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Abstract: In this study, we conducted a comprehensive analysis of the spatial distribution of soil
organic carbon stock (SOC stock) and the associated uncertainties in two soil layers (0–10 cm and
0–30 cm; SOC stock 10 and SOC stock 30, respectively), in Valchiavenna, an alpine valley located in
northern Italy (450 km2). We employed the digital soil mapping (DSM) approach within different
machine learning models, including multivariate adaptive regression splines (MARS), random forest
(RF), support vector regression (SVR), and elastic net (ENET). Our dataset comprised soil data from
110 profiles, with SOC stock calculations for all sampling points based on bulk density (BD), whether
measured or estimated, considering the presence of rock fragments. As environmental covariates
for our research, we utilized environmental variables, in particular, geomorphometric parameters
derived from a digital elevation model (with a 20 m pixel resolution), land cover data, and climatic
maps. To evaluate the effectiveness of our models, we evaluated their capacity to predict SOC stock
10 and SOC stock 30 using the coefficient of determination (R2). The results for the SOC stock 10 were
as follows: MARS 0.39, ENET 0.41, RF 0.69, and SVR 0.50. For the SOC stock 30, the corresponding
R2 values were: MARS 0.45, ENET 0.48, RF 0.65, and SVR 0.62. Additionally, we calculated the root-
mean-squared error (RMSE), mean absolute error (MAE), the bias, and Lin’s concordance correlation
coefficient (LCCC) for further assessment. To map the spatial distribution of SOC stock and address
uncertainties in both soil layers, we chose the RF model, due to its better performance, as indicated
by the highest R2 and the lowest RMSE and MAE. The resulting SOC stock maps using the RF model
demonstrated an accuracy of RMSE = 1.35 kg m−2 for the SOC stock 10 and RMSE = 3.36 kg m−2 for
the SOC stock 30. To further evaluate and illustrate the precision of our soil maps, we conducted an
uncertainty assessment and mapping by analyzing the standard deviation (SD) from 50 iterations
of the best-performing RF model. This analysis effectively highlighted the high accuracy achieved
in our soil maps. The maps of uncertainty demonstrated that the RF model better predicts the SOC
stock 10 compared to the SOC stock 30. Predicting the correct ranges of SOC stocks was identified as
the main limitation of the methodology.

Keywords: SOC stock; DSM; machine learning models; uncertainty mapping

1. Introduction

Soil is an essential resource that offers numerous benefits for sustainable development,
especially in the domains of food security and environmental regulation. One of its critical
services is the storage of soil organic carbon (SOC), which is pivotal for both climate
change mitigation and adaptation. Moreover, SOC plays a vital role in water management,
enhancing soil capacity to address both floods and droughts [1,2]. Poor soil management
can lead to significant disruptions in soil parameters and characteristics, resulting in
changes in SOC stocks. These changes, in turn, can cause the release of substantial amounts
of carbon into the atmosphere. Sequestering carbon in the soil is a valuable method for
controlling greenhouse gas levels in the atmosphere [3]. Studies indicate that this approach
has the potential to capture approximately 0.8 to 1.5 billion metrics tons of carbon annually.
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As a result, there is a high demand for accurate information and maps explaining the actual
SOC stock and the soil capacity for SOC sequestration [4].

Mountain ecosystems are characterized by a substantial amount of biological and
cultural diversity, and they play a crucial role in providing essential services such as water
and food security, and energy generation, as well as aesthetic and spiritual qualities [5].
According to the IPCC’s WGII Sixth Assessment Report on Mountains [6], it is assumed
that these ecosystems are extremely vulnerable to global changes. Mountainous soil is
naturally vulnerable, and it is increasingly sensitive to changes in the environment [7].
Understanding the spatial distribution of SOC stocks in alpine mountains is essential
for developing sustainable management strategies and environmental policies that can
effectively address future global changes. However, this task remains difficult due to the
complex morphology of these environments, which makes the collection of soil data chal-
lenging. Furthermore, comprehensive soil maps and information in the alpine mountains
are scarce [8]. In Italy, where a significant portion of the land area is covered by mountains,
the monitoring and assessment of the functionality of mountain soils becomes crucial.
Detailed and accurate maps of SOC ensure that local and global decision makers have
access to precise information. From a pedological perspective, soils in the Italian Alps
show diversity due to variations in factors related to pedogenesis [9]. These factors are
associated with the differing landscape, including diverse climatic conditions, geological
substrates, geomorphological processes, and the heterogeneity in land use and land cover
(LU/LC) [10].

The development of geographic information systems (GISs), remote sensing, and math-
ematical algorithms have improved the techniques of digital soil mapping (DSM), which is
suitable for mapping soil parameters in mountainous areas. In recent years, there has been
a surge in studies that focus on mapping soil properties by applying various strategies such
as geostatistics and machine learning [11]. These methodologies have sought to overcome
the limitations of traditional methods, which are time-consuming and labor-intensive and
cannot capture the real variability of soil properties in complex environments. The machine
learning models can be used to gain an understanding of the complex interactions between
soil properties and environmental factors and generate accurate predictions and maps [12].
In scientific research focused on SOC in alpine mountains, the primary approach involves
examining the connections between SOC and environmental factors. These factors typically
include topography, vegetation cover, and climate parameters, which serve as the main
variables employed in DSM techniques. Yang et al. in 2016 employed boosted regression
trees (BRTs) and random forest (RF) to model and map the SOC content of the Tibetan
plateau. The two models showed good results, explaining about 70% of the SOC spatial
distribution [13]; vegetation cover and the topographic variables were the most important
covariates for SOC prediction. The mapping of SOC stock of several land cover types was
carried out in the Bernese Alps, Switzerland, using different approaches [7]. The results of
this research showed that, except for Regression Kriging, all interpolation approaches ex-
hibited little variability in the RMSE of the expected SOC stock [7]. The spatial distribution
of SOC stock in the Andossi plateau, Valchiavenna, was mapped at high resolution using
Regression Kriging with geomorphometric parameters. A detailed vegetation map was
produced to improve the model performance [14]. The geomorphometry influences soil
formation and the storage of SOC in mountainous environments because it controls many
factors of pedogenesis; for example, in the upper part of the slope, water and soil sediment
(including organic matter) are lost without being compensated. On the other hand, at the
foot of the slopes, sediment inputs lead to soil accretion. Southern exposures are warmer
and drier, and vegetation tends to be thermophilic or xerophilic, while northern exposures
are colder [15].

