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Abstract: Spatiotemporal variations in Central Asian vegetation phenology provide insights into
arid ecosystem behavior and its response to environmental cues. Nevertheless, comprehensive
research on the integrated impact of meteorological factors (temperature, precipitation, soil moisture,
saturation vapor pressure deficit), topography (slope, aspect, elevation), and greenhouse gases
(carbon dioxide, methane, nitrous oxide) on the phenology of Central Asian vegetation remains
insufficient. Utilizing methods such as partial correlation and structural equation modeling, this
study delves into the direct and indirect influences of climate, topography, and greenhouse gases on
the phenology of vegetation. The results reveal that the start of the season decreased by 0.239 days
annually, the length of the season increased by 0.044 days annually, and the end of the season
decreased by 0.125 days annually from 1982 to 2021 in the arid regions of Central Asia. Compared
with topography and greenhouse gases, meteorological factors are the dominant environmental
factors affecting interannual phenological changes. Temperature and vapor pressure deficits (VPD)
have become the principal meteorological elements influencing interannual dynamic changes in
vegetation phenology. Elevation and slope primarily regulate phenological variation by influencing
the VPD and soil moisture, whereas aspect mainly affects the spatiotemporal patterns of vegetation
phenology by influencing precipitation and temperature. The findings of this study contribute to a
deeper understanding of how various environmental factors collectively influence the phenology of
vegetation, thereby fostering a more profound exploration of the intricate response relationships of
terrestrial ecosystems to environmental changes.

Keywords: structural equation modeling; climate; topography; vapor pressure deficit; vegetation
phenology

1. Introduction

Vegetation plays a crucial role in the exchange of energy, water, and carbon between
the Earth’s surface and atmosphere, making it a fundamental component of terrestrial
ecosystems [1,2]. Vegetation phenology refers to phenomena in the life cycle of plants
related to seasonal changes. Vegetation phenology plays a critical role in global ecosystems
because it reflects how ecosystems respond to climate and environmental changes [3,4].
As global climate change intensifies and greenhouse gas emissions increase, vegetation
phenology has gradually become a focal point of research in multiple fields, including
ecology, meteorology, and environmental science [3,5,6]. Therefore, understanding how
vegetation phenology responds to various environmental factors is beneficial for effective
land ecosystem management and provides valuable insights with respect to the adaptation
of humans to environmental changes.

Changes in vegetation phenology are vital for ecosystem stability, productivity, and
the provision of ecological services [7,8]. The results of previous research indicated that
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vegetation phenology is influenced by various environmental factors, including meteo-
rological factors, topography, and greenhouse gas emissions [9–11]. In previous studies,
the effects of climatic factors on vegetation phenology were elucidated. Piao et al. (2007)
reported that rising temperatures significantly advance the spring phenology in the high-
and mid-latitude regions of the Northern Hemisphere [12]. Luo et al. (2021a) discovered
that an increase in spring soil moisture (SM) leads to an earlier start of the season (SOS)
on the Mongolian Plateau, whereas increased summer SM causes a delay at the end of the
season (EOS) [13]. Topography and landscape play critical roles in shaping the patterns of
phenological changes. Yang et al. (2020) stated that this aspect plays a key role in influenc-
ing vegetation patterns in semiarid regions [14]. Chen et al. (2020) discovered that elevation
influences the correlation between Chinese vegetation and abnormal precipitation [15].
Greenhouse gases also significantly affect vegetation phenology. Among others, Norby and
Zak (2011) reported that elevated CO2 concentrations promote vegetation growth [16]. In
a study on the drivers of global vegetation growth, Liu et al. (2023) observed a positive
sensitivity of the NDVI to the atmospheric CO2 concentration [17]. Nevertheless, previous
research has typically focused on the impact of singular categories of environmental factors
on vegetation dynamics, overlooking the direct and indirect influences of diverse environ-
mental factors on phenology. The integrated impact of meteorological factors, greenhouse
gases, and topography on vegetation phenology remains unclear.

Central Asia occupies a central position on the Eurasian continent, connecting Europe,
Asia, and the Middle East. It plays a pivotal role in geopolitical affairs, regional security,
and cultural exchanges [18]. In recent years, the climate in Central Asia has undergone
significant changes, including temperature increases exceeding global land averages, re-
gional disparities, seasonal variations in precipitation distribution, and rising emissions of
greenhouse gases, exacerbating climate change uncertainties [19–21]. The complex terrain
of Central Asia, along with its unique climate and ecosystems, makes its response to global
climate change intricate and sensitive [22]. Wu et al. (2021a) reported that meteorological
factors led to a delay in the vegetation SOS and advancement in the EOS in Central Asia
from 2000 to 2019 [23]. Among others, Gao and Zhao (2022) stated that meteorological
factors resulted in a significant advancement of both SOS and EOS in Central Asia from
1982 to 2014, with changes of −0.143 days per year and −0.363 days per year, respec-
tively [24]. These researchers primarily focused on the effects of meteorological factors
on the phenology of Central Asian vegetation. The combined effects of meteorological
factors, greenhouse gases, and topography on the phenology of Central Asian vegetation
remain unknown.

