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Abstract: Floral resources for native pollinators that live in wildland settings are diverse and vary
across and within growing seasons. Understanding floral resource dynamics and management is
becoming increasingly important as honeybee farms seek public land for summer pasture. Small
Unmanned Aircraft Systems (sUASs) present a viable approach for accurate broad floristic surveys
and present an additional solution to more traditional alternative methods of vegetation assessment.
This methodology was designed as a simplified approach using tools frequently available to land
managers. The images of three subalpine meadows were captured from a DJI Phantom 4 Pro drone
platform three times over the growing season in 2019 in Sanpete County, Utah. The images were
composited using Pix4D software 4.5.6 and classified using a simple supervised approach in ENVI 4.8
and ArcGIS Pro 2.4.3 These same meadows were assessed using two traditional ocular methods of
vegetation cover–meter-squared quadrats and macroplot estimation. The areas assessed with these
methods were compared side by side with their classified counterparts from drone imagery. Classified
images were not only found to be highly accurate when detecting overall floral cover and floral color
groups (76–100%), but they were also strongly correlated with quadrat estimations, suggesting that
these methods used in tandem may be a conducive strategy toward increased accuracy and efficiency
when determining floral cover at broad spatial scales.

Keywords: drone technology; remote sensing; floral resource detection; vegetation mapping;
pollinator resources

1. Introduction

Monitoring seasonally available resources is an important aspect of land management.
Land cover surveys and vegetation measurements are used by land managers as indicators
of seasonal resource dynamics and availability. There are many traditional methods used
for measuring vegetation cover such as line point, line intercept, quadrat estimation,
point-frame, the ocular macroplot, and others [1–3]. When monitoring areas across broad
temporal or spatial scales, objective methods, such as line point or point frame methods can
become both time and labor-intensive and provide cover estimates that typically represent
a very limited percentage of the total sample area. While traditional ocular methods can
be easily and rapidly employed by an individual or field crew, the unique perception
of each individual technician collecting field data can result in variable and even biased
results. Remote sensing techniques, however, present an objective, efficient, landscape-scale
solution with high-accuracy cover estimations [4].

The aerial imagery acquired from satellites has been widely utilized to classify ter-
restrial ecosystems and to monitor temporal changes in vegetation structure. In some
instances, individual plant species can be identified by their particular reflective properties
(recorded as spectral signatures) from space-borne sensors [5]. However, many of the
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seasonal resources important to land managers, such as grass, forbs, and shrubs, are too
small and variable to be accurately monitored by satellites due to the coarse scale of the
imagery and the low frequency at which it is collected. Large, manned aircraft can be used
to obtain broad-scale, high-resolution imagery for measuring vegetation. For example,
Hulet et al. [6] accurately detected individual pinyon pines (Pinus edulis) and Utah junipers
(Juniperus osteosperma), and Petersen et al. [7] identified individual willow species within
a northwestern riparian area using high-resolution imagery collected from manned air-
craft. Unfortunately, the use of large numbers of manned aircraft to obtain imagery can be
difficult to schedule and expensive, particularly when frequent monitoring is needed.

With a much finer spatial resolution compared to typical satellite or aircraft-based
sensors, small, Unmanned Aircraft Systems (sUASs) present a newer and potentially more
efficient method of surveying vegetative resources within and across seasons, which greatly
increases the detection of spatiotemporal resources and dynamic shifts at very fine scales [8].
High-resolution sUAS imagery has been effectively used for accurately mapping rangeland
vegetation, including species-level discrimination for several species [9]. Forest canopies
have been imaged to help explain spatial patterns of biodiversity [10]. Snow depth in the
Artic has been measured to help ecological and civil engineering research [11]. Coastal
marine habitats have been analyzed to aid in mapping fish nursery areas [12]. The use
of sUAS is spreading rapidly within different disciplines and has been promoted as a
complementary tool to traditional field surveying methods [10].