The diversity of geomorphometric conditions influences the spatial distribution of soil
properties; therefore, geomorphometry is a mandatory variable in DSM methodology. Most
of the research cited [8,14] pointed out the need to enhance mapping methods to gather
precise and comprehensive data on mountainous areas [1,16,17].
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Uncertainty mapping is a critical step in the DSM approach, although it is not yet
used in all DSM papers. Soil maps are a simplified representation of a more complex
reality. As a result, no model is error-free, and no map is 100% accurate [18,19]. The causes
of uncertainty in DSM are diverse; we may highlight four major sources of uncertainty:
(a) errors related to soil sampling and laboratory measurements; (b) uncertainty of soil
geospatial position measurement; (c) uncertainties in covariate calculation; and (d) errors
linked to modeling approaches. These lead to several errors in DSM outcomes. Statistical
analyses of uncertainties and their mapping are strong tools for assessing map errors; they
are critical for soil map users since they provide additional information about the error
average that should be considered during the decision-making process [19–21].

The main objectives of our research were to compare four machine learning models
as DSM techniques, using geomorphometric and climatic variables, as well as land cover
as covariates. To: (i) map the SOC stocks of two layers (0–10 cm: SOC stock 10 and
0–30 cm: SOC stock 30), (ii) estimate the associated uncertainties in an alpine valley, as
well as understand the spatial distribution of SOC stock and the uncertainties within each
land cover.

2. Materials and Methods
2.1. Study Area

Valchiavenna is a valley in the Central Alps, located in the province of Sondrio, Lom-
bardy. It has a north–south orientation and covers an area of 450 km2; it is characterized by
a varied landscape; the elevation changes from around 200 to 3279 m a.s.l. The morphology
of the valley is linked to the action of water and glaciers, which act at different times and
in different ways. Glacial erosion is responsible for the transverse U-shaped profiles of
the valley and its hanging sides. In addition, fluvial erosion forms have influenced and
frequently re-shaped previous glacial morphologies. Valchiavenna has a considerable
range of lithologies with crystalline–acidic character, mainly of metamorphic origin, and
subordinately igneous rocks (late-Alpine Pluton intrusive body of Val Màsino and Val
Bregaglia), as well as mesozoic cover and the group of mafic and ultramafic rocks (ophi-
olitic complex). In restricted areas (Pian dei Cavalli and the Andossi plateau), there are
outcrops of sedimentary rocks of carbonate type. According to the classification of climates
by Köppen (1936), the climate of Valchiavenna is Cfb (humid temperate with maximum
summer rainfall), with an average annual precipitation in the range of 1000–1400 mm.
The average annual temperature at the foot of the valley is 12.8 ◦C, as measured by the
Chiavenna meteorological station at 333 m a.s.l.; in the upper part of the valley, at Montes-
pluga station (1908 m a.s.l.), the mean annual temperature drops to 2.7 ◦C. Valchiavenna
has a high diversity in terms of vegetation and land use, from meadows and arable land
in the lower parts to oak forests, coniferous forests, and finally, alpine grasslands at high
altitudes. Various soil types are present in the study area, classified as: Leptosols, Regosols,
Cambisols, Umbrisols, Podzols, and Histosols (according to the World Reference Base
(WRB) for Soil Resources) [22]. The soils in this study area are mostly coarse-textured
(sandy loam; sometimes loam or loamy sand), often with a high content of rock fragments.
In general, soil thickness ranges from 20 to 90 cm.

2.2. DSM Approaches in SOC Stock Mapping

To achieve our objectives, we performed the following steps:

• Soil survey and laboratory analyses.
• Calculation of SOC stock at each sampling point.
• Calculation of environmental covariates.
• Preparation of the covariate maps (with a spatial resolution of 20 × 20 m).
• Extraction of the environmental covariates at each soil sampling point.
• Environmental covariates selection, using a statistical correlation matrix.
• Comparison of different machine learning models to estimate the SOC stocks.
• SOC stock mapping.
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• Obtaining estimation uncertainty maps.

2.2.1. Soil Survey and Data Collection Strategy

The sampling was scattered across 18 topographic transects, chosen according to the
physical nature of the study area. The main sampling transects were on the north–south
axis, corresponding to the main orientation of Valchiavenna, and in transverse directions
(generally east–west) along its secondary valleys (Figure 1). The position of each soil profile
was chosen based on elevation (approximately every 300 m). Since changes in altimetry
across the topographic transects are associated with changes in the landscape (geomor-
phometry and vegetation), this sampling method provides an accurate representation of
the valley landscape and its pedological variability. All the sampled soil profiles were
georeferenced using a high-accuracy GPS. After the description of the profile, soil samples
were collected from each horizon. At the end of the pedological survey, 110 soil profiles
were described, for a total of 496 soil samples. The density of sampling points by km2 is
represented in Tables S3 and S4 (see Supplementary Materials).
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2.2.2. Laboratory Analysis Methods

The soil samples collected in the field were air-dried and sieved through a 2 mm sieve.
The standard laboratory analyses were performed on the fine earth.

Soil pH was measured potentiometrically in a soil-to-water ratio of 1:2.5. The or-
ganic carbon was determined via oxidation with K2Cr2O7 in an acid environment: for
samples very rich in organic matter and those taken from Histosols, we measured OM via
incineration in a muffle furnace at 550 ◦C (LOI). The sieving and sedimentation method
(pipette method) was used to obtain textural fractions: coarse sand (2.0–0.1 mm), fine sand
(0.1–0.05 mm), silt (0.05–0.002 mm), and clay (<0.002 mm).

As the main objective of this work was to map the SOC stock by soil layers, the
calculation per unit area was carried out as follows: the SOC content and that of the rock
fragments (described in the field) of each soil layer was calculated; then the bulk density
of the fine earth of each layer (BD1 and BD2, 0–10 cm and 10–30 cm depths, respectively;
Equations (1) and (2)) was estimated using pedotransfer functions (unpublished) obtained
in a detailed study of soils on the Andossi plateau (upper Valchiavenna). After obtaining
these data, we calculated the SOC stock of each soil layer using Equation (3).

BD1 = −0.293ln(SOC) + 1.253
(

n = 110; R2 = 0.08
)

(1)

BD2 = −0.242ln(SOC) + 1.2002
(

n = 66; R2 = 0.66
)

(2)

SOC stock
(

kgm−2
)
=

(
1 − vrf

100

)
× ht × BD × SOC

10
(3)
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where: SOC = organic carbon content (%); BD = bulk density (g cm−3); ht = horizon
thickness (cm); and vrf = volumetric rock fragments content (%).

