decrease in connectivity,
and the landscape had a tendency toward a more fragmented spatial distribution. Third, overall
habitat quality rose between 2000 and 2020 but declined between 2030 and 2050. There was a “weak
in the west and high in the east” distribution pattern in the spatial heterogeneity of habitat quality.
Fourth, population density has the most impact on habitat quality, with the NDVI and GDP close
behind. Conversely, precipitation and slope had comparatively smaller influences on habitat quality.
Natural factors combined had a primarily favorable influence on habitat quality across the research
region in terms of spatial distribution. Conversely, population density had a discernibly detrimental
impact. Given these findings, this study suggests targeted strategies to optimize habitat quality. These
recommendations are relevant not only for biodiversity conservation but also for the development of
an ecologically sustainable community, particularly in a cold climate region.

Keywords: habitat quality; landscape pattern; InVEST model; PLUS model; geographic detector;
geographically weighted regression

1. Introduction

Biodiversity is the cornerstone of sustainable urban development, and its decline has
become a significant global environmental issue [1,2]. Habitat quality is the measure of
an ecosystem’s ability to furnish an environment conducive to the living and growth of
species [3] and is a key indicator of biodiversity status [4,5]. The conservation of biodiversity
is seriously threatened by its destruction [6,7].

Changes in land use and cover (LULC) may indicate the extent to which human
activity has harmed an ecosystem [8] and are the most direct representation of how human
actions interact with the environment [9]. Traditionally, landscape pattern serves as a tool
to describe the structural features of LULC, encompassing aspects like shape, proportion,
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and complexity. It offers a comprehensive depiction of the ecological environment system
within a region [10,11]. Strategic habitat quality optimization requires an understanding
of the features of LULC evolution and the distribution of landscape patterns. Widespread
human development and building activities have significantly changed the types, patterns,
and intensities of LULC in the context of growing urbanization. These changes have
resulted in a discernible deterioration in habitat quality [12–14], with serious impacts
on biodiversity and human well-being [12]. Given this context, it becomes essential to
thoroughly explore the spatiotemporal intricacies and underlying driving forces that give
rise to variations in habitat quality. This exploration is imperative not just for biodiversity
conservation but also for fostering human well-being [4,15,16].

Habitat quality research has studied macro- and microscales. Generally, habitat quality
evaluation methods are categorized into two types: (1) establishing an indicator evaluation
system and obtaining habitat parameters through field surveys and (2) evaluating habitat
quality using various types of models. While the field survey approach is constrained to
specific areas, the advent of various models has empowered scientists to assess habitat
quality across expansive regions. The InVEST model in particular features a dedicated
habitat quality module crafted to systematically evaluate ecological and environmental
conditions by integrating changes in LULC and biodiversity threats [17]. It has been utilized
in several global locations, including southwest Ethiopia [18], the state of Georgia in the
United States [19], and the Weihe River Basin in China [20]. The model has combined
a system dynamics model [20], the PLUS model [21], the coupled coordination degree
model [22], and different approaches to investigating future possibilities of habitat quality
and its connection to urbanization to serve as a foundation for scientific planning and
spatial optimization for various ecosystems, such as national parks [23], watersheds [24],
cities [25,26], and coastal zones [27].

Most research methods on habitat quality for large-scale regions focus on analyzing
spatiotemporal evolution and future predictions [21,22,28,29]. Despite considerable ad-
vances in this area, the exploration of the underlying drivers influencing habitat quality
requires further study [30]. Geographic detector (GD), a commonly used statistical method
of exploring spatial heterogeneity, can explore not only the impact of each influencing
factor on the explained variables but also the interactive explanatory power of multiple
factors. However, GD is limited in spatially articulating the magnitude of the impact of
the various drivers. In contrast, from a geospatial viewpoint, the geographically weighted
regression (GWR) model is excellent for dissecting the effect mechanisms of spatiotemporal
differences in habitat quality. Thus, GWR is an important analytical tool to explore the
many factors that influence habitat quality across geographical scales [31].

Harbin is a typical provincial capital city in the cold region of China. It is highly
sensitive to climate change and experiences more significant changes in the geographic
distribution of ecological risk [32]. The current study has the following aims: (1) to use
methods such as the LULC transition matrix, landscape pattern analysis, and the InVEST
model to quantitatively delineate the spatiotemporal dynamics of Harbin’s landscape
types, landscape configurations, and habitat quality; (2) to identify the key determinants of
Harbin’s habitat quality from 2000 to 2020 based on GD; (3) to use GWR to investigate how
social and natural factors affect habitat quality in Harbin; and (4) to use the PLUS model
to forecast the likely spatial distribution of habitat quality in Harbin from 2030 to 2050.
The ecological service assessment and urban planning of Harbin City can be supported
scientifically by the findings of this study.

2. Materials and Methods
2.1. Study Area

Harbin City is in the northeast of China’s Northeast Plain, covering an approximate
area of 53,000 km2 (Figure 1). As a regional central city in northeastern China and in the first
set of national comprehensive pilot cities for new urbanization, the urban agglomeration
in the northeast benefits greatly from Harbin’s contribution to sustainable development.
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Climatically, Harbin is classified as a mid-temperate continental monsoon zone, with
year-round precipitation mainly concentrated from June to September, with an average
annual precipitation of 539.03 mm and an average annual temperature of 4.9 ◦C. As a
representative provincial capital city in the cold region of Northeast China, Harbin has
significant climate change characteristics, fertile agricultural zones, and a large area. It
is rich in natural resources, with black soil as the main type of soil and abundant land
resources. In recent years, the urbanization level of Harbin City has been advancing,
land use has changed significantly, and habitat quality has also changed. Based on this,
this study evaluates habitat quality in Harbin City from 2000 to 2020 and simulates the
development pattern of habitat quality from 2030 to 2050, which can provide a reference
for future urban development.
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Figure 1. Location of Harbin City in northeastern China.