To better comprehend how vegetation in the arid regions of Central Asia responds
and adapts to environmental changes, it is imperative to delineate the direct and indirect
influences of climate, topography, and greenhouse gases on vegetation phenology. This
study utilized NOAA CDR NDVI products spanning from 1982 to 2021 to extract vegetation
phenological indicators (SOS, EOS, and LOS) and distribution information. The investi-
gation delves into the geographical evolution of vegetation phenology and explores the
relationships between phenological indicators and environmental variables. The objectives
of this study include: (1) analyzing the impact of meteorological factors on vegetation
phenology; (2) examining the relationship between topography and vegetation phenology;
(3) investigating the direct and indirect influences of meteorological factors, topography,
and greenhouse gases on Central Asian vegetation phenology. The outcomes of this study
contribute to a profound understanding of the response mechanisms of terrestrial ecosys-
tems to complex environmental changes, providing scientific foundations for sustainable
development and environmental conservation.

2. Materials and Methods
2.1. Study Area

Central Asia is situated deep within the Eurasian landmass, far from the oceans, isolat-
ing its geographical location (Figure 1a). The climate in this region predominantly manifests
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as a classic temperate continental climate with vast expanses of deserts and steppes. Be-
cause of its inland position and the absence of maritime influence, compounded by the
effect of high mountainous terrain to the southeast, Central Asia experiences enduringly
scanty precipitation, marked by a distinctively uneven distribution [25]. Summer temper-
atures soar, whereas winters bring frigid conditions. The annual average precipitation
generally remains below 300 mm, with some areas receiving less than 200 mm, resulting in
severe aridity [26]. Central Asia encompasses a diverse landscape comprising hills, plains,
lowlands, and mountainous terrain. Its vegetation array is rich and varied, primarily domi-
nated by grasslands but also includes shrublands, forests, and cultivated fields (Figure 1b).
The effect of greenhouse gas emissions on the climate has gradually intensified in Central
Asia. These geographical, climatic, topographical, and vegetative characteristics collectively
constitute the unique natural environment of Central Asia, rendering it a pivotal subject of
study in the realms of geography and climate research.
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2.2. Data
2.2.1. NDVI and Phenological Validation Data

NOAA CDR NDVI data, spanning 1982–2021, feature a spatial resolution of 0.05◦ and
a temporal resolution of one day (Normalized Difference Vegetation Index CDR | National
Centers for Environmental Information (NCEI) (noaa.gov) (accessed on 1 January 2023)).
Phenological field data are sourced from the primary ecological observation stations in
China (CERN) (http://www.cern.ac.cn/0index/index.asp (accessed on 1 January 2023))
and the greening period monitoring data of 1 m × 1 m plots in Xinjiang from 2018 to 2021.
This includes phenological observations from stations in Fukang, Cele, Yili, and Aksu,
documenting budburst, flowering, fruiting, and seed dispersal periods. The budburst
period is defined as 50% vegetation regreening within the sample plot, hence we selected
the budburst period as the observed validation data for Start of Season (SOS).

2.2.2. Climate Data

Land surface temperature, dew point temperature, precipitation, and multilevel SM
data from 1982 to 2021 were sourced from the ERA5 dataset provided by the European
Center for Medium-Range Weather Forecasts (ECMWF). These data have a spatial resolu-
tion of 0.1◦ and a monthly temporal resolution. Notably, SM data represent the average
values across three depth layers, that is, 0–7, 7–28, and 28–100 cm, collectively reflecting the
SM conditions within the root zone.

The calculation of the vapor pressure deficit (VPD) in the atmosphere is based on the
land surface and dew point temperatures:

Qa = Qb

(
Tm + 273.16

Tm + 273.16 + 0.0065 × D

)5.625
(1)

noaa.gov
http://www.cern.ac.cn/0index/index.asp
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Cd = 1 + 7 × 10−4 + 3.46 × 10−6Qa (2)

SVP = 6.112 × Cd × e
17.67Tm

Tm+243.5 (3)

AVP = 6.112 × Cd × e
17.67Tn

Tn+243.5 (4)

VPD = SVP − AVP, (5)

where Tm is the land surface temperature (◦C), Tn is the dew point temperature (◦C), D is the
elevation above sea level (m), Qa is the air pressure (hPa), Qb is the mean sea-level pressure
(1013.25 hPa), SVP is the saturation vapor pressure, and AVP is the actual vapor pressure.