2.2.3. Environmental Covariates

The environmental variables used as covariates are illustrated in Table 1. The covari-
ates were calculated with different methodologies and transferred to raster layers with a
20 m spatial resolution in a GIS environment, using the open-source software QGIS 3.16.1.
We used three different types of environmental covariates, geomorphometric, climatic, and
land cover, as follows:

• Geomorphometric covariates: To calculate these covariates, we used the digital terrain
model (DTM), delivered from the regional geo-portal of Lombardy (www.geoportale.
regione.lombardia.it (accessed on 15 October 2022), and extracted 16 morphometric
parameters. The calculation was carried out in QGIS 3.16.1 using the integrated
SAGA tool.

• Climatic covariates: We used mean annual air temperature (T) and precipitation (P)
delivered from WorldClim (www.worldclim.org (accessed on 5 January 2023) with
a spatial resolution of 1 km2. We applied a statistical downscaling technique using
a 30-year time series of climatic data registered at seven meteorological stations in
Valchiavenna, to obtain climatic covariate maps with the same spatial resolution as the
other environmental variables (20 m). Working in an alpine valley, the downscaling
technique was based on statistical correlations between climatic variables and eleva-
tion, and also with latitude and longitude [23]. The results of the correlations were
used to obtain T and P maps of the area, correcting the estimated values for slope and
exposure, which have a direct impact on microclimatic conditions in mountainous
environments [24]. The equations used for climate downscaling are explained in the
Supplementary Materials (Equations (S1)–(S5)).

• Land cover covariates: We used the most recent land cover maps of Lombardy, related
to agricultural and forestry use (DUSAF 7.0) [25], and identified six land cover classes
in the study area: broadleaf forests, coniferous forests, grasslands (low elevation),
prairies (high elevation), peatlands, and rocky soils.

Table 1. Main statistics of climate and geomorphometric covariates extracted from the 20 m DTM.

Covariates Names Abbreviations
Main Statistics

Min Mean Median Max SD

Elevation (m) Elv 197 1558.57 1664.21 3262 723.48

Slope (◦) Slp 0 31.75 32.93 80.08 15.40

Northness Index N_ind −0.99 −0.14 −0.31 1 0.74

Eastness Index E_ind −0.99 −0.05 −0.07 0.99 0.67

Profile Curvature Pr_cur −0.277 −0.000118 −0.00003 0.208 0.007

Plan Curvature Pl_cur −14.224 0.000095 0.00062 8.503 0.045

Min Curvature Min_cur −0.666 −0.010872 −0.00515 0.242 0.023

Log Curvature Log_cur −0.919 −0.000248 −0.00004 0.680102 0.039003

General Curvature Gen_cur −1.426 0.000063 0 1.167034 0.07111

Max Curvature Max_cur −0.309 0.010903 0.00539 0.483 0.022

Transversal Curvature Tra_cur −0.773112 0.000311 0.00007 0.829 0.04

Total Curvature Tot_cur 0 0.000986 0.00015 0.319 0.003

www.geoportale.regione.lombardia.it
www.geoportale.regione.lombardia.it
www.worldclim.org
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Table 1. Cont.

Covariates Names Abbreviations
Main Statistics

Min Mean Median Max SD

Tang Curvature Tan_cur −0.269201 0.000099 0.000071 0.298031 0.014142

Terrain Ruggedness Index TRI 0.0013 11.09 10.27 94.32 7.119

Terrain Position Index TPI −81.178 0.0055 −0.0012 65.2903 4.351

Flow Accumulation Fl_Acc 0 106.35 3 61576 1109.12

Vector Ruggedness Measure VRM 0 0.09 0.06 0.75 0.06

Topographic Wetness Index TWI 2.808 7.944 7.324 19.311 2.715

Mean annual Temperature (◦C) T 1.62 4.97 3.12 14.61 3.74

Mean annual Precipitations (mm) P 514.8 1278.56 1268.6 1531.1 132.39

2.2.4. Covariate Selections and Modeling Approaches

We used the statistical variable selection strategy, which is a mandatory step in DSM,
to improve the models’ performance and guard against noise and overfitting problems.
Firstly, we created a correlation matrix between the different continuous variables, and
when pairs showed a correlation coefficient >0.8 we removed one member of the pair. We
chose this strategy as it is not a time-consuming methodology with a good performance.
All the categorical variables (land cover) were used in the modeling by using binary (0/1)
indicator variables for each category.

To understand the differences in the distribution of SOC stock according to the land
cover, we used the one-way ANOVA with the post hoc Tukey HSD test (Tables S1 and S2).
The statistical analysis and modeling were performed using R software version 4.3.0
(R Development Core Team, 2021). For the DSM approach, we built different machine
learning models: MARS, ENET, RF, and SVR using the “Caret” and “Train” packages of
the R software version 4.3.0 [26]. We also applied hyperparameter tuning to automatically
select the best model structures according to the lowest prediction errors. We applied
data standardization (Z score normalization) to models (SVR and ENET) that require this
preprocessing step. For the hyperparameter optimization, we applied the grid search for
each algorithm:

• Multivariate adaptive regression splines (MARS). In 1991, Friedman unveiled a new
methodology that amalgamated linear regression with spline mathematical modeling
through binary recursive partitioning [27]. This method constructs a model step by
step, assessing variable importance and regularization to unimportant covariates.
MARS is flexible, identifying complex nonlinear interactions between input variables,
and it requires minimal pre-processing. Until now, the MARS model has not been
widely applied in soil property prediction [28,29].

• Elastic net model (ENET). The model was introduced by Zou and Hastie in 2005 [30].
Similar to Lasso and Ridge Regression, it employs a regulation and variable selection
technique, choosing the most advantageous combination of the two models. For
studies with few observations and a high number of predictors, it is advised to use
this model [30–32].

• Random forest (RF). Proposed by Breiman in 2001 [33], RF is the most used machine
learning algorithm in DSM, as it has proven effective in mapping soil properties over
an extensive variety of data sources and scales of soil heterogeneity. The model uses
decision trees for training, combining them to produce single predictions for each
observation in the datasets using an out-of-bag (OOB) strategy [34].

• Support vector machine (SVM). An effective machine learning method for mapping
soil properties, largely used by soil mappers in recent years [35,36]; it is a kernel-
based model, highly used to analyze nonlinear relationships over a high-dimensional
induced feature space. SVM uses decision surfaces specified by a kernel function [37].
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In the DSM approach, SVM is frequently used for classification, but it is also used for
regression predictions.