2.2. Data Sources

The main data sources used in this study are shown in Table 1.

Table 1. Data sources.

Data Data Source Spatial Resolution Temporal
Resolution Accessed Date

Land use/land
cover

GlobeLand30
(http://www.globallandcover.com/) 30 m × 30 m 2000, 2010, and 2020 15 October 2022

Annual average
precipitation

National Earth System Science Data
Center, National Science & Technology

Infrastructure of China
(http://www.geodata.cn)

1 km × 1 km 2000, 2010, and 2020 15 October 2022

Temperature

National Earth System Science Data
Center, National Science & Technology

Infrastructure of China
(http://www.geodata.cn)

1 km × 1 km 2000, 2010, and 2020 15 October 2022

http://www.globallandcover.com/
http://www.geodata.cn
http://www.geodata.cn
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Table 1. Cont.

Data Data Source Spatial Resolution Temporal
Resolution Accessed Date

DEM Geospatial data cloud
(http://www.cloud.cn) 30 m × 30 m 2009 6 December 2022

NDVI
The United States Geological Survey
(https://lpdaac.usgs.gov/products/

mod13q1v061/)
250 m × 250 m 2000, 2010, and 2020 8 March 2023

Population density
data

WorldPop Hub
(https://hub.worldpop.org/) 1000 m × 1000 m 2000, 2010, and 2020 8 March 2023

GDP
China’s Resource and Environmental

Sciences Data Centre
(https://www.resdc.cn/)

1000 m × 1000 m 2000, 2010 and 2019 8 March 2023

Roads and rivers

National Geographic Information
Resource Directory Service System

(https://www.webmap.cn/main.do?
method=index)

— — 8 March 2023

2.3. Methods
2.3.1. Land Use Transfer Change

The volume and direction of LULC type transfers over the study period can be reflected
in the LULC transfer matrix, which is used to characterize transfers between various LULC
types [17–19]. The land use transfer matrix is calculated using the following formula:

Sij =


S11 S12 ··· S1n
S21 S22 ··· S2n

...
...
...

...
Sn1 Sn2 ··· Snn

 (1)

where S denotes the area of LULC; n indicates the number of types of LULC; and Sij is the
area transferred from LULC type i to type j at the start and finish of a time period.

2.3.2. Landscape Indices

Using FRAGSTATS 4.2, this study computed regional edges, patch form complexity,
landscape aggregation, fragmentation, and diversity to measure landscape patterns (Ta-
ble 2). The LULC data for the calculation of the landscape indices were categorized based
on the GlobeLand30 dataset. At both landscape and land use type levels, this study calcu-
lated landscape indices for the whole city of Harbin and different land uses. To spatialize
the distribution of landscape patterns in Harbin City, this study used the moving window
method to calculate the spatial distribution of each index. A moving window scale that is
too small leads to discontinuity in the generated image, while a window that is too large
leads to a loss of overall image detail and blurring of the generated image. In this study,
GS+ 9.0 software was used to simulate the semi-variance function of landscape indices
under different moving window radii and to calculate the nugget/sill ratio to determine
the optimal moving window size. When the window radius is 720 m, the fluctuation in
the landscape index nugget/sill ratio starts to decrease, so 720 m is the optimal moving
window radius.

http://www.cloud.cn
https://lpdaac.usgs.gov/products/mod13q1v061/
https://lpdaac.usgs.gov/products/mod13q1v061/
https://hub.worldpop.org/
ttps://www.resdc.cn/
https://www.webmap.cn/main.do?method=index
https://www.webmap.cn/main.do?method=index
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Table 2. Descriptions of landscape indices.

Types Landscape Indices Abbreviation

Area-edge Largest Patch Index LPI
Percentage of Landscape PLAND

Shape Landscape Shape Index LSI
Aggregation Index AI

Aggregation Contagion Index CONTAG
Subdivision Number of Patches NP

Patch Density PD
Landscape Division Index DIVISION

Diversity Shannon’s Diversity Index SHDI

2.3.3. Habitat Quality

The examination of Harbin City’s habitat quality spanned from 2000 to 2020 based on
the InVEST model. The main formulas for the calculations are given below [20,22]:

Qxj = Hj

[
1 −

(
DZ

xj

DZ
xj + kz

)]
(2)

Dxj = ∑R
r=1 ∑Yr

y=1

(
wr

∑R
r=1 Wr

)
ryirxyβxSjr (3)

where Qxj indicates the habitat quality of a LULC type in a grid cell x; Hj indicates the
habitat suitability of LULC type j; DZ

xj is the habitat degradation degree of grid x in land use
type j; k is the half-saturation constant; Z indicates normalized constants, and Z = 2.5 is set
as programmed; x is a constant; y indexes all grid cells on r’s map and Yr corresponds to the
set of raster cells of r’s map; ry is the intensity of the threat factor; βx is the anti-interference
level of habitat; and Sjr is the relative sensitivity degree of different habitats to different
threat factors.

Based on earlier research and taking into account the real circumstances of the studied
region [33,34], habitat quality was categorized into five levels: low (0–0.2), low–medium
(0.2–0.4), medium (0.4–0.6), medium–high (0.6–0.8), and high (0.8–1).