Under the multiple-use management regime developed for public lands in the United
States, the US Forest Service (USFS) and Bureau of Land Management (BLM) have incorpo-
rated the summer pasturing of commercial honeybee hives with other uses such as livestock
grazing, recreation, energy development, and timber harvest [13]. An interesting associa-
tion with the management and placement of beehives is the availability of nectar and pollen
in the proximity of potential hive placement. When pasturing any species of non-native
animals in natural settings, it is important for land managers to determine stocking rates
that do not significantly impair native species’ population dynamics. Practices to measure
resource availability have been established to balance the resource use of livestock and
native ungulates; however, no such practices have been established to measure resource
availability for pollinators. In order to develop stocking rates for managed honeybees, a
critical first step is the quantification of available pollinator resources, i.e., the pollen and
nectar in flowering plants and the associated floral cover in a given area.

The objectives of this study were (1) to assess the efficacy of using high-resolution
imagery from sUAS to accurately calculate floral cover and (2) to compare the results of
classified aerial imagery between two traditional methods of vegetation cover analysis:
quadrat sampling and ocular macroplot estimation. In contrast to the hyperspectral and
deep learning methods recently presented by Gallmann et al. [14] and Barnsley et al. [15],
this study utilizes a standard off-the-shelf drone platform and RGB sensor to assess floral
cover providing an affordable, simplistic, and rapid solution for technicians and land
managers currently utilizing traditional methods.

2. Materials and Methods

Three subalpine meadows in Ephraim Canyon, Sanpete County, UT, USA, were
selected as the study locations. At each location, a 0.5-hectare macroplot was delineated
using a 40 m rope stretched from a central stake. Aerial imagery was collected using a DJI
Phantom 4 quadcopter equipped with a standard 20 mm red, green, and blue (RGB) sensor
at 10 m above ground level (AGL). Flights were automated through the Pix4D Mapper
app in a grid-like fashion with 70% overlap. Flights over the study locations occurred
three times throughout the flowering season on 7 July 2019, 6 August, and 20 August.
Aerial images were organized and stitched together using Pix4D software 4.5.6 (https://
www.pix4d.com/product/pix4dmapper-photogrammetry-software) to create a single high-
resolution orthomosaic of each study site, resulting in a total of nine distinct orthomosaics.
The software program ENVI 4.8 (Exelis Visual Information Solutions, Boulder, CO, USA)

https://www.pix4d.com/product/pix4dmapper-photogrammetry-software
https://www.pix4d.com/product/pix4dmapper-photogrammetry-software
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was employed to execute pixel-based supervised classification using a maximum likelihood
classifier. Training data were collected for eight different cover classes: dark vegetation,
light vegetation, bare ground, shadows, rocks, blue flowers, yellow flowers, and white
flowers. These classes were selected after various test trials to determine (1) the classes that
needed to be included to properly extract the three floral color classes and (2) the proper
amount of variation that needed to be captured for each class. At least 30 training data
samples were collected for each class, and more, if necessary, to encompass the variation
within each class. This included training samples from each drone image for as many
floral species as could be found within each color class. Research materials within the
orthomosiacs were manually classified and removed from the analysis. Prevalent species
varied both temporally and by site. A complete inventory of vegetation was conducted prior
to this study at each site. These are included in Tables 1–3, along with their corresponding
color categories.

Two traditional vegetation measurement methods were also implemented at each
study site as follows: an ocular quadrat estimation and an ocular macroplot estimation
(Figures 1 and 2). All cover estimates were collected by a single trained individual to reduce
inter-technician bias. The ocular quadrat estimation consisted of ten one-meter squared
quadrats that were randomly placed within each study area. Within these quadrats, floral
cover was visually estimated for each flowering species and assigned their corresponding
color classes. Each quadrat within the classified orthomosaics was then clipped for direct
comparison with ocular quadrat estimates.

To perform the ocular macroplot estimation, a 40 m rope was used to walk around the
circumference of the macroplot and visually assess the floral cover within. A fenced area
was constructed within each macroplot to represent the 1% area of the macroplot as a visual
reference when allocating cover percentages. Cover percentages from traditional methods
and those generated from the classified drone images were compared in R software 4.3.1
(RStudio Team (2020) RStudio: Integrated Development for R. RStudio, PBC, Boston, MA,
USA, URL http://www.rstudio.com/) using a Wilcoxon Rank Sum Test.

Table 1. Plant species located at Philadelphia Flat.