2.2.5. Prediction Validation and Uncertainties Mapping

A 10-fold cross-validation was employed to assess the model. In DSM, cross-validation
is frequently employed since it splits the data into several training and test datasets.
Moreover, it is advisable to utilize the cross-validation technique when conducting studies
in regions where data collection is limited, such as mountainous areas [38,39]. We employed
the following metrics to validate the models: the mean absolute prediction error (MAE), the
root-mean-squared error (RMSE), the coefficient of determination (R2), Lin’s concordance
correlation coefficient (LCCC), and bias. To map the uncertainties, we used the standard
deviation (SD) of 50 runs, as proposed by the Global Map Project [19,20,34]; in addition, the
zonal statistics was applied to understand the uncertainty distribution under the different
land cover types. To better grasp how SOC stock is spread out across the valley, we
examined its distribution based on certain geomorphometric parameters like slope, aspect,
and elevation. We created boxplots to show the SOC stock within various classes of these
parameters (Figures S6–S8 in Supplementary Materials).

3. Results
3.1. SOC Stock Statistical Analysis

The SOC stock values at 10 and 30 cm soil layers are summarized in Table 2. The
results illustrate that the soils in our study area store a significant amount of SOC, especially
in the top 30 cm, where the average is 8.72 kg m−2. The mean SOC stock for 30 cm is
approximately twice as high as that for 10 cm, which averaged 4.29 kg m−2. The SD results
reveal a high variability in the SOC stock data, indicating a high spatial heterogeneity in
the distribution of SOC stock in our study area. This is a result of the high pedodiversity
characterizing the Valchiavenna valley.

Table 2. Analytical data of Valchiavenna soils.

Soil Properties
Statistical Metrics

Min 1st Qu Median Mean 3rd Qu Max SD

SOC stock 10
(kg m−2) 0.02 2.88 4.00 4.29 5.55 9.31 2.10

SOC stock 30
(kg m−2) 0.03 5.13 7.27 8.72 10.93 29.90 5.51

The correlation matrix of the SOC stock with the environmental covariates is shown in
Figure 2. Many variables are highly correlated, as, for example, temperature and elevation.
Notably, parameters such as Pl_cur, Max_cur, and TPI exhibit significant correlations.
Additionally, climatic factors such as T and P are shown to exert control over the SOC
stock. It is important to note that while the Pearson correlation coefficient indicates this
relationship, its capacity to explain the complex statistical dynamics of the relationship
between SOC stock and the environmental parameters remains limited.

The boxplot of the distribution of SOC stock by land cover types (Figure 3) shows
that by far the highest SOC storage is found in peatlands, while the lowest is found in
high-altitude, thin, and skeletal soils. In the other cases, SOC storage is comparable, but that
of soils in coniferous forests is on average lower than that of broadleaf forests and natural or
cultivated grasslands. The results of the ANOVA analysis confirm this statistically: Tukey’s
HSD test shows that the greatest differences are found between rocky soils and peatlands
(Tables S1 and S2).
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Figure 3. Boxplot of SOC stock distribution by different land cover types (BF: broadleaf forests; CF:
coniferous forests; GR: grasslands; PR: prairies; PT: peatlands; RS: rocky soils): (a) SOC stock 0–10 cm;
(b) SOC stock 0–30 cm. The boxplots represent the following metrics: the median, first and third
quantile (Q1, Q3), maximum, minimum values, and outliers.

3.2. Model Validation and SOC Stock Prediction

The model validation results, obtained from an average of 50 training trials of the
models, are shown in Table 3 and Figures S2 and S3 (see Supplementary Materials). For
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both soil layers, the RF model demonstrated the best validation results, with the highest R2

and LCC and the lowest RMSE, MAE, and bias close to zero. However, the errors of SOC
stock prediction are higher for the SOC stock 30 (MAE = 2.48 kg m−2), compared to the
SOC stock 10 (MAE = 1.10 kg m−2).

Table 3. Validation performance of the different investigated machine learning models.

Model Performance
Machine Learning Models

MARS ENET RF SVR

SOC stock 10
(kg m−2)

RMSE 1.63 1.61 1.35 1.50

R2 0.39 0.41 0.69 0.50

MAE 1.25 1.23 1.10 0.98

LCCC 0.55 0.56 0.66 0.59

Bias 0.75 −1.25 0.01 −0.025

SOC stock 30
(kg m−2)

RMSE 3.47 3.97 3.36 3.46

R2 0.45 0.48 0.65 0.62

MAE 2.67 3.01 2.48 2.25

LCCC 0.62 0.64 0.73 0.70

Bias 0.52 −0.67 0.03 −0.56

The SVR model also showed good results, better than for ENET and MARS, which
were almost equal in performance. However, the results of bias illustrated that ENET
notably underestimated the SOC stock, while the MARS model tended to overestimate it.

The results showed that the RF model performed well in predicting SOC stock in
both soil layers, with particularly good results in the 0–10 cm compared to the 0–30 cm
layer. When we compared MAE with the average SOC stock values (0–10 cm: 4.29 kg m−2,
0–30 cm: 8.72 kg m−2), the RF model displayed a 26% error rate for SOC stock at 10 cm
and a 28% error rate for SOC stock at 30 cm. Interestingly, the SVR consistently showed
better results of MAE compared to the RF model. The results of bias illustrated that
while ENET model highly underestimate the SOC stock, the MARS model show an
important overestimation.

The order of importance of the predictors (Figure 4 and Figures S4 and S5 in
Supplementary Materials) changes from one model to another, depending on the type of
model and its structure. The MARS and ENET models used fewer variables than RF and
SVR. In the RF model, land cover was the most important predictor, followed by climate
parameters and several geomorphometric variables (mainly curvatures).
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soils; GR: grasslands; PR: prairies; BF: broadleaf forests; CF: coniferous forests): (a) SOC stock 0–10 cm;
(b) SOC stock 0–30 cm.
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3.3. Maps of SOC Stock and Uncertainty Estimation

We employed the RF model to represent the spatial distribution of SOC stock and the
associated uncertainties (Figure 5) since it produced the best prediction results (Table 3).
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The prediction maps of SOC stocks show a similarity in the spatial pattern of the two
soil layers considered. The central region of the valley has a higher storage of organic
carbon: these are areas covered by broadleaf forests, coniferous forests, and grasslands,
located at medium altitudes. The lowest values correspond to high-altitude and sloping
areas, where the vegetation is sparse, and the soil is thin and rich in rock fragments (Figures
S6 and S7 in Supplementary Materials). The valley floor areas show a different behavior:
for the 0–10 cm layer they have stock values comparable to those of the forest areas, while
for the 0–30 cm layer they have significantly lower stockage. This difference arises from
the management of soils on the valley floor, which are alternated between grassland and
arable land. Mechanically ploughing the soil results in a substantial loss of organic matter
due to oxidation. Additionally, soils managed as grassland are also subjected to ploughing
after a limited number of years. The value of the SOC stock, estimated cartographically, is
obviously greater for the 0–30 cm layer (2.9 to 19.5 kg m−2, with an average of 7.73 kg m−2),
than for the 0–10 cm layer (0.8 to 6.8 kg m−2, with an average of 3.72 kg m−2). Comparing
these estimations to the observed data in Table 2, the average SOC stock across the entire
area is lower than the observed average SOC stock values.