2.3.4. Spatial Autocorrelation Analysis

A spatial autocorrelation is the correlation of a geographic property over many geo-
graphic locations [35,36].

The global spatial autocorrelation was calculated as follows:

I =
n ∑n

i=1 ∑n
j=1 wij(xi − x)

(
xj − x

)
∑n

i=1 ∑n
j=1 wij ∑n

i=1(xi − x)2 (4)

The calculation formula for local spatial autocorrelation is as follows:

Ii =
(xi − x)

S2
x

n

∑
j=1,j ̸=i

wij
(

xj − x
)

(5)

where I is the global spatial autocorrelation index; Ii indicates the local spatial autocorrela-
tion index; n indicates the number of regions; xi and xj are the index values of samples i and
j, respectively; x denotes the average sample index; wij is the spatial relationship weight
matrix; and S2

x denotes the variance in the observation unit xj.
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2.3.5. Geographic Detector

The determinants of the geographical variability in the habitat quality distribution
in Harbin City were identified via the application of factor detection and interaction
detection in geographic detectors (GDs). Higher values suggest a better ability to explain
the regional variation in habitat quality, with a q-value ranging from 0 to 1. The factor
detection primarily evaluates the capacity of various drivers in the research area for habitat
quality [37]. The formula was calculated as follows:

q = 1 − ∑L
h=1 Nhσ2

h
Nσ2 = 1 − SSW

SST
(6)

SSW =
L

∑
h=1

Nhσ2
h , SST = Nσ2 (7)

where h (h = 1, 2, . . ., L) indicates the stratification of variable Y or factor X; Nh and N
indicate the number of cells in stratum h and the whole region, respectively; σ2

h and σ2 are
the variance of the Y values in stratum h and the whole region, respectively; and SSW and
SST denote the sum of the variances within the stratum and the total variance in the whole
study area, respectively.

Interaction detection was employed to evaluate whether the combined action of the
two drivers either heightened or lessened the explanatory power of habitat quality.

2.3.6. Geographically Weighted Regression

To better account for regional heterogeneity, GWR develops localized coefficients by
using spatial location characteristics [38,39]. The calculation formula was

yk = β0(uk, vk) + ∑n
i=1 βi(uk, vk)xki + ck (8)

where yk denotes the ESs value; xki is the landscape index; n is the total number of spatial
units involved in the analysis; ck is the random error term; (uk, vk) is the spatial location of
sample k; β0 (uk, vk) is the intercept at location k; and βi (uk, vk) is the coefficient of the i-th
independent variable of sample k.

2.3.7. Simulation and Prediction of LULC Based on PLUS Model

The PLUS model introduces a framework that relies on land expansion analysis tech-
niques and a cellular automata model featuring various stochastic seeds. This approach
effectively reveals the fundamental drivers behind changing landscapes and the expan-
sion of land use. Comparatively speaking, the PLUS model offers superior simulation
accuracy [40]. Based on previous studies and data availability, 10 factors were selected as
drivers of LULC change from both natural and social aspects (Table 3) [21,41,42]. The PLUS
model LEAS (land expansion analysis strategy) module automatically calculates the extent
to which all drivers contribute to the expansion of each land use type.

This research assessed the changes in habitat quality in Harbin City under the inertial
development scenario from 2030 to 2050, using a 10-year span. In this scenario, land use
types spontaneously increase in diverse geographical and temporal dimensions; hence,
there are no areas of restriction on transfers. The transfers between land uses for the future
scenario are based on the actual land use transfers from 2010 to 2020 to set the land use
transfer matrix.

In evaluating the accuracy of the PLUS model, this study employed the Kappa coef-
ficient. A comparison was made between the actual 2020 LULC data and the simulated
2020 LULC results, generated based on data spanning from 2010 to 2020. The accuracy
obtained overall was 0.89, with a Kappa coefficient of 0.83, indicating a high degree of
consistency between the two datasets. These results affirm that the model’s accuracy meets
the criteria set forth in this study.
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Table 3. The spatial parameters that drive the shift in LULC in this research.

Category Driving Factors

Natural factors

Average annual precipitation (PRE)
Average annual temperature (TEM)

Elevation (DEM)
Slope (SLO)

Normalized difference vegetation index (NDVI)
Distance from water

Social factors

Population (POP)
Gross domestic product (GDP)

Distance from railways
Distance from highways

3. Results
3.1. Landscape Pattern Changes from 2000 to 2020
3.1.1. Spatial and Temporal Changes in LULC

Figure 2 illustrates the considerable structural complexity of and variability in the
LULC types in Harbin City from 2000 to 2020. LULC types were dominated by agricultural
land and forest: agricultural land was nearly 50% of the study area, forest was more than
35%, and the total area of the two was more than 80%. There was around 8% grassland
in the total area. Wetlands, water bodies, construction land, and bare land had smaller
proportions, with a total share of less than 8%. Over these 20 years, land conversions
occurred between almost every pair of LULC types. The predominant conversion was
from forest to grassland. Specifically, this conversion involved 694.83 km2 of forest from
2000 to 2010 and 872.70 km2 from 2010 to 2020. From 2000 to 2020, a total of 999.92 km2 of
forest was turned into grassland. Subsequently, the transformation of grassland into forest
(832.77 km2), the transition from agricultural land to forest cover (796.67 km2), and the shift
from agricultural land to construction zones (772.89 km2) underscored the predominant
source of urban expansion as encroachment upon agricultural lands.
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3.1.2. Analysis of the Evolution of Landscape Pattern Features

Changes in the Harbin City landscape index at the landscape level are significant
from 2000 to 2020, and the results are shown in Table 4. Overall, the number of patches,
the patch density, the largest patch index, and the contagion index showed a continuous
decrease, and Shannon’s diversity index and landscape division index showed a continuous
increase. The aggregation index had a lowering and then increasing trend, whereas the
landscape shape index displayed a rising and then falling trend. The overall fragmentation
of the city decreased, and human interference continued to decrease, while discrete land-
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scape continued to increase, landscape connectivity decreased, and spatial heterogeneity
increased.