Plant Species Classified Category

Artemesia ludoviciana Vegetation
Bromus carinatus Vegetation
Collomia linearis White
Delphinium nuttallianum Blue
Elymus trachycaulus Vegetation
Erigeron speciosus Blue
Erythronium grandiflorum Yellow
Geranium viscosissimum White
Ligusticum porteri White
Lupinus argenteus Blue
Melica bulbosa Vegetation
Orthocarpus tolmiei Yellow
Osmorhiza occidentalis White
Penstemon rydbergii Blue
Penstemon watsonii Blue
Potentilla gracilis Yellow
Stellaria jamesiana White
Stipa lettermanii Vegetation
Symphoricarpos oreophilus White
Thalictrum fendleri Vegetation
Vicia americana Blue
Viguiera multiflora Yellow
Viola purpurea Yellow

http://www.rstudio.com/
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Table 2. Plant species located at Ephraim Skyline.

Plant Species Classified Category

Achillea millefolium White
Aquilegia coerulea White
Artemesia ludoviciana Vegetation
Aster ascendens Blue
Bromus carinatus Vegetation
Castilleja rhexifolia Yellow
Collomia linearis White
Delphinium nuttallianum Blue
Elymus trachycaulus Vegetation
Erigeron flagellaris Blue
Geranium viscosissimum White
Lupinus argenteus Blue
Melica bulbosa Vegetation
Orthocarpus tolmiei Yellow
Osmorhiza occidentalis White
Penstemon rydbergii Blue
Poa pratensis Vegetation
Polemonium foliosissimum Blue
Potentilla gracilis Yellow
Senecio crassulus Yellow
Stellaria jamesiana White
Stipa lettermanii Vegetation
Stipa nelsonii Vegetation
Swertia radiata Vegetation
Taraxicum officinale Yellow
Thalictrum fendleri Vegetation
Trisetum spicatum Vegetation
Valeriana occidentalis White
Vicia americana Blue
Viola purpurea Yellow

Table 3. Plant species located at Horseshoe Flat North.

Species Classified Category

Achillea millefolium White
Agoseris aurantiaca Yellow
Artemisia ludoviciana Vegetation
Astragalus tenellus Blue
Bromus carinatus Vegetation
Castilleja rhexifolia White
Chrysothamnus viscidiflorus Yellow
Collomia linearis White
Delphinium nuttallianum Blue
Elymus Trachycaulus Vegetation
Erigeron speciosus Blue
Erythronium grandiflorum Yellow
Geranium viscosissimum White
Madia glomerata Yellow
Melica bulbosa Vegetation
Orthocarpus tolmiei Yellow
Penstamon rydbergii Blue
Potentilla gracilis Yellow
Stipa lettermanii Vegetation
Stipa nelsonii Vegetation
Vicia americana Blue
Viola purpurea Yellow
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Figure 2. Example of unclassified (left) and classified (right) macroplot orthomosiacs.

An accuracy assessment of each classification was performed using the high-resolution
base image as the reference. Fifty points were randomly selected within each cover class
using a random points tool in ArcGIS Pro 2.4.3 (ESRI 2011. ArcGIS Desktop. Redlands,
CA, USA: Environmental Systems Research Institute). Their accuracy was assessed and
recorded within a confusion matrix to establish both the user’s and producer’s accuracy of
each class and the overall accuracy for each classification. Additionally, Kappa statistics
were produced for each classification.

3. Results

The overall accuracy for the nine classifications ranged between 76.9 and 88.0%, with
an average accuracy of 83.0%. The overall accuracy of just the floral classes ranged between
74.0 and 100%, with an average accuracy of 86.7%. The accuracy of floral classification
varied by color (Table 4). The average producer’s accuracy for the blue flower class was
95.4%, for the yellow flower class was 97.4%, and for the white flower class was 92.5%
(Table 5). The average user’s accuracy for the blue flower class was 82%, for the yellow
flower class was 90.22%, and for the white flower class was 86% (Table 5). A kappa statistic
was generated to determine the strength of each classification. Kappa statistics ranged from
73.0 to 86.5%, with an average of 80.7% (Table 4).
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Table 4. Summary statistics for the accuracy assessment of each classification.