The maps displaying the uncertainty (obtained as the variance from 50 repetitions of
the estimates) of SOC stock 10 has a range between 0.01 and 0.15 kg m−2. For SOC stock
30 the error varies between 0.04 and 0.54 kg m−2. These results indicate that there are
generally low levels of uncertainty, underscoring the model’s stability.

A statistical analysis of the uncertainty distribution across different land cover types,
as shown in Figure 6, reveals that errors in SOC stock predictions tend to be higher at
elevated altitudes, especially in areas with significant slopes and rocky soils.
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4. Discussion
4.1. Models’ Performance

The performance of machine learning models can vary because each model operates
differently, due to its unique structure. The choice of variables, which differs from model
to model, has a significant impact on how well the model performs. For instance, in the
MARS model, which presented the least accurate predictions, only a few variables were
chosen, resulting in a loss of information about the relationship between SOC stock and
environmental factors. In contrast, RF and SVR used a more extensive set of variables,
leading to much better model performances. Our research obtained results consistent with
previous scientific work on predicting and mapping soil properties such as SOC stock,
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demonstrating the robust performance of the RF model. In complex tropical landscapes,
RF rivalled the predicting power of the boosted regression tree (BRT) algorithm, skillfully
handling data variability and mitigating irrelevant factors [40]. Similarly, in a study using
Sentinel-1 and Sentinel-2 for soil mapping, RF competed effectively among machine learn-
ing methods for SOC prediction, highlighting its promise when coupled with multi-source
sensor data [41]. In a study focused on employing machine learning for SOC prediction in
agriculture, XGBoost demonstrated exceptional accuracy. In the same study, the RF model
also performed admirably. Furthermore, the integration of Sentinel-1 and Sentinel-2 data
significantly enhanced the precision of these predictions [42]. Another research project
focused on predicting SOC content using RF, k-nearest neighbors (kNNs), SVM, artificial
neural network (ANN), and ensembles. RF stood out, with excellent predictive perfor-
mance [43]. Similarly, the work of Zhang et al. (2022) aims to map the SOC distribution
in China using machine learning; when comparing models, RF emerged as superior, with
higher R2 and lower RMSE values across soil depths (0–10, 10–20, 20–30, and 30–40 cm) [32].

4.2. SOC Stock Spatial Distribution: The Main Drivers and Uncertainties

The results of the RF model show that the main environmental drivers of SOC stocks
in Valchiavenna are land cover types, climate, and geomorphometric variables (slope, cur-
vatures, and TWI). These results are in agreement with previous studies [16,17], which have
shown that SOC stocks in mountain environments are strongly influenced by vegetation
cover and climatic conditions.

Previous research has shown that the type of land cover and habitat significantly
influence the storage of SOC stock in alpine mountains. Consequently, the type of vege-
tation is a crucial parameter because it directly impacts the storage of organic carbon in
the soil [44]. Our results illustrate that peatlands, grasslands, and coniferous forests can
store considerably more carbon in the soil compared to broadleaf forests and prairies. Our
results also show that the SOC stock is significantly influenced by climatic conditions. Air
temperature has a strong influence as it controls the rate of mineralization of organic matter
in the SOC balance and therefore affects the output rate. In alpine ecosystems, there is
a negative relationship between temperature and SOC storage, at least beyond the belt
of natural grasslands, where thin and rocky soils have only sparse and discontinuous
vegetation, in addition SOC stocks increase with elevation in these areas [45]. As a result
of ongoing climate change, increases in temperature are expected to reduce SOC storage.
Mitigation measures favoring carbon sequestration strategies (protection or restoration of
peatlands, afforestation, sustainable grassland cultivation, etc.) should focus on the most
fragile mountain ecosystems [44,46].

Precipitation also controls the dynamics of SOC storage in mountain soils: it is es-
sential for net primary production (NPP) and has an impact on soil moisture, pH, and
respiration [47]. However, research assessing the impact of changes in precipitation on the
soil SOC budget is still limited [47,48]. Geomorphometric and topographic factors have an
important influence on SOC stock spatial distribution, although their impact is generally
less significant than climatic factors. The importance of geomorphometrical predictors on
the spatial distribution of SOC stock differs between the top 10 cm and the top 30 cm of
soil. For example, Figure 3 illustrates that the wetness index has a more notable effect on
SOC stock distribution in the upper 10 cm compared to the upper 30 cm, as it is related
to the soil water content, which influences indirectly the SOC stock. Slope and aspect
control the solar radiation and soil moisture: steeper slopes often experience higher rates of
erosion, which can result in reduced soil development and SOC storage; aspect influences
the exposure to sunlight, affecting vegetation growth and decomposition rates, which,
in turn, impact SOC accumulation. The landforms, such as the curvatures, control the
zones of SOC erosion and deposition. Previous research has already demonstrated the
relationship between SOC stock variability and geomorphometry [17,36,49]. The SOC stock
maps and analyses of its distribution by topographical parameters (Figures S6–S8) confirm
a strong link between topographic attributes and SOC stock levels. Specifically, elevations
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between 1500 and 2500 m show higher SOC stocks, declining beyond 2500 m (Figure S6).
Additionally, areas with steep slopes tend to have a lower SOC stock (Figure S7). Our study
highlights those regions situated to the east and north exhibit high carbon stock (Figure S8).
These areas, characterized by the highest precipitation, the coldest temperatures of the
valley, and vegetation such as peatlands, grasslands, and coniferous forests, consistently
demonstrate elevated SOC storage (Figure S1).

By examining the uncertainty maps, it appears that there is a correlation between
topographical parameter attributes and prediction errors. Higher altitudes with significant
slopes and rocky soils exhibit greater prediction errors, particularly in regions with complex
topography and shallow soils prone to erosion. In contrast, valleys and low-lying areas
display lower uncertainties due to their more uniform soils. Peatlands stand out with
notably increased uncertainty, especially for SOC stock 30. This is attributed to the limited
number of peatland soils sampled and to the variability of their soil characteristics in
our study area. Further, the analysis of uncertainty distribution by land use indicates a
threefold higher uncertainty in predicting SOC stock 30 compared to SOC stock 10. This
underscores the complexity of the SOC stock prediction and highlights the need for more
data acquisition and model calibration.