Table 4. Variations in landscape indices at the landscape level from 2000 to 2020.

Year NP PD LPI LSI SHDI CONTAG DIVISION AI

2000 259,906 4.90 28.70 197.18 1.13 65.34 0.8764 94.92
2010 253,173 4.77 28.55 199.41 1.14 65.04 0.8778 94.86
2020 236,092 4.45 26.99 195.49 1.19 63.71 0.8854 94.97

Between 2000 and 2020, there were significant changes in the landscape pattern index
for each LULC type, as depicted in Figure 3. Due to its small area, bare land is not discussed.
The number of patches and patch density for agricultural land, grassland, and water bodies
exhibited a consistent decrease, suggesting a reduction in fragmentation and an overall
trend toward concentration. The number of patches and the patch density of the forest
exhibited an initial increase followed by a subsequent decrease. This pattern suggests that
landscape fragmentation underwent a transitional process characterized by a shift from
“concentration” to “dispersion” and back to “concentration”. In contrast, the number of
patches and the patch density of wetlands both exhibited an initial decline, followed by
a subsequent upward trend, while construction land experienced a consistent and unin-
terrupted increase. This pattern suggests a continuous escalation in the level of landscape
fragmentation. The largest patch index of agricultural land was the highest, indicating that
agricultural land was the dominant patch type in Harbin, with a relatively high degree of
internal connectivity and a more concentrated landscape, which also reflected how heavily
human activity had impacted agricultural land. The landscape shape index consistently
exhibited the highest values for grassland, followed by forest and construction land. This
pattern signifies that the landscape configuration of grassland was more intricate, while
agricultural land, water bodies, and wetlands displayed comparatively smaller landscape
shape index values. Agricultural land always had the highest percentage of landscape,
although overall the trend was downward, with the forest showing a tendency toward
decline followed by an increase and the grassland showing a trend toward gain followed
by a decrease. The percentage of the landscape of construction land continued to increase,
and the degree of this increase was more drastic from 2010 to 2020, indicating that the
urban expansion rate was faster and the urbanization level was higher during this period.

3.1.3. Landscape Index Analysis Based on Moving Window Method

Figure 4 displays the geographical distribution of landscape patterns in the research
area from 2000 to 2020, with notable overall changes. In the western part of the city, the
number of patches, patch density, and landscape shape index were located in low-value
areas, but the largest patch index and aggregation index were located in high-value areas.
The majority of LULC in Harbin was agricultural land, which comprised almost half of the
city’s total area. It included high levels of patch connectedness, high levels of aggregation,
low levels of landscape fragmentation, and high levels of anthropogenic disturbance. The
northern part of the city is the Xiaoxing’an Mountains ecological barrier area, which has
low patch number, patch density, Shannon’s diversity index, and landscape division index
values, as well as high contagion index values. It has a low degree of fragmentation,
good connectivity, low landscape heterogeneity, and a good ecological environment. The
regional economy’s high-quality development area, where the city center is located, has a
comparatively low contagion index and a high patch number, patch density, and landscape
shape index. These data indicate the area’s high degree of landscape fragmentation and the
strength of human interference activities.
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3.2. Habitat Quality Changes
3.2.1. Spatial and Temporal Evolution of Habitat Quality

Tables 5 and 6 provide the area proportions and transfer matrices for each grade of
habitat quality. Importantly, there has been a discernible enhancement in the overall habitat
quality of Harbin over time. Analyzing habitat quality ratings, it can be observed that the
majority of the city’s territory consistently belonged to the medium-grade habitat category,
accounting for nearly 50% of the total area. However, this percentage slightly decreased
from 52.50% in 2000 to 48.25% in 2020. The LULC type of this medium-quality habitat is
mainly agricultural land. Every year, Harbin City’s agricultural land area shrinks, and the
percentage of medium-quality habitat area also keeps declining. Approximately 40% of the
area was a high-quality habitat, and this percentage rose with time.
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Table 5. The area and proportion of habitat quality at different levels from 2000 to 2020.

Levels
2000 2010 2020

Area/km2 Proportion/% Area/km2 Proportion/% Area/km2 Proportion/%

Low 1516.51 2.86 1562.49 2.94 2245.94 4.23
Low-medium 528.921 1.00 527.631 0.99 707.73 1.33

Medium 27,853.6 52.50 27,489.9 51.79 25,603.9 48.25
Medium-high 2224.48 4.19 2025.23 3.82 1561.73 2.94

High 20,934.5 39.46 21,470.3 40.45 22,943.8 43.24

Table 6. Transfer matrix of habitat quality in Harbin from 2000 to 2020 (km2).