2.2.3. Topographical Data and Vegetation Types

Vegetation-type data for the arid region of Central Asia were derived from the
2000 version of the MCD12Q1 dataset with a spatial resolution of 500 m (accessible at
https://ladsweb.modaps.eosdis.nasa.gov/ (accessed on 1 January 2023)). Areas covered by
waterbodies, barren land, unused land, cultivated land, forests, grasslands, and shrublands
were excluded. Shuttle Radar Topography Mission Elevation data (SRTM DEM) with a spatial
resolution of 30 m were sourced from NASA (available at https://appeears.earthdatacloud.
nasa.gov/ (accessed on 1 January 2023)). ArcGIS 10.8 software was used to compute the
surface slope and aspect. In this study, we included an elevation range from 0 to 4000 m at
intervals of 100 m to discern the trends in vegetation phenology with changing elevation.
Simultaneously, we investigated slope angles ranging from 0◦ to 50◦ and analyzed them at
1◦ intervals to determine the effect of the slope on vegetation phenology. The slope aspects
were categorized into eight directions: North, Northeast, East, Southeast, South, Southwest,
West, and Northwest, following the method employed by Bindajam et al. (2020) [27], with
each direction spaced at 45◦ intervals. We examined the effects of different aspects on
vegetation phenology by computing the mean vegetation phenological indicators in these
eight directions.

2.2.4. Greenhouse Gas Data

Greenhouse gas emission data for carbon dioxide (CO2), nitrous oxide (N2O), and
methane (CH4) with a spatial resolution of 0.1◦ and an annual temporal resolution were ob-
tained from the Emissions Database for Global Atmospheric Research (EDGAR; accessible
at https://edgar.jrc.ec.europa.eu/ (accessed on 1 January 2023)).

To ensure data consistency, we performed bilinear interpolation to resample Climate
data, Topographical data and vegetation types, andGreenhouse gas data, adjusting the
spatial resolution to 0.05◦.

2.3. Methods
2.3.1. Extraction of Vegetation Phenology

The utilization of the Gaussian filtering method has significant importance and clear
advantages for the extraction of vegetation phenology [28]. The Gaussian filtering tech-
nique, that is, the application of a Gaussian kernel function to temporally adjacent data
points, allows weighted averaging, thereby aiding in the suppression of high-frequency
noise in the data. This, in turn, enables the more precise capture of trends in phenological
changes in the vegetation. Within the field of phenology extraction, three widely adopted
methods are the dynamic threshold, piecewise logistic function, and modified double
logistic function, each possessing distinct advantages and suitable scenarios:

(1) Dynamic Threshold Method: This method relies on dynamic changes within time-
series data and employs adaptive thresholds to determine the inflection points of
phenological stages [29]. Its advantage lies in its capacity to automatically adjust

https://ladsweb.modaps.eosdis.nasa.gov/
https://appeears.earthdatacloud.nasa.gov/
https://appeears.earthdatacloud.nasa.gov/
https://edgar.jrc.ec.europa.eu/
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thresholds based on the data characteristics of different regions and years, rendering
it highly versatile. The equation for the dynamic threshold method is as follows:

P =
NDVIt − NDVImin

NDVImax − NDVImin
, (6)

where daily NDVI values are represented by NDVIt and NDVImax and NDVImin
denote the maximum and minimum values of the NDVI curve during the observation
period, respectively. The timings of the SOS and EOS are established as the dates
when the ratio P rises to 0.2 and declines to 0.2, respectively [30].

(2) Piecewise Logistic Function Method: Based on this method, a phenological curve
is divided into multiple linear or nonlinear segments, and logistic functions are
employed to describe the characteristics of each segment. This approach is sensitive to
nuanced phenological changes and can capture intricate phenological patterns [31,32].
The typical equation for the piecewise logistic function method is as follows:

NDVIi =

{ s1
1+em1+n1k + r1, i ≤ t

s2
1+em2+n2k + r2, i > t

, (7)

where NDVIi represents the NDVI value for the i-th day; t represents the date (day of
year, DOY) when the NDVI reaches its maximum value; and m, n, s, and r denote the
four key parameters of the rising and falling phase functions, respectively.