It is essential to note that when comparing the SOC stock ranges depicted in the final
maps with those observed in the actual data, a noticeable trend emerges. The RF model
appears to impose a limitation on the SOC stock range. For instance, in the observed
dataset, the SOC stock 10 spans from 0.02 to 9.31 kg m−2; however, in the generated map,
this range contracts to 0.85 to 6.75 kg m−2. Similarly, examining the SOC stock 30 in the
map, the range shifts from 2.85 to 19.50 kg m−2, while in the observed data it increases
from 0.03 to 29.90 kg m−2. The differences in SOC stock ranges between the model’s maps,
and the actual data highlight the fact that the model does not perform perfectly for soils
with very high or very low SOC stock amounts. This mismatch in accuracy is due to
several factors that are partly, but not solely, due to the modeling process. The complicated
mountain landscape makes the modeling harder, and the difficulties in collecting data in
this area make the challenges higher. The complex terrain and the problems with obtaining
representative samples both contribute to this issue. The SOC stock uncertainty maps reveal
insights into predictive accuracy across diverse land covers and depths. These findings
contribute to our understanding of carbon dynamics and underscore challenges in modeling
complex terrains and land covers. Our research demonstrates that the Valchiavenna stocks
a high amount of SOC. According to EIONET-SOIL data [50], Italian soils have an average
SOC stock (0–30 cm) of 5.63 kg m−2, compared to 8.72 kg m−2 of the Valchiavenna soils in
the same soil layer; this means that the soils of this valley provide important ecosystem
services that should be taken into consideration to mitigate and adapt the impact of climate
change and that it is necessary to manage soils carefully and protect them from degradation
to avoid the loss of SOC, especially under climatic change scenarios.

5. Conclusions

The machine learning models applied in our research showed different performances,
which is important in the context of DSM approaches to better understand the suitable
modeling techniques. The RF model showed the best performance results compared to
the other models. The results highlight the crucial role that machine learning models play
in accurately capturing the complex relationships between SOC stock and environmental
factors. Our research indicates that land cover and climatic factors are the most important
predictors of SOC stock spatial distribution; geomorphometric parameters (slope, curva-
tures, and TWI) also demonstrated a significant impact in our mountainous environments.
While the machine learning application yielded promising results in predicting the spatial
distribution of SOC stock, the methodology revealed significant limitations, particularly in
accurately estimating the entire range of SOC stock values.

The future development of this work may involve enhancing data collection in areas
where uncertainties are great: the precision and accuracy of the output’s maps might be
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improved by a future data-gathering design for the models’ validation. Using additional
predictors such as parent material maps and the history of land use may also improve
the quality of the maps. The use of future projection scenarios of climate and land use
changes would be a way to include temporal data to enhance knowledge of SOC dynamics
over time in this environment, for the adoption of sustainable land management strategies.
Therefore, the next step of this work is the prediction of SOC stocks under future climate
change scenarios using machine learning and climatic models.

This study contributes to the understanding of SOC dynamics and mapping at a
local scale: the knowledge of SOC stocks can be used by decision makers to protect
regions with high actual carbon storage potential, such as mountain forests, peatlands, and
grasslands, or zones at high risk of losing SOC stock, such as the upper belts of the valley.
Finally, our research offers valuable information into the distribution of soil organic carbon
stock in mountainous areas and can be used to assess ecosystem services, environmental
management strategies, and support plans to mitigate climate change in these areas.
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1. Baruck, J.; Nestroy, O.; Sartori, G.; Baize, D.; Traidl, R.; Vrščaj, B.; Bräm, E.; Gruber, F.E.; Heinrich, K.; Geitner, C. Soil classification

and mapping in the Alps: The current state and future challenges. Geoderma 2016, 264, 312–331. [CrossRef]
2. Romeo, R.; Vita, A.; Manuelli, S.; Zanini, E.; Freppaz, M.; Stanchi, S. Understanding Mountain Soils: A Contribution from Mountain

Areas to the International Year of Soils; FAO: Rome, Italy, 2015.
3. Hartemink, A.E.; Gerzabek, M.H.; Lal, R.; McSweeney, K. Soil Carbon Research Priorities. In Soil Carbon; Hartemink, A.E.,

McSweeney, K., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2014; pp. 483–490. [CrossRef]
4. Lal, R.; Smith, P.; Jungkunst, H.F.; Mitsch, W.J.; Lehmann, J.; Nair, P.R.; McBratney, A.B.; Sá, J.C.d.M.; Schneider, J.; Zinn, Y.L.; et al.

The carbon sequestration potential of terrestrial ecosystems. J. Soil Water Conserv. 2018, 73, 145A–152A. [CrossRef]
5. Alfthan, B.; Gjerdi, H.; Puikkonen, L.; Schoolmeester, T.; Andresen, M.; Gjerdi, H.L.; Jurek, M.; Semernya, L. Mountain Adaptation

Outlook Series: Synthesis Report; UN Environment & GRID-Arendal: Arendal, Norway, 2018.
6. Adler, C.P.; Weste, I.; Bhatt, C.; Huggel, G.E. Climate Change 2022—Impacts, Adaptation and Vulnerability: Working Group II

Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge,
UK, 2023. [CrossRef]

7. Hoffmann, U.; Hoffmann, T.; Jurasinski, G.; Glatzel, S.; Kuhn, N. Assessing the spatial variability of soil organic carbon stocks in
an alpine setting (Grindelwald, Swiss Alps). Geoderma 2014, 232-234, 270–283. [CrossRef]

8. Lagacherie, P.; McBratney, A. Chapter 1. Spatial soil information systems and spatial soil inference systems: Perspectives for
Digital Soil Mapping. In Developments in Soil Science; Elsevier: Amsterdam, The Netherlands, 2007; Volume 31, pp. 3–22.