Year Levels Low Low–medium Medium Medium–High High Total

2000–2010

Low 1177.84 15.97 259.25 21.40 36.75 1511.21
Low–medium 18.49 380.32 99.68 16.03 12.14 526.67

Medium 261.89 111.13 26,534.41 326.62 649.13 27,883.19
Medium–high 70.62 14.62 157.66 1507.59 468.73 2219.23

High 28.89 4.93 462.64 146.57 20,273.54 20,916.57

2010–2020

Low 1377.26 11.01 154.29 4.12 11.06 1557.74
Low–medium 167.45 216.84 111.53 17.82 13.33 526.97

Medium 594.98 455.27 24,760.49 663.90 1040.18 27,514.83
Medium–high 59.30 21.01 141.18 665.58 1131.41 2018.48

High 41.36 4.34 456.43 205.27 20,736.30 21,443.70

2000–2020

Low 1219.95 17.93 234.59 5.13 33.61 1511.21
Low–medium 155.35 163.32 169.33 19.48 19.18 526.67

Medium 713.68 504.65 24,424.20 818.90 1421.64 27,883.06
Medium–high 103.13 16.87 203.74 499.95 1395.41 2219.11

High 48.24 5.69 590.76 213.03 20,058.73 20,916.46
Total 2240.35 708.46 25,622.62 1556.49 22,928.57 53,056.51

In terms of habitat quality transfer matrix, 649.13 km2 of medium-quality habitat was
converted into high-quality habitat from 2000 to 2010, and 1040.18 km2 was converted
from 2010 to 2020, totaling 1421.64 km2 over the 20 years, followed by 1395.41 km2 of
medium-high quality habitat upgraded to high-quality habitat over 20 years. An area of
818.90 km2 of medium-quality habitat was converted into medium–high-quality habitat,
and 713.58 km2 was converted into low–medium-quality habitat. In summary, there is an
overall improvement in habitat quality, with the high-quality habitat area expanding, but
the area of low-quality habitat is also increasing.

As seen in Figure 5, there were notable geographic variations in habitat quality, with
a pronounced “poor in the west and high in the east” trend. Differential degrees of
urbanization and human activity, which were more prominent in the western city area,
were strongly associated with this distribution. The western part of the city, predominantly
consisting of construction and agricultural land, exhibited a prevalence of low- and medium-
quality habitats. Notably, low-quality habitats were expanding in this area. In contrast, the
northern Xiaoxing’an Mountains ecological barrier and the central and eastern portions of
the city within the Zhangguangcai Range ecological barrier offered high-quality habitats
due to forest-dominated land use and less human disturbance, creating a relatively healthier
ecological environment.
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3.2.2. Spatial Autocorrelation Analysis of Habitat Quality

The global Moran’s I index exhibited values of 0.903 in 2000, 0.905 in 2010, and 0.903 in
2020, with a p-value of 0.001. This indicates a substantial positive spatial association
in the distribution of habitat quality patterns in Harbin City, as seen in Figure 6 on a
local spatial autocorrelation. The regions identified to have low–low habitat quality were
mainly concentrated in the western part of the city, displaying a more evident degree
of aggregation. The two types of land use that dominated these areas were agricultural
and building land. The low–low area comprised 21.21% of the city’s area in 2000 but
declined to 16.53% in 2020, demonstrating that the area of low habitat quality is decreasing.
High–high areas increased from 27.11% of the city’s total area in 2000 to 28.53% in 2020;
they are mainly distributed in the northern, central, and eastern parts of the city and are the
most obvious in the Xiaoxing’an Mountains ecological barrier area and the Zhangguangcai
Range ecological barrier area in large contiguous areas with forest as the dominant LULC
type. Low–high and high–low types accounted for a relatively small proportion, and
there was no obvious centralized distribution. Overall, the level of urbanization in Harbin
City has been increasing, the level of habitat quality has also increased, and the ecological
environment has been improving.
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3.3. Result of Identification of Driving Factors

The influence levels of natural and social indicators were computed in this study using
the geographic detector with factor detection and interaction detection to evaluate the
drivers of habitat quality in Harbin City (Table 7, Figure 7). Seven driving factors were
selected for factor detection: PRE, TMP, DEM, SLO, NDVI, POP, and GDP. The average
q-values were ranked as POP (0.524) > NDVI (0.454) > GDP (0.436) > DEM (0.400) > TMP
(0.335) > PRE (0.282) > SLO (0.177). Socio-economic elements had the most impact on the
condition of the habitat, and the geographical differential features of habitat quality were
strongly impacted by human activity. Strong explanatory power was also demonstrated by
NDVI and DEM for habitat quality. The least effective explanatory factor for habitat quality
was slope.

Table 7. Explanatory power of single factor on the spatial heterogeneity of habitat quality.

Year
Climate Factors Topographic Factors Vegetation Factors Human Factors

PRE TMP DEM SLO NDVI POP GDP

2000 0.316 0.341 0.405 0.178 0.533 0.506 0.427
2010 0.230 0.338 0.398 0.179 0.438 0.532 0.424
2020 0.301 0.326 0.398 0.174 0.390 0.534 0.457
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To identify the impacts of many variables operating in concert with habitat quality,
this study employed interaction detection. POP and NDVI had the greatest interaction ex-
planatory power values, both above 0.6. Interaction detection revealed a robust explanatory
power between NDVI, POP, GDP, and other factors, establishing them as crucial driving
forces influencing habitat quality. In contrast to factor detection, interaction detection exhib-
ited an enhanced explanatory power for habitat quality, suggesting that factor interactions
significantly influenced habitat quality to varying degrees.