Study Site Overall Accuracy Overall Floral Accuracy Kappa

Ephraim Skyline 7_23_19 0.77 0.81 0.74
Ephraim Skyline 8_6_19 0.88 0.88 0.87
Ephraim Skyline 8_20_19 0.82 0.85 0.80
Horseshoe Flat 7_23_19 0.76 0.88 0.73
Horseshoe Flat 8_6_19 0.85 0.88 0.83
Horseshoe Flat 8_20 19 0.81 0.74 0.79
Philly Flat 7_23_19 0.88 0.84 0.86
Philly Flat 8_6_19 0.84 0.93 0.81
Philly Flat 8_20_19 0.87 1.00 0.85

Total Average 0.83 0.87 0.81

Table 5. Accuracy of each color class for each classification.

Producers Accuracy Users Accuracy

Study Site Blue Yellow White Blue Yellow White

Ephraim Skyline 7_23_19 93.88 94.12 95.56 92 64 86
Ephraim Skyline 8_6_19 86.79 97.78 100 92 88 84
Ephraim Skyline 8_20_19 97.37 98.04 93.02 74 100 80
Horseshoe Flat 7_23_19 95.74 100 95.12 90 96 78
Horseshoe Flat 8_6_19 93.62 98.00 75.00 88 98 78
Horseshoe Flat 8_20 19 100 90.91 93.02 42 100 80
Philly Flat 7_23_19 95.74 100 92.00 90 70 92
Philly Flat 8_6_19 100 100 94.12 88 96 96
Philly Flat 8_20_19 - 98.04 94.34 - 100 100

Total Average 95.39 97.43 92.46 82 90.22 86

Ocular measurements of the ten quadrats at each site were compared to the output
estimates of the classified quadrats from the aerial images (Figure 3). The differences
between quadrat measurements and their corresponding classifications are not normally
distributed; therefore, a Wilcoxon Signed-Rank Test was used to observe this difference
(Table 6). The average floral cover estimated using the classified imagery across all indi-
vidual quadrats and floral colors was 1.21% versus 2.40% via ocular quadrat estimation.
Overall, the floral cover between classified quadrat outputs and ocular quadrat estimates
proved to be significantly different from one another (p-value 0.004), indicating from the
accuracy of the drone-derived estimates that the ocular quadrat method over estimated
floral cover by roughly two times. The same trend was reflected within each individual
color class. The drone average estimates for each color class were blue at 0.42%, white at
0.27%, and yellow at 0.52%. By contrast, the quadrat averages for each color class were
blue at 0.61%, white at 0.71%, and yellow at 1.08%.

Classified estimates and quadrant estimates were positively correlated between the
floral classes and showed relatively strong relationships (Figure 4). Blue flowers had an
r-squared value of 0.81, white flowers had a value of 0.80, and yellow flowers had a value
of 0.66. The strength of the yellow class differed from the blue and white classes due to a
single observation.

Similar to the quadrat evaluations, the macroplot evaluations were compared between
ocular estimates and classified imagery (Figure 5). A Wilcoxon Signed-Rank Test was
used to observe the differences (Table 7). The average floral cover estimated using the
classified imagery over all macroplots and all floral colors was 0.9% versus 4.81% via
ocular macroplot estimation. Overall, the floral cover between classified macroplot outputs
and ocular macroplot estimates proved to be significantly different from one another
(p-value 0.004). Like the ocular quadrat estimates, the ocular macroplot estimates over
estimated floral cover by roughly five times. This trend held true across the three floral
classes. The classified macroplot averages for each floral class were blue at 0.28%, white
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at 0.23%, and yellow at 0.39%. In contrast, the ocular macroplot averages for each floral
class were blue at 0.94%, white at 1.33%, and yellow at 2.33%, each differing significantly
from the corresponding classified estimates. In both traditional methods, the ocular meter
squared quadrat and the ocular macroplot, a significant overestimation of the floral cover
was observed.
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Classified estimates and ocular macroplot estimates were positively correlated between
the floral classes but exhibited a weaker relationship than the classified estimates and
quadrat estimates (Figure 6). Blue flowers had an r-squared value of 0.41, white flowers
had a value of 0.80, and yellow flowers had a value of 0.34.



Land 2024, 13, 99 8 of 12

Land 2024, 13, x FOR PEER REVIEW 8 of 13 
 

classes. The classified macroplot averages for each floral class were blue at 0.28%, white 
at 0.23%, and yellow at 0.39%. In contrast, the ocular macroplot averages for each floral 
class were blue at 0.94%, white at 1.33%, and yellow at 2.33%, each differing significantly 
from the corresponding classified estimates. In both traditional methods, the ocular meter 
squared quadrat and the ocular macroplot, a significant overestimation of the floral cover 
was observed. 