9. D’amico, M.E.; Freppaz, M.; Leonelli, G.; Bonifacio, E.; Zanini, E. Early stages of soil development on serpentinite: The proglacial
area of the Verra Grande Glacier, Western Italian Alps. J. Soils Sediments 2014, 15, 1292–1310. [CrossRef]

10. D’Amico, M.E.; Freppaz, M.; Filippa, G.; Zanini, E. Vegetation influence on soil formation rate in a proglacial chronosequence
(Lys Glacier, NW Italian Alps). CATENA 2014, 113, 122–137. [CrossRef]

11. Wang, D.; Li, X.; Zou, D.; Wu, T.; Xu, H.; Hu, G.; Li, R.; Ding, Y.; Zhao, L.; Li, W.; et al. Modeling soil organic carbon spatial
distribution for a complex terrain based on geographically weighted regression in the eastern Qinghai-Tibetan Plateau. CATENA
2020, 187, 104399. [CrossRef]

12. Ferré, C.; Caccianiga, M.; Zanzottera, M.; Comolli, R. Soil–plant interactions in a pasture of the Italian Alps. J. Plant Interact. 2020,
15, 39–49. [CrossRef]

13. Yang, R.-M.; Zhang, G.-L.; Liu, F.; Lu, Y.-Y.; Yang, F.; Yang, F.; Yang, M.; Zhao, Y.-G.; Li, D.-C. Comparison of boosted regression
tree and random forest models for mapping topsoil organic carbon concentration in an alpine ecosystem. Ecol. Indic. 2016, 60,
870–878. [CrossRef]

https://www.mdpi.com/article/10.3390/land13010078/s1
https://doi.org/10.1016/j.geoderma.2015.08.005
https://doi.org/10.1007/978-3-319-04084-4_48
https://doi.org/10.2489/jswc.73.6.145A
https://doi.org/10.1017/9781009325844
https://doi.org/10.1016/j.geoderma.2014.04.038
https://doi.org/10.1007/s11368-014-0893-5
https://doi.org/10.1016/j.catena.2013.10.001
https://doi.org/10.1016/j.catena.2019.104399
https://doi.org/10.1080/17429145.2020.1738570
https://doi.org/10.1016/j.ecolind.2015.08.036


Land 2024, 13, 78 15 of 16

14. Ballabio, C.; Fava, F.; Rosenmund, A. A plant ecology approach to digital soil mapping, improving the prediction of soil organic
carbon content in alpine grasslands. Geoderma 2012, 187–188, 102–116. [CrossRef]

15. Baize, D. Naissance et Évolution des Sols: La Pédogenèse Expliquée Simplement; Quae Editions: Versailles, France, 2021; pp. 1–160.
16. Dorji, T.; Odeh, I.O.; Field, D.J.; Baillie, I.C. Digital soil mapping of soil organic carbon stocks under different land use and land

cover types in montane ecosystems, Eastern Himalayas. For. Ecol. Manag. 2014, 318, 91–102. [CrossRef]
17. Li, Y.; Liu, W.; Feng, Q.; Zhu, M.; Yang, L.; Zhang, J. Effects of land use and land cover change on soil organic carbon storage in

the Hexi regions, Northwest China. J. Environ. Manag. 2022, 312, 114911. [CrossRef]
18. Vaysse, K.; Lagacherie, P. Using quantile regression forest to estimate uncertainty of digital soil mapping products. Geoderma

2017, 291, 55–64. [CrossRef]
19. Heuvelink, G. Uncertainty quantification of GlobalSoilMap products. In Proceedings of the GlobalSoilMap. Basis of the Global

spatial soil information system prodect of the 1st Globalsoilmap Conference, Orléans, France, 7–9 October 2013; pp. 335–340.
[CrossRef]

20. Peralta, G.; Di Paolo, L.; Luotto, I. Global Soil Organic Carbon Sequestration Potential Map—GSOCseq v.1.1.; FAO: Rome, Italy, 2022.
[CrossRef]

21. Nations, Y.; Olmedo, G.F.; Reiter, S. Soil Organic Carbon Mapping Cookbook, 2nd ed.; FAO: Rome, Italy, 2018.
22. IUSS Working Group WRB. World Reference Base for Soil Resources. In International Soil Classification System for Naming Soils and

Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022.
23. Bc, H.; Rg, C. Climate downscaling: Techniques and application. Clim. Res. 1996, 7, 85–95.
24. Belloni, S.; Pelfini, M. Il gradiente termico in Lombardia, Dipartimento di scienze terra del università di Milano. Acqua-Aria 1987,

4, 441–447.
25. DUSAF 7.0—Uso e Copertura del Suolo 2023—Geoportale della Lombardia. Available online: https://www.geoportale.

regione.lombardia.it/news/-/asset_publisher/80SRILUddraK/content/dusaf-7.0-uso-e-copertura-del-suolo-2023 (accessed on
20 April 2023).

26. Kuhn, M. Caret: Classification and Regression Training. R Package Version 6.0-86. Available online: https://CRAN.R-project.
org/package=caret (accessed on 20 March 2023).

27. Friedman, J.H. Estimating Functions of Mixed Ordinal and Categorical Variables Using Adaptive Splines. 1991. Available online:
https://apps.dtic.mil/sti/citations/ADA590939 (accessed on 25 October 2022).

28. Rentschler, T.; Gries, P.; Behrens, T.; Bruelheide, H.; Kühn, P.; Seitz, S.; Shi, X.; Trogisch, S.; Scholten, T.; Schmidt, K. Comparison of
catchment scale 3D and 2.5D modelling of soil organic carbon stocks in Jiangxi Province, PR China. PLoS ONE 2019, 14, e0220881.
[CrossRef] [PubMed]

29. Wang, L.-J.; Cheng, H.; Yang, L.-C.; Zhao, Y.-G. Soil organic carbon mapping in cultivated land using model ensemble methods.
Arch. Agron. Soil Sci. 2022, 68, 1711–1725. [CrossRef]

30. Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Stat. Methodol. Ser. B 2005, 67, 301–320.
[CrossRef]

31. Sirsat, M.; Cernadas, E.; Fernández-Delgado, M.; Barro, S. Automatic prediction of village-wise soil fertility for several nutrients
in India using a wide range of regression methods. Comput. Electron. Agric. 2018, 154, 120–133. [CrossRef]

32. Zhang, J.; Schmidt, M.G.; Heung, B.; Bulmer, C.E.; Knudby, A. Using an ensemble learning approach in digital soil mapping of
soil pH for the Thompson-Okanagan region of British Columbia. Can. J. Soil Sci. 2022, 102, 579–596. [CrossRef]

33. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
34. Wadoux, A.M.-C.; Minasny, B.; McBratney, A.B. Machine learning for digital soil mapping: Applications, challenges and suggested

solutions. Earth-Sci. Rev. 2020, 210, 103359. [CrossRef]
35. Khaledian, Y.; Miller, B.A. Selecting appropriate machine learning methods for digital soil mapping. Appl. Math. Model. 2020, 81,

401–418. [CrossRef]
36. Were, K.; Bui, D.T.; Dick, Ø.B.; Singh, B.R. A comparative assessment of support vector regression, artificial neural networks, and

random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape. Ecol. Indic. 2015, 52,
394–403. [CrossRef]

37. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
38. Piikki, K.; Wetterlind, J.; Söderström, M.; Stenberg, B. Perspectives on validation in digital soil mapping of continuous attributes—