(3) Modified Double Logistic Function Method: The modified double logistic function
method improves upon the traditional double logistic function method to better suit
the phenological extraction for various vegetation types. This method considers the
effect of the vegetation type on phenology and has higher precision [33]. The modified
double logistic function method employs two logistic functions, each dedicated to
extracting growing and dormant seasons:

NDVIi = w1 +
w2

1 + e−δ1(k−θ1)
− w3

1 + e−δ2(k−θ2)
, (8)

where NDVIi represents NDVI on the i-th day.

We applied the three phenological extraction methods to NOAA CDR NDVI data
spanning 1982 to 2021 to obtain phenological data for the Central Asian region, including
key indicators such as SOS, EOS, and LOS. The application of multiple methods aims
to enhance the reliability and stability of vegetation phenology data, thereby providing
a more accurate representation of overall trends. Subsequently, we reduced the noise
interference and further increased the data stability by computing the mean of phenological
data extracted using the three methods. Initially, we employ three distinct methods to
extract Start of Season, End of Season, and Length of Season, respectively. Subsequently,
the results obtained from these three methods are averaged to derive the mean SOS, EOS,
and LOS. Our study will be conducted using these averaged values. The selection of this
approach is aimed at enhancing the stability and accuracy of the model, ensuring that the
results possess a high level of reliability.

2.3.2. Partial Least Squares Path Modeling

Partial Least Squares Path Modeling (PLS-PM) is a correlation-based structural equa-
tion modeling (SEM) algorithm. In PLS-PM, the concept of causal relationships is expressed
based on linear conditional expectations, aiming to discover the best linear predictive rela-
tionships while allowing the use of latent variables to estimate complex causal relationships
or prediction models. The PLS-PM consists of two submodels: (1) the external model,
which associates observed variables with their corresponding latent variables, and (2) the
internal model, which links certain latent variables to other latent variables. Four latent
variables were defined: vegetation phenology, meteorological factors, topography, and
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greenhouse gas levels. The observed variables corresponding to vegetation phenology
were SOS, EOS, and LOS. Meteorological factors included temperature, precipitation, SM,
and VPD. Topographic factors and greenhouse gases included slope, aspect, elevation,
carbon dioxide, nitrous oxide, and methane, respectively.

The relationship between the observed variable (Xmn) and the latent variable (ξm) is
expressed in Equation (9) [34]:

Xmn = λmnξm + εmn, (9)

where λmn denotes the correlation, also known as the loading, between the m-th observed
variable in the n-th block and the latent variable. εmn represents the measurement error
term, accounting for inaccuracies in the measurements.

The relationship between latent variables ξ j is defined by Equation (10):

ξ j = ∑i ̸=j β jiξi + ζ j, (10)

Here, ξ j represents a general endogenous latent variable, β ji is the direct path coeffi-
cient from the i-th exogenous latent variable to the j-th endogenous latent variable, and
ζ j signifies the error in the internal model relationships. The calculation of indirect effect
coefficients is based on the product of direct path coefficients.

The present study employs the Goodness of Fit (GOF) metric to assess and ascertain
the predictive capabilities of the model [35]. GOF is computed using Equation (11):

GOF =

√
Communality × R2, (11)

In the formula, GOF is the geometric mean of the community index mean and the R2

(coefficient of determination) mean. GOF greater than or equal to 0.36 indicates a strong
overall fit of the model.

2.4. Statistical Analysis

Initially, we computed the annual mean values of SOS, LOS, and EOS raster images
for the Central Asian arid region spanning from 1982 to 2021. Employing univariate linear
regression analysis, respectively, we derived the slopes for the average SOS, LOS, and EOS
over the past four decades. These slopes were utilized to scrutinize the interannual trends
in SOS, LOS, and EOS over multiple years. We also utilized the Mann–Kendall method, a
common nonparametric statistical test, to assess the statistical significance of the trend data.
Utilizing a multiple linear regression model, calculate the sensitivity of meteorological
factors in the Central Asian region to vegetation phenology. In the multiple linear regression
model, the regression coefficients for each meteorological factor indicate the degree of
impact on vegetation phenology. The positive or negative sign denotes the direction of
the impact, while the magnitude of the coefficient signifies the strength of the influence.
Larger coefficients imply a more significant impact on vegetation phenology. Based on
partial correlation analysis, we examined the relationships between vegetation phenology
(including SOS, LOS, and EOS) and meteorological factors (temperature, precipitation,
VPD, and SM). This analytical method enabled us to eliminate interferences from other
factors, allowing for a more precise exploration of the associations between vegetation
phenology and individual meteorological components. By using an SEM approach without
latent variables, we studied the effects of meteorological factors on vegetation phenology.
The PLS-PM model analyzed the direct, indirect, and overall effects of climate, greenhouse
gases, topography, and other latent factors on vegetation phenology.
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3. Results
3.1. Spatiotemporal Pattern Analysis of Vegetation Phenology in Central Asia