 
Figure 5. Comparison of floral cover between classified macroplot estimates and ocular macroplot 
estimates. 

Table 7. Summary statistical results from the Wilcoxon Rank Sum Test when comparing classified 
macroplot estimates to ocular macroplot estimates. 

Class Classified Macroplot Average Ocular Macroplot Average Sig Diff V Score p Value 
Blue 0.28 0.94 Yes 36 0.014 
White 0.23 1.53 Yes 44 0.007 
Yellow 0.39 2.33 Yes 42 0.024 
Total 0.90 4.81 Yes 45 0.004 

Classified estimates and ocular macroplot estimates were positively correlated be-
tween the floral classes but exhibited a weaker relationship than the classified estimates 
and quadrat estimates (Figure 6). Blue flowers had an r-squared value of 0.41, white flow-
ers had a value of 0.80, and yellow flowers had a value of 0.34. 

   

Figure 6. Correlation between classified macroplot estimates and ocular macroplot estimates for 
each color class. 

  

Figure 5. Comparison of floral cover between classified macroplot estimates and ocular macroplot
estimates.

Table 7. Summary statistical results from the Wilcoxon Rank Sum Test when comparing classified
macroplot estimates to ocular macroplot estimates.

Class Classified Macroplot Average Ocular Macroplot Average Sig Diff V Score p Value

Blue 0.28 0.94 Yes 36 0.014
White 0.23 1.53 Yes 44 0.007
Yellow 0.39 2.33 Yes 42 0.024
Total 0.90 4.81 Yes 45 0.004

Land 2024, 13, x FOR PEER REVIEW 8 of 13 
 

classes. The classified macroplot averages for each floral class were blue at 0.28%, white 
at 0.23%, and yellow at 0.39%. In contrast, the ocular macroplot averages for each floral 
class were blue at 0.94%, white at 1.33%, and yellow at 2.33%, each differing significantly 
from the corresponding classified estimates. In both traditional methods, the ocular meter 
squared quadrat and the ocular macroplot, a significant overestimation of the floral cover 
was observed. 

 
Figure 5. Comparison of floral cover between classified macroplot estimates and ocular macroplot 
estimates. 

Table 7. Summary statistical results from the Wilcoxon Rank Sum Test when comparing classified 
macroplot estimates to ocular macroplot estimates. 

Class Classified Macroplot Average Ocular Macroplot Average Sig Diff V Score p Value 
Blue 0.28 0.94 Yes 36 0.014 
White 0.23 1.53 Yes 44 0.007 
Yellow 0.39 2.33 Yes 42 0.024 
Total 0.90 4.81 Yes 45 0.004 

Classified estimates and ocular macroplot estimates were positively correlated be-
tween the floral classes but exhibited a weaker relationship than the classified estimates 
and quadrat estimates (Figure 6). Blue flowers had an r-squared value of 0.41, white flow-
ers had a value of 0.80, and yellow flowers had a value of 0.34. 

   

Figure 6. Correlation between classified macroplot estimates and ocular macroplot estimates for 
each color class. 

  

Figure 6. Correlation between classified macroplot estimates and ocular macroplot estimates for each
color class.

4. Discussion

Relatively few studies have applied remote sensing techniques to study insects, insect
habitats, and the ecosystem services that they provide [16], including pollinators. Studies
that have included insects predominantly used coarse, large-scale landcover data to assess
vegetation factors, leaving the finer drivers of pollinator population dynamics within these
habitats (floral cover, pollen and nectar availability, or nesting resources) largely unexplored
by remote sensing technology [17]. Floral cover and floral richness appear to be broadly
associated with pollinator abundance, richness, and visitation rates [18,19]. The use of
sUAS systems to assess floral cover has been largely confined to agricultural monocultures
in predicting crop yield [20–22]. Horton et al. [23] used sUAS to monitor peach flower
blossoms with an average blossom pixel detection rate of 84.3%. Wang et al. [22] used a
machine vision assessment on the sUAS imagery of mango orchard blossoms in assess-
ing peak flowering periods and determine the relationship between blossoms and fruit
yield. Understanding phenology in an agricultural setting can be useful to predict yield
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and timing and potentially assess the stocking requirements for domesticated pollinators.
However, few studies have attempted to investigate phenological cycles in heterogeneous
environments with a high floral diversity due to spectral complexity [24] and spectral vari-
ability at fine scales. Barnsley et al. [15] conducted a study concurrently with this study and
explored the use of hyperspectral sUAS imagery to assess spatiotemporal floral resource
dynamics with high accuracy. Likewise, Gallmann et al. [14] utilized high-resolution drone
imagery and deep learning to assess floral counts compared to manual count methods. A
recent call for more spatial data describing the temporal-spatial distribution of flowers was
issued by Gonzalea et al. [4], who emphasized the potential utility of sUAS in fine-scale
spatiotemporal floristic surveys.