A review. Soil Use Manag. 2020, 37, 7–21. [CrossRef]
39. Tajik, S.; Ayoubi, S.; Zeraatpisheh, M. Digital mapping of soil organic carbon using ensemble learning model in Mollisols of

Hyrcanian forests, northern Iran. Geoderma Reg. 2020, 20, e00256. [CrossRef]
40. Ließ, M.; Schmidt, J.; Glaser, B. Improving the Spatial Prediction of Soil Organic Carbon Stocks in a Complex Tropical Mountain

Landscape by Methodological Specifications in Machine Learning Approaches. PLoS ONE 2016, 11, e0153673. [CrossRef]
41. Zhou, T.; Geng, Y.; Chen, J.; Pan, J.; Haase, D.; Lausch, A. High-resolution digital mapping of soil organic carbon and soil total

nitrogen using DEM derivatives, Sentinel-1 and Sentinel-2 data based on machine learning algorithms. Sci. Total. Environ. 2020,
729, 138244. [CrossRef]

42. Nguyen, T.T.; Pham, T.D.; Nguyen, C.T.; Delfos, J.; Archibald, R.; Dang, K.B.; Hoang, N.B.; Guo, W.; Ngo, H.H. A novel intelligence
approach based active and ensemble learning for agricultural soil organic carbon prediction using multispectral and SAR data
fusion. Sci. Total. Environ. 2022, 804, 150187. [CrossRef]

https://doi.org/10.1016/j.geoderma.2012.04.002
https://doi.org/10.1016/j.foreco.2014.01.003
https://doi.org/10.1016/j.jenvman.2022.114911
https://doi.org/10.1016/j.geoderma.2016.12.017
https://doi.org/10.1201/b16500-62
https://doi.org/10.4060/cb9002en
https://www.geoportale.regione.lombardia.it/news/-/asset_publisher/80SRILUddraK/content/dusaf-7.0-uso-e-copertura-del-suolo-2023
https://www.geoportale.regione.lombardia.it/news/-/asset_publisher/80SRILUddraK/content/dusaf-7.0-uso-e-copertura-del-suolo-2023
https://CRAN.R-project.org/package=caret
https://CRAN.R-project.org/package=caret
https://apps.dtic.mil/sti/citations/ADA590939
https://doi.org/10.1371/journal.pone.0220881
https://www.ncbi.nlm.nih.gov/pubmed/31430307
https://doi.org/10.1080/03650340.2021.1925651
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1016/j.compag.2018.08.003
https://doi.org/10.1139/cjss-2021-0091
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.earscirev.2020.103359
https://doi.org/10.1016/j.apm.2019.12.016
https://doi.org/10.1016/j.ecolind.2014.12.028
https://doi.org/10.1007/BF00994018
https://doi.org/10.1111/sum.12694
https://doi.org/10.1016/j.geodrs.2020.e00256
https://doi.org/10.1371/journal.pone.0153673
https://doi.org/10.1016/j.scitotenv.2020.138244
https://doi.org/10.1016/j.scitotenv.2021.150187


Land 2024, 13, 78 16 of 16

43. Zeraatpisheh, M.; Ayoubi, S.; Mirbagheri, Z.; Mosaddeghi, M.R.; Xu, M. Spatial prediction of soil aggregate stability and
soil organic carbon in aggregate fractions using machine learning algorithms and environmental variables. Geoderma Reg.
2021, 27, e00440. [CrossRef]

44. Yigini, Y.; Panagos, P. Assessment of soil organic carbon stocks under future climate and land cover changes in Europe. Sci. Total.
Environ. 2016, 557–558, 838–850. [CrossRef] [PubMed]

45. Ma, M.; Chang, R. Temperature drive the altitudinal change in soil carbon and nitrogen of montane forests: Implication for global
warming. CATENA 2019, 182, 104126. [CrossRef]

46. Odebiri, O.; Mutanga, O.; Odindi, J.; Peerbhay, K.; Dovey, S.; Ismail, R. Estimating soil organic carbon stocks under commercial
forestry using topo-climate variables in KwaZulu-Natal, South Africa. South Afr. J. Sci. 2020, 116, 1–8. [CrossRef] [PubMed]

47. Parton, W.J.; Scurlock, J.M.O.; Ojima, D.S.; Schimel, D.S.; Hall, D.O.; Scopegram Group Members. Impact of climate change on
grassland production and soil carbon worldwide. Glob. Chang. Biol. 1995, 1, 13–22. [CrossRef]

48. Puche, N.J.B.; Kirschbaum, M.U.F.; Viovy, N.; Chabbi, A. Potential impacts of climate change on the productivity and soil carbon
stocks of managed grasslands. PLoS ONE 2023, 18, e0283370. [CrossRef]

49. Chen, S.; Liang, Z.; Webster, R.; Zhang, G.; Zhou, Y.; Teng, H.; Hu, B.; Arrouays, D.; Shi, Z. A high-resolution map of soil pH in
China made by hybrid modelling of sparse soil data and environmental covariates and its implications for pollution. Sci. Total.
Environ. 2019, 655, 273–283. [CrossRef]

50. Panagos, P.; Hiederer, R.; Van Liedekerke, M.; Bampa, F. Estimating soil organic carbon in Europe based on data collected through
an European network. Ecol. Indic. 2013, 24, 439–450. [CrossRef]

51. Available online: https://www.worldclim.org/ (accessed on 29 November 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.geodrs.2021.e00440
https://doi.org/10.1016/j.scitotenv.2016.03.085
https://www.ncbi.nlm.nih.gov/pubmed/27082446
https://doi.org/10.1016/j.catena.2019.104126
https://doi.org/10.17159/sajs.2020/6339
https://www.ncbi.nlm.nih.gov/pubmed/37834984
https://doi.org/10.1111/j.1365-2486.1995.tb00002.x
https://doi.org/10.1371/journal.pone.0283370
https://doi.org/10.1016/j.scitotenv.2018.11.230
https://doi.org/10.1016/j.ecolind.2012.07.020
https://www.worldclim.org/

	Introduction 
	Materials and Methods 
	Study Area 
	DSM Approaches in SOC Stock Mapping 
	Soil Survey and Data Collection Strategy 
	Laboratory Analysis Methods 
	Environmental Covariates 
	Covariate Selections and Modeling Approaches 
	Prediction Validation and Uncertainties Mapping 


	Results 
	SOC Stock Statistical Analysis 
	Model Validation and SOC Stock Prediction 
	Maps of SOC Stock and Uncertainty Estimation 

	Discussion 
	Models’ Performance 
	SOC Stock Spatial Distribution: The Main Drivers and Uncertainties 

	Conclusions 
	References