The correlation coefficient (R2) between the average SOS values inferred by the three meth-
ods and the ground-observed SOS was 0.67, with a significance level of p < 0.01 (Figure S1).
Hence, the Start of Season (SOS) extracted through remote sensing provides a more accurate
reflection of the actual conditions in Central Asia. In the arid region of Central Asia, the
SOS is primarily concentrated between 90 and 130 days (comprising 72.26% of the study
area). We observed a spatial distribution pattern in which the SOS occurred earlier in the
southwest and later in the eastern and northern regions (Figure 2a). Significantly earlier re-
gions (25.29%) were detected in the southern Tianshan Mountains, eastern Kazakhstan, and
central Kyrgyzstan. Significantly delayed regions (1.35%) were situated in the northern part
of the Tianshan Mountains in Xinjiang and the southern region of Uzbekistan (Figure 2d).
The EOS in Central Asia was mainly concentrated between 260 and 300 days (comprising
86.01% of the study area). Based on the observed pattern, the EOS occurs later in the central
region and earlier in northern and southern areas (see Figure 2b). Significantly earlier re-
gions (13.52%) were located in southeastern Kazakhstan, and significantly delayed regions
(2.98%) were distributed in northern Xinjiang and southern Tajikistan (see Figure 2e). The
LOS in Central Asia was primarily concentrated between 140 and 180 days (77.44% of the
study area). This shows a spatial distribution pattern with a longer LOS in the central region
and a shorter LOS in the northern and southern regions (Figure 2c). Significantly earlier
regions (6.03%) were detected in Tajikistan, whereas significantly delayed regions (10.21%)
were observed in northern Xinjiang, southern Tajikistan, Kyrgyzstan, and sporadically in
northern Kazakhstan (Figure 2f).
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We observed significant interannual trends in vegetation phenology from 1982 to 2021.
On average, the SOS decreased by 0.239 days per year, LOS increased by 0.044 days per
year, and EOS decreased by 0.125 days per year (Figure 3). These trends indicate that the
start and end times of the seasons significantly advanced throughout the study period,
whereas the duration of the seasons increased.
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Figure 3. Interannual variations of SOS, EOS, and LOS in Central Asia for the years 1982–2021.
(a–c) are the interannual variation trends of SOS, LOS and EOS, respectively.

3.2. Correlations between Meteorological Factors and Vegetation Phenology in Central Asia

The correlation between the SOS and temperature exhibits an overall inverse trend
(constituting 80.74% of the entire region). Notably, negative correlations (accounting for
25.53%) were predominantly manifested in the western and southern regions of Kazakhstan
and Kyrgyzstan (Figure 4a). The spatial heterogeneity of the partial correlation between
the SOS and precipitation is striking. Regions displaying a significant negative correlation
(7.20%) were primarily located in southern Kazakhstan and Turkmenistan. Conversely,
areas exhibiting a significant positive correlation (3.64%) were primarily concentrated in
the northwestern and southeastern parts of the study area (Figure 4b). Regions exhibiting
a prominent positive correlation (5.04%) between the SOS and SM were predominantly
concentrated in the central sector of the study area. Conversely, noteworthy negative
correlations (6.19%) were primarily observed in the southeastern section of the research
domain, as illustrated in Figure 4c. Overall, an inverse correlation was observed between
the SOS and VPD, which accounted for 65.48% of the entire region. Notably, negative
correlations (13.69%) were predominantly distributed in the northern regions of Kazakhstan,
encompassing the Altai and Tien Shan mountain ranges. Areas exhibiting a significant
positive correlation (2.06%) were mainly located in southwestern Kazakhstan (Figure 4d).
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Regions prominently characterized by a significant positive correlation (7.89%) be-
tween LOS and temperature were mainly distributed in the northern regions of Kazakhstan
and high-altitude mountainous areas (Figure 4e). In contrast, regions marked by a notable
negative correlation (6.37%) between the LOS and precipitation were mainly situated in
the central parts of Kazakhstan and within the Zhuigeer Basin (Figure 4f). LOS exhibited
a substantial positive correlation (4.51%) with SM, which was primarily observed in the
northern regions of Kazakhstan and Kyrgyzstan (Figure 4g). Overall, a positive correlation
was detected between the LOS and VPD, encompassing 63.08% of the entire region. Regions
displaying a notable positive correlation (9.67%) were predominantly located in northern
Kazakhstan and northern Xinjiang (Figure 4h).