3.4. Spatial Interactions among Driving Factors and Habitat Quality

A multicollinearity test for each driver was conducted before performing GWR, and
all drivers passed the multicollinearity test. Analyzing how social and ecological variables
affect habitat quality using GWR (Figure 8), the local R2 of the model was generally high,
and the standard residual values were in the range of −2.5 to 2.5, which indicated a better
fit and reliable results.
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Precipitation and temperature had close to 50% of the area positively affecting habitat
quality, while DEM had more than 70% of the area positively affecting habitat quality. SLO
had over 55% of the area positively impacting habitat quality. In the western region, the
terrain is predominantly flat, featuring gentle slopes, increased human activities, and a
prevalence of LULC types dominated by construction and agricultural land. This combina-
tion contributes to the degradation of habitat quality in the area. In higher-elevation hilly
areas, the terrain is more undulating and there is less human disturbance; thus, the habitat
quality is higher. NDVI positively affected habitat quality in more than 70% of the area,
and the negative impacts were mainly along the Songhua River in a linear distribution.
An increase in the NDVI results in increased plant cover, decreased human activity, less
influence on the biological environment, greater landscape connectedness, and, ultimately,
higher habitat quality. In more than 80% of the locations, POP had a detrimental influence
on the quality of the habitat, and the area affected by POP showed a tendency toward
continual expansion. This indicates that the stronger the human disturbance, the higher
the ecological damage and the lower the habitat quality. On the other hand, GDP had more
than 50% of its area positively impacting habitat quality, but the negatively impacted area
in 2020 was larger than the negatively impacted area 20 years earlier in 2000.

3.5. Simulation of LULC

Based on the previous LULC data, the LULC situation in Harbin City in 2030, 2040,
and 2050 was simulated and predicted (Table 8, Figure 9). The results show that con-
struction land in Harbin is growing quickly and is mostly located in the western urban
region. Concurrently, there is a continual reduction in agricultural land and grassland
areas. However, there is an observable increase in the extent of forested areas, wetlands,
and water bodies. The proportion of bare land area is still the smallest. From 2030 to 2050,
there will be a trend of simultaneous advancement of social and economic development
and ecological protection.

Table 8. LULC area and percentage of study area from 2030 to 2050.

Types
2030 2040 2050

Area/km2 Proportion/% Area/km2 Proportion/% Area/km2 Proportion/%

Agricultural land 24,828.05 46.79 23,989.40 45.21 23,270.71 43.85
Forest 19,259.47 36.30 19,439.21 36.63 19,576.18 36.89

Grassland 4056.10 7.64 3974.47 7.49 3926.33 7.40
Wetland 1030.82 1.94 1129.75 2.13 1209.37 2.28

Water body 1137.66 2.14 1337.08 2.52 1519.00 2.86
Construction land 2728.15 5.14 3171.02 5.98 3539.26 6.67

Bare land 22.76 0.04 22.09 0.04 22.16 0.04

Land 2024, 13, x FOR PEER REVIEW 16 of 23 
 

Figure 8. The quantitative effects of landscape indices in depicting habitat quality through GWR 
from 2000 to 2020. 

3.5. Simulation of LULC 
Based on the previous LULC data, the LULC situation in Harbin City in 2030, 2040, 

and 2050 was simulated and predicted (Table 8, Figure 9). The results show that con-
struction land in Harbin is growing quickly and is mostly located in the western urban 
region. Concurrently, there is a continual reduction in agricultural land and grassland 
areas. However, there is an observable increase in the extent of forested areas, wetlands, 
and water bodies. The proportion of bare land area is still the smallest. From 2030 to 
2050, there will be a trend of simultaneous advancement of social and economic devel-
opment and ecological protection. 

Table 8. LULC area and percentage of study area from 2030 to 2050. 

Types 
2030 2040 2050 

Area/km2 Proportion/% Area/km2 Proportion/% Area/km2 Proportion/% 
Agricultural land 24,828.05  46.79  23,989.40  45.21  23,270.71  43.85  

Forest 19,259.47  36.30  19,439.21  36.63  19,576.18  36.89  
Grassland 4056.10  7.64  3974.47  7.49  3926.33  7.40  
Wetland 1030.82  1.94  1129.75  2.13  1209.37  2.28  

Water body 1137.66  2.14  1337.08  2.52  1519.00  2.86  
Construction land 2728.15  5.14  3171.02  5.98  3539.26  6.67  

Bare land 22.76  0.04  22.09  0.04  22.16  0.04  

 
Figure 9. Map of future simulated LULC types from 2030 to 2050. 

3.6. Simulation of Habitat Quality 
The area percentage of each habitat quality category between 2030 and 2050 (Table 

9) and the spatial distribution pattern (Figure 10) show that the overall habitat quality of 
Harbin City will decline from 2030 to 2050. The average habitat quality value is 0.7207 in 
2030, 0.7152 in 2040, and 0.7113 in 2050. The highest proportion of the area is still a me-
dium-quality habitat, but it continues to decrease. The area proportions of low-, low–
medium-, medium–high-, and high-quality habitats all show a trend of increasing. From 
a spatial distribution standpoint, the low-quality habitat area in the western part of the 
city is anticipated to undergo further expansion, aligning with the observed trend of in-
creased construction land. Concurrently, the habitat in the northeastern portion of the 
city shows significant improvement, corresponding to the expansion of water body are-
as. Additionally, as the forested area grows, the eastern portion sees an increase in high-
quality habitat area. 

Figure 9. Map of future simulated LULC types from 2030 to 2050.