The supervised classification of high-resolution sUAS-generated orthomosaics in this
study reflected general ground cover and floral cover in subalpine meadow systems with
high accuracy—roughly 74 to 100% (Table 4). Variations in the accuracy between floral cover
classes (blue, white, and yellow) occurred for a variety of potential reasons. For instance,
the pixels that formed the gradient between shadowed vegetation and brighter green
vegetation often possessed a very similar spectral signature to blue flowers at the study
sites, indicating the importance of mid-day data collection when shadows are minimal.
Likewise, white limestone rocks scattered throughout the sites often possess similar spectral
signatures to those of white flowers. Yellow flowers, however, had no such elements within
the dataset that shared a similar spectral signature and, therefore, resulted in the highest
user and producer accuracies.

The success of these sUAS floral monitoring missions further supports the findings and
conclusions of other recent and related studies [4,14,15]. Due to the intra- and interspecific
spectral overlap and variation within each color class, individual species within classes
are difficult to differentiate using this rapid classification technique. However, the broader
color classes and overall floral cover can still be valuable metrics. Understanding these
broader cover types and their quantities across the landscape may correlate with individual
species or functional insect groups that are utilizing specific resources within the area.

While utilizing drones can help land managers assess floral and vegetative cover
throughout and across seasons, accurate cover values alone cannot indicate the pollen
and nectar availability held within the blooms. A proximal step to understanding existing
resource availability for honeybees in a given area could incorporate the double sampling
of nectar and pollen loads by species or color class cover. The metrics of honeybee resource
consumption are known [25]. If nectar and pollen availability show a consistent correlation
to floral cover, their availability in a given area can be estimated, and appropriate stocking
limits applied using such a method.

In addition to the evaluation of supervised classification accuracy, this study provides
a side-by-side comparison of two traditional ocular methods for measuring floral cover
(quadrat and macroplot). By observing average cover estimates and correlations between
the traditional ocular methods and sUAS-classified imagery, we describe some of the advan-
tages and potential pitfalls of these traditional methods in contrast to a direct comparison
of sUAS-classified imagery taken of the same areas.

The ocular quadrat estimates seem to reflect similar results to their corresponding
classified estimates than the ocular macroplot method, though the difference between
the two resulted in a significant overestimation across all floral color classes by roughly
0.7 to two times (p-values ranging from 0.055 to 0.0117). Meter-squared quadrats allow
the technician to look directly over the entire area being measured, granting the same
perspective as UAS-capturing aerial imagery. This method offers the advantage of di-
rectly observing each individual species within the quadrat as well as their generalized
floral class.

The most rapid assessment of floral cover, the ocular macroplot, was the least con-
sistent and strayed furthest from the accurately classified floral metrics, overestimating
by roughly three to seven times depending on the floral class. The cover assessment of
each individual, floral class, as well as the overall floral cover, was statistically significant
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between ocular and classified methods for the macroplot (p-values ranging between 0.014
and 0.004). This could be due to the horizontal parallax encountered when assessing floral
cover across a vast area from the ground. Radoux et al. [26] found that even the residual
parallax error from satellite imagery taken at an angle positively biased toward forest cover
metrics concluded a need for near-nadir images to accurately map landscapes. From the
ground perspective, the human eye cannot perceive the interstitial spacing and low-lying
cover between plants as the sUAS can from its vertical perspective. Furthermore, the
horizontal field of view may extend the perception of floral cover when looking across
plants instead of directly down on them. In addition to perspective bias, observer bias
based on the complexity of the ecosystem and the field technician’s experience and training
may result in a greater or lower estimated accuracy [27].