The correlation between EOS and temperature exhibited an overall negative trend,
accounting for 69.34% of the entire region. Negative correlations (16.92%) were primarily
observed in Kazakhstan and Uzbekistan (Figure 4i). The EOS demonstrated an overall
positive correlation with precipitation, accounting for 51.24% of the entire region. Regions
displaying a significant positive correlation (5.74%) were primarily located in Xinjiang
and Uzbekistan (Figure 4g). The EOS exhibited an overall positive correlation with the
SM, encompassing 51.71% of the entire region. Notably, positive correlations (4.69%)
were predominantly observed in northern Xinjiang and Kazakhstan (Figure 4k). The EOS
displayed an overall positive correlation with the VPD, accounting for 54.48% of the entire
region. Notably, positive correlations (6.13%) were primarily concentrated in northwestern
Kazakhstan (Figure 4l).

3.3. Sensitivity of Meteorological Factors to Vegetation Phenology in Central Asia

An increase in temperature by 1 ◦C resulted in an advancement of 0.34 days in the
SOS. Among the pixels, 89.60% exhibited negative sensitivity of SOS to temperature, with
a sensitivity range spanning from −5 to 0 days/◦C, covering 54.90% of the pixel area
(Figure 5a). Every 100 mm increase in annual precipitation led to an advancement of
0.18 days in the SOS. Among the pixels, 55.41% demonstrated a negative sensitivity of
SOS to precipitation, with 45.58% of pixels falling within a sensitivity range of −0.5 to
0 days/mm and 30.42% of pixels within the range of 0 to 0.05 days/mm (Figure 5b).
Each increment of 0.01 in the SM content led to an advancement of 0.03 days in the SOS.
Among the pixels, 74.57% exhibited a positive sensitivity to SM, and 50.46% of these pixels
displayed a sensitivity range exceeding 100 days/0.01 SM content (Figure 5c). The effect
of atmospheric aridity on the SOS revealed that 84.59% of the pixels exhibited a negative
sensitivity of the SOS to atmospheric aridity. The sensitivity range falls between −5 and
0 days/kPa, covering 49.04% of the pixels (Figure 5d).

An increase in temperature by 1 ◦C resulted in an extension of the LOS by 0.34 days.
Among the pixels, 84.59% exhibited a positive sensitivity of LOS to temperature, with a sen-
sitivity range spanning from 0 to 5 days/◦C, covering 34.28% of the total pixels (Figure 5e).
Regarding precipitation, every 100 mm increase in the annual precipitation led to an ad-
vancement of 0.18 days in the LOS. Among the pixels, 53.49% demonstrated a negative
sensitivity of LOS to precipitation, with 19.05% of pixels falling within a sensitivity range
of −0.5 to 0 days/mm and 17.52% of pixels falling within the range of 0 to 0.05 days/mm
(Figure 5f). Each increment of 0.01 in the SM content resulted in an extension of the LOS by
0.03 days. Among the pixels, 62.27% displayed a negative sensitivity of LOS to SM, and
47.88% of these pixels had a sensitivity range smaller than −100 days/0.01 SM content
(Figure 5g). The effect of atmospheric aridity on the LOS revealed that 67.10% of the pixels
exhibited a positive sensitivity of the LOS to atmospheric aridity. The sensitivity ranged
between 0 and 10 days/kPa, covering 51.06% of the pixels (Figure 5h).
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and EOS, respectively.

An increase in the temperature by 1 ◦C resulted in an advancement of 0.34 days in
the EOS. Among the pixels, 70.67% exhibited a negative sensitivity of EOS to temperature,
with a sensitivity range spanning from −5 to 0 days/◦C, covering 56.36% of the pixel area
(Figure 5i). Regarding precipitation, every 100 mm increase in the annual precipitation
led to an advancement of 0.18 days in the EOS. Among the pixels, 54.59% demonstrated a
negative sensitivity of EOS to precipitation, with 32.07% and 28.81% of the pixels falling
within a sensitivity range of −0.5 to 0 and 0 to 0.05 days/mm, respectively (Figure 5j). Each
increment of 0.01 in the SM content led to an extension of 0.03 days in the EOS. Among the
pixels, 52.07% exhibited a positive sensitivity of the EOS to SM, with 28.39% of these pixels
having a sensitivity range between 0 and 100 days/0.01 SM content (Figure 5k). The effect
of atmospheric aridity on the EOS revealed that 57.89% of the pixels exhibited a positive
sensitivity of the EOS to atmospheric aridity. The sensitivity range was between 0 and
10 days/kPa, covering 41.93% of the pixels (Figure 5l).