Land 2024, 13, 67 16 of 21

3.6. Simulation of Habitat Quality

The area percentage of each habitat quality category between 2030 and 2050 (Table 9)
and the spatial distribution pattern (Figure 10) show that the overall habitat quality of
Harbin City will decline from 2030 to 2050. The average habitat quality value is 0.7207 in
2030, 0.7152 in 2040, and 0.7113 in 2050. The highest proportion of the area is still a medium-
quality habitat, but it continues to decrease. The area proportions of low-, low–medium-,
medium–high-, and high-quality habitats all show a trend of increasing. From a spatial
distribution standpoint, the low-quality habitat area in the western part of the city is
anticipated to undergo further expansion, aligning with the observed trend of increased
construction land. Concurrently, the habitat in the northeastern portion of the city shows
significant improvement, corresponding to the expansion of water body areas. Additionally,
as the forested area grows, the eastern portion sees an increase in high-quality habitat area.

Table 9. The area and proportion of habitat quality at different levels from 2030 to 2050.

Levels
2030 2040 2050

Area/km2 Proportion/% Area/km2 Proportion/% Area/km2 Proportion/%

Low 2813.22 5.30 3288.02 6.20 3675.97 6.93
Low–medium 881.14 1.66 1037.49 1.96 1159.56 2.19

Medium 24,486.50 46.15 23,449.70 44.19 22,589.64 42.57
Medium–high 1631.04 3.07 1784.12 3.36 1835.30 3.46

High 23,251.11 43.82 23,503.68 44.29 23,802.55 44.86
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4. Discussion
4.1. Response of Habitat Quality to LULC Change

Landscape ecology study has long focused on the link between ecological systems and
landscape patterns [43,44]. The primary factors causing changes in habitat quality are LULC
alterations [45]. The effect of LULC change on this region’s habitat quality is a significant
and intricate problem. Harbin’s industrialization and urbanization have advanced further
as a result of the country’s reform and opening-up policies as well as the resuscitation of
the former industrial base in Northeast China [46,47]. Northeast China’s construction land
area has grown quickly, and a sizable portion of natural land has been transformed into
urban centers. The increase in LULC intensity has drastically damaged urban habitats, and
the extension of habitats of worse quality has also been trending to increase yearly. The
main areas of higher-quality habitat were the wetland habitat along the Songhua River
and the heavily wooded areas of the Xiaoxing’an Mountains and Zhangguangcai Range.
The higher-quality habitat area is growing along with the most natural wetland and forest
areas, which may be connected to the many wetland and forest preservation strategies that
cities have implemented. To stop the depletion of wetland resources, Harbin launched
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special campaigns and the “Green Shield” program in recent years. It has also planned
an ecological corridor spanning 100 miles along the Songhua River, safeguarded wetland
parks and nature reserves, and significantly enhanced the quality of the habitat.

It was predicted that between 2030 and 2050, the areas of forest, wetland, and water
bodies will all increase, which reflects that Harbin City is implementing ecological protec-
tion policies along with socio-economic progress. However, the overall habitat quality is
forecasted to decline from 2030 to 2050, which is related to the rapid expansion of urbaniza-
tion, especially the built-up areas in the western part of the city that were concentrated in
patches, greatly reducing the level of habitat quality.

Areas dominated by forest have a high level of habitat quality in Harbin, while habitat
quality is relatively low in densely populated, built-up areas, a finding consistent with
previous studies [20,48,49]. In general, forest, grassland and water bodies are the areas in
which high values of habitat quality are concentrated, while settlements, sandy areas, and
bare land have the lowest habitat quality [21,50,51]. Although the study area is different
and the climate, topography, and natural resources vary considerably from region to region,
the conclusion that natural ecosystems have a better ecological environment compared to
urban ecosystems is generally applicable. In summary, land use change directly affects
the evolution of habitat quality. We must carefully weigh the importance of ecosystem
and habitat quality to regional sustainable development to accomplish integrated socio-
economic and ecological system development. In terms of LULC planning, it is important
to logically distribute different LULC types, increase land preservation and restoration,
and advocate for sustainable LULC practices [52].

4.2. Methodological Considerations

In this study, a combination of multiple models was used to make the study richer
and more scientific. Based on the InVEST and PLUS models, the future development of
habitats was simulated based on the analysis of historical habitat quality, and the spatial
and temporal evolution characteristics of habitat quality in Harbin City were assessed for
the period of 2000–2050. And the degrees of influence of natural and social factors on
the spatial heterogeneity of habitat quality were spatialized by combining the geodetector
and geographically weighted regression model to provide a scientific reference for future
urban planning. This methodological linkage of multiple models and the presentation of
site-specific spatial management recommendations are the novelties of this paper.

The degree of habitat quality was spatialized mainly using the InVEST model. Com-
pared with field surveys used to obtain habitat parameters, this method has the advantages
of easy data availability, simple operation and wide applicability [53]; these qualities are
suitable for large-scale spatial planning, but the method also has certain uncertainties. In
this study, habitat types were mainly classified according to land use types, which is a
common classification method [20,28]. However, the spatial distribution pattern of habitat
quality can vary considerably depending on the method of habitat classification. EUNIS
(European Nature Information System) provides a detailed classification of different habitat
suitability, and researchers have provided more detailed secondary classifications of forest
types in Russia and North America [54]. Robert D. Pfister and other researchers describe
a methodology for classifying forest habitat types based on potential climax vegetation
through field research [55]. This categorization is more accurate compared to large-scale
spatial model data, but the data are also more difficult to obtain. Celina Aznarez classified
the habitats of Vitoria-Gasteiz into 18 classes according to their natural value, with a de-
tailed delimitation of the different land classes. Level 1 represents completely sealed areas
(buildings, bus lanes, highways, pavement and asphalt paths, etc.) and Level 18 represents
land cover, presumably under the least amount of human influence (high mountains, lakes,
and streams). And the habitat suitability score was determined via structured research
with 21 experts [56], which made the model output more scientific. Instead of categorizing
habitats, habitat grading is used to classify habitats with similar natural values into one
level, and this method of grading habitats based on their natural values is also worthwhile.
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Compared with the generalized land-use classification, it is more detailed, and compared
with the complex habitat classification of field research, it is more concise and easier
to calculate.