DiMaggio et al. [28] used sUAV double sampling techniques in arid rangelands to
estimate forage availability for cattle. Likewise, in this study, a strong correlation between
ground and aerial floral cover estimations could allow for a more accurate assessment of
pollinator resource availability. Though ocular quadrat estimations differed significantly
in scale from their classified counterparts, cover values were highly correlated with one
another across all floral classes (r-squared values ranging from 0.66 to 0.81). This correlation
suggests that traditional quadrat estimation can accurately assess the trends and relative
cover between classes but may fail to accurately describe floral cover as a percentage of
overall ground cover with the same accuracy as the sUAS. The accuracy of traditional
quadrat methods like the marcoplot methods may rely on technician experience and spatial
assessment capability more heavily than methods utilizing sUAS imagery.

The strong correlation between quadrat and classified estimates, in conjunction with
the high accuracy of classified images, indicates that while an individual’s perception
may vary in scale from the true cover value, the perception of relative proportion remains
consistent. This suggests that by using a double sampling protocol, an individual can
calibrate and correct quadrat measurements taken on the ground to increase their accuracy.
This method could help reduce inter-technician bias over long-term or large-scale projects.

Ocular macroplot estimates did not correlate well with all classified floral classes. Blue
and yellow floral classes correlated poorly at 0.41 and 0.34, respectively, while the white
floral class had a relatively high correlation at 0.80. These findings suggest that ocular
macroplots may not be a reliable method for quantifying floral cover across large areas and
may only be useful for assessing the relative differences between color classes.

While there are more advanced sensors and classification methods for image classi-
fication, the simplicity of this method and drone platform lends itself to less technically
trained land managers, graduate students, or agency personnel who are seeking to utilize
this technology. It also provides an avenue that is much less cost-prohibitive than other,
more technical alternatives.

This methodology is not only highly accurate but also consistent across flights. Many
research studies utilize a team of plant surveyors, each with their own perception of cover,
despite tools and aids to help measure them more accurately. The varying perception
of cover between technicians can introduce inconsistencies and errors, especially across
long-term datasets with revolving technicians and personnel. sUAS-derived imagery not
only produces consistent and accurate classifications but also provides a census record
of the areas that are flown over. These records can be reviewed and validated for years
afterward both visually and quantitatively.

sUAS missions are simple to construct and are adaptable in the field. sUAS can be
launched from accessible roadways and rapidly flown up steep slopes, across drainages,
or over otherwise difficult terrain. Vegetative metrics collected using sUASs save field
time and cover more ground in the same amount of time as traditional methods. Instead
of a team of technicians, surveys can be performed by a single individual. This simple
supervised classification approach requires little back-end post-processing and can be
performed by a trained technician in less than a day. Furthermore, these data can be
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post-processed at any time of the year, allowing for more thorough investigations of a site
outside of the field’s season.

Both the accessibility and the sophistication of sUAS platforms are rapidly expand-
ing. Since the initiation of this study, drones have become smaller, sensors have become
more powerful, and battery life has increased. Likewise, the capability of back-end post-
processing platforms, automation, and machine learning techniques have also evolved. As
this technology improves, it can continue to present novel approaches and applications
in the realm of natural resource management. Land managers and scientists alike should
strive to learn about and integrate this technology where appropriate into their projects
and fieldwork.

5. Conclusions

Floral assessments and surveys are becoming increasingly important as the interest in
wild pollinator and honeybee habitats, and their health becomes a focal point for public land
managers. The use of sUAS in floral cover surveys can be quickly and accurately executed
and replicated throughout and across seasons to monitor these resources. Equivalent
census sampling performed on the ground requires immensely greater efforts in both time
and crew size. When compared to traditional field methods, sUAS-derived imagery and
classification differed significantly in their cover estimation for all floral classes; however,
general trends were reflected using the quadrat method. Ocular macroplots appeared to be
inconsistent in both estimates and trends when compared to the sUAS method. Individual
species identification was limited with the techniques employed in this study, indicating
that this method may be best utilized initially in tandem with some on-the-ground surveys
to establish species composition data. With the rapid development of sUAS sensors, it
is important for land managers to incorporate the use of these tools so they can increase
efficiency and consistency and standardize estimates within their management regime.
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