The path coefficient results indicate that temperature has a significant effect on SOS,
LOS, and EOS, with coefficients of −0.423, 0.106, and −0.353, respectively (Figure 6). For
the SOS, the ranking of path coefficient values (in absolute terms) for climatic factors was
as follows: T > precipitation > VPD > SM. This implies that temperature and precipita-
tion had the most substantial effects on the SOS, whereas soil moisture had the smallest
effect. Similarly, for LOS, the ranking of path coefficient values (in absolute terms) for
climatic factors was VPD > T > precipitation > SM. This indicates that VPD had the most
significant effect on LOS, whereas SM had the smallest effect. In the case of the EOS, the
ranking of path coefficient values (in absolute terms) for the climatic factors was as follows:
T > VPD > precipitation > SM. This suggests that the temperature had the most significant
effect on EOS, whereas SM had the smallest effect. These results highlight the dominant
role of temperature in influencing the spatiotemporal variation in vegetation phenology in
Central Asia. However, it is essential to acknowledge that the effects of precipitation and
VPD on phenology are equally significant and should not be disregarded.
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3.4. Research on the Effects of Topographic Factors on Vegetation Phenology in Central Asia

As the elevation gradually increased, the vegetation phenology changed. Significant
differences were observed in the phenological trends at different elevations (Figure 7a,d,g).
With increasing elevation, the SOS was delayed and the LOS shortened. However, at
elevations below 3000 m, an advancing trend of the EOS with increasing elevation was
observed. In contrast, at elevations ranging from 3000 to 4000 m, the EOS experienced
a delay. Furthermore, the absolute values of the partial correlation coefficients between
SOS, LOS, and VPD and elevation showed the most significant associations, whereas EOS
had the highest absolute values of the partial correlation coefficients with SM (Figure 8b).
This indicates that elevation primarily regulates phenological changes in vegetation by
influencing VPD and SM.
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Figure 7. Changes in the vegetation phenology with altitude, slope, and aspect in arid areas of
Central Asia. The shadow area represents the 95% confidence interval of the fitted curve. (a–c) are
the changes of SOS with altitude, slope and slope direction, respectively. (d–f) are the changes of LOS
with elevation, slope and slope direction, respectively. (g–i) are the changes of EOS with altitude,
slope and slope direction, respectively.
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With increasing slope, the vegetation phenology exhibited diverse trends (Figure 7b,e,h).
Noticeable differences were observed in the phenological trends of various slopes. Within
the slope range of 0◦–25◦, the SOS was delayed as the slope increased. However, beyond a
slope of 25◦, a minimal SOS change was observed. Within the slope range of 0◦–20◦, an
increase in slope led to a delay in the SOS, an advance in EOS, and a reduction in LOS.
However, at slopes greater than 20◦, correlations between the EOS, LOS, and slope became
less apparent. Furthermore, the absolute values of the partial correlation coefficients
between SOS, LOS, and VPD exhibited the most significant association with the slope,
whereas EOS displayed the highest absolute partial correlation coefficient with the SM
(Figure 8a). This suggests that slopes primarily regulate phenological changes in vegetation
by influencing VPD and SM.

The SOS gradually advanced from north, northeast, east, and southeast to south,
whereas the EOS and LOS exhibited delayed and prolonged trends in these directions
(Figure 7c,f,i). On the other hand, the SOS experienced delays in the southwestern, west-
ern, and northwestern directions, whereas the EOS and LOS exhibited advancing and
shortening trends in these slope directions. Furthermore, the absolute values of the partial
correlation coefficients between SOS, EOS, LOS, and Pre displayed the most significant as-
sociation in the slope direction, whereas EOS had the highest absolute values of the partial
correlation coefficients with the lowest temperature (Figure 8c). This suggests that the slope
direction primarily influences vegetation phenological changes by affecting precipitation
and temperature.

3.5. Analysis of the Impact Mechanisms of Temporal and Spatial Changes on Vegetation Phenology
in Central Asia

The direct effects of climate, topography, and greenhouse gases on phenological factors
were determined to be −0.522, −0.200, and −0.066, respectively (Figure 9). Topographic
factors indirectly affect phenological factors by influencing greenhouse gases and climatic
factors (−0.283). The overall effect, considering both the direct and indirect effects, was
-0.483. Greenhouse gases indirectly affect phenological factors by influencing climatic
factors, with a value of 0.027. The overall effect, considering both the direct and indirect
effects, was −0.039. This suggests that climate change is the primary factor influencing
interannual phenological changes. Furthermore, notably high correlation coefficients
(absolute values) were obtained between SOS, LOS, temperature, and VPD. In addition,
the correlation coefficient between the EOS and VPD was significantly high, as shown
in Figure 10. Hence, climate change primarily affects interannual phenological changes
through variations in temperature and VPD. Significantly high correlation coefficients (in
absolute values) were obtained between SOS, LOS, and EOS with respect to elevation and
slope. This indicates that, in the context of climate change, elevation and slope are the
primary factors influencing changes in interannual phenological indicators. Significant
correlations were observed among SOS, CO2, and N2O, whereas LOS was significantly
correlated with N2O. This suggests that CO2 and N2O notably affect the SOS, whereas