4.3. Suggestions for Land Space Optimization Based on Habitat Quality Improvement

The western region of Harbin City is primarily an agricultural area with a high con-
centration of human activities, a high level of urbanization, and nutrient-rich black soil [57].
Construction land is also expanding, with serious industrial and agricultural pollution.
In addition, soil erosion has had a significant negative influence on the region’s ability to
produce food due to decreasing soil fertility and habitat quality loss, both of which have an
adverse effect on human well-being. The ecological barrier areas of the Zhangguangcai
Range in the east and center of the region and the Xiaoxing’an Mountains in the north both
have higher levels of biodiversity, less human involvement, greater ecosystem services,
and more forest cover. Therefore, priority locations for habitat should be selected, and
various ecological restoration techniques should be chosen based on local characteristics,
including the existing state of LULC as well as potential future scenarios. Throughout the
city’s western sector, the focus is on comprehensive soil erosion prevention and control
projects, and agricultural farming measures, forestry, and grassland measures are combined
with engineering measures to protect rare black soil resources. Near the Songhua River,
it is recommended to implement water pollution control initiatives alongside wetland
development, protection, and management projects. These efforts should prioritize the
control of domestic sewage discharge and minimize pesticide and fertilizer loss, emphasiz-
ing the unique value of wetlands and the overall protection of wetland ecosystems. The
establishment of ecological protection and restoration belts inside the ecological barrier
zones of the Xiaoxing’an Mountains and Zhangguangcai Range can make a substantial
contribution to the preservation and rehabilitation of local ecosystems.

Overall, although the connectivity of habitats in Harbin is insufficient, especially in the
western region, the high degree of urbanization development and large areas of agricultural
land have meant that higher-quality habitats are relatively scarce and more fragmented
than in the east. In addition, the large amount of industrial and agricultural production and
construction have caused water pollution and soil erosion, which is in strong contrast to the
ecologically sound north and east. Therefore, it is recommended to use linear elements such
as rivers and greenways as corridors to connect nature reserves and maintain biodiversity.
In particular, the green corridor in the west of the city can be extended to connect it with
the east. For the Songhua River to continue supporting national parks and nature reserves,
as well as the Xiaoxing’an Mountains and Zhangguangcai Range’s ecological barrier zones,
these areas must be preserved for them to collectively carry out the crucial ecological roles
of ecological corridors.

4.4. Limitations and Outlook

The InVEST model is a mature, well-developed model, characterized by easy access to
data and its ease of operation [53]. However, the criteria used in its computation are rather
subjective; thus, more research is needed to determine whether the parameters are accurate
and logical. This research investigated how socio-economic and ecological variables affect
habitat quality, but because the city is a sophisticated social-ecological system, how hidden
elements like culture and policy affect habitat quality should also be considered. Therefore,
future research must take into account additional affecting elements and describe how
they interact.

To create a scientific foundation for future habitat quality development, this study
examined how habitat quality will evolve in 2030, 2040, and 2050 under the inertial devel-
opment scenario. However, it is noteworthy that the study did not include a comparative
analysis of habitat quality differences among the various development scenarios.

Future research should consider the extent to which additional factors influence
habitat quality and simulate the geographical distribution of habitat quality under various
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situations to provide a thorough study of habitat quality under various scenarios and to
provide more in-depth insights for urban ecological planning. Specifically, the ecological
protection scenario, economic priority scenario, and agricultural land protection scenario
could be considered for a thorough comparative evaluation of similarities and differences
in habitat quality.

5. Conclusions

Employing both the InVEST and PLUS models, this study conducted a comprehensive
analysis of the regional and temporal changes in habitat quality in Harbin City spanning
from 2000 to 2050. As a complement, utilizing geographic detector and geographically
weighted regression, we investigated how social and environmental variables influence
habitat quality. There are four major findings of the study:

(1) Agricultural land and forest were the main LULC categories in Harbin City from
2000 to 2020. Large tracts of agricultural land were transformed into forests and
building sites as a result of the combined effects of increasing urbanization and the
ongoing implementation of ecological protection laws. The built-up area of the city
expanded through encroachment into agricultural land. The heterogeneity of the
landscape in Harbin City continued to increase from 2000 to 2020, the degree of
fragmentation decreased, and the degree of human interference generally showed a
decreasing trend.

(2) The habitat quality index of Harbin City exhibited stability around 0.72 from 2000 to
2020, with a slight upward trend. In spatial distribution, the prevailing pattern
displayed a gradient of habitat quality, characterized by lower quality in the west and
higher quality in the east. Around 50% of the city’s area comprised medium-quality
habitat, while approximately 40% constituted high-quality habitat, demonstrating a
consistent upward trajectory. The research area’s habitat quality is generally excellent,
suggesting a promising course for growth.

(3) The most explanatory power for habitat quality was found in population density;
nonetheless, over 80% of the area had detrimental effects on habitat quality. The slope
had less of an impact on habitat quality than NDVI, GDP, and elevation, although
all three demonstrated significant explanatory power. Habitat quality is typically
positively impacted by natural factors.

(4) Harbin will concurrently achieve socioeconomic development and environmental
preservation from 2030 to 2050. However, the overall habitat quality continues
to decline.
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