Land 2024, 13, 180 13 of 21

N2O has a significant influence on the LOS. Changes in greenhouse gases did not have a
significant effect on the EOS.
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4. Discussion
4.1. Effect of Climate Change on Vegetation Phenology

In this study, the effect of climate change on vegetation phenology in Central Asia was
investigated. The results indicate that the SOS and temperature are significantly negatively
correlated. Higher temperatures accelerate heat accumulation, enabling temperatures to
rapidly reach the critical threshold required for plant growth [36]. Furthermore, higher tem-
peratures prevent the damage to plants caused by freezing, prompting them to enter their
growth states earlier [37]. The correlation between precipitation and vegetation phenology
in Central Asia is spatially heterogeneous. A negative correlation was observed between
precipitation and SOS in southern Kazakhstan and Turkmenistan. Increased precipitation
can provide more water necessary for vegetation growth, prompting plants to enter the
growth state earlier, resulting in the advancement of the SOS. In the northwestern and
southeastern regions of the study area, SOS and precipitation were positively correlated [38].
The northwestern and southeastern regions are mountainous. While an apparent increase
in precipitation may seem favorable for vegetation, the fact that this precipitation occurs
over a very short period can potentially lead to severe soil erosion and runoff, damaging
plant roots and growth environments. Under such circumstances, the SOS may be delayed
because plants require time to adapt and recover from the damage caused by soil erosion
and other adverse effects [39]. Compared with precipitation, SM reflects the available water
status of plants more directly [40]. We detected a significant positive correlation between
SM in Central Asia and the SOS, which differs from previous research, suggesting that
SM mitigates drought and advances the SOS [13]. An increase in SM may result in an
adjustment of the plant-growing season. Typically, plants commence growth when they
have sufficient water. Hence, an increase in SM may delay the onset of the spring growing
season because plants no longer need to grow rapidly to adapt to dry conditions [41].
Furthermore, using a SEM, temperature was determined to be the primary factor affecting
the SOS. The increase in SM may offset the positive effects of temperature and light on SOS;
thus, more sunlight and a rise in temperature might be required to trigger plants to enter a
new growth phase [42,43].

VPD is primarily positively correlated with LOS, and its influence on LOS is greater
than that of the other meteorological factors. This suggests that the VPD may be one of the
main meteorological factors affecting the LOS. An increase in VPD can lead to an increase
in leaf transpiration rates because a higher VPD can prompt plants to open their stomata
to release excess water vapor to compensate for water evaporation [44]. Although other
meteorological factors, such as temperature and precipitation, may also affect the LOS, the
influence of VPD is more significant. This positive correlation implies that plants respond
to drought and water stress. When the VPD increases, plants respond to drier conditions by
extending the LOS to maintain their moisture and growth [45]. This process is crucial for
plant survival under drought conditions. In addition, research has shown that an increase
in the LOS due to drought does not necessarily enhance vegetation productivity [46].

Temperature plays a dominant role in regulating the EOS, with higher temperatures
causing the EOS to advance. Increases in temperature can affect photosynthesis and
the decomposition of chlorophyll, which is also related to changes in the leaf color in
autumn [47]. At higher temperatures, chlorophyll decomposition accelerates, revealing
other pigments in the leaves that cause them to turn yellow, orange, or red. Higher
temperatures may cause plants to enter dormancy earlier, resulting in an earlier EOS
occurrence [48].

Our results reveal that the LOS is more sensitive to climatic factors (temperature,
precipitation, VPD, and SM) than the SOS and EOS. Furthermore, compared with SOS and
EOS, the spatial heterogeneity of the effects of climatic factors on LOS is more complex.
The LOS is generally highly sensitive to changes in various climatic factors, including
temperature, humidity, VPD, and SM. These factors directly affect the opening and closing
of plant stomata and transpiration rates and have a significant influence on the entire
growth season. In contrast, the SOS and EOS are typically more controlled by factors such
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as temperature and precipitation, and their responses may not be as diverse as those of
the LOS. Furthermore, LOS may be more sensitive to the physiological and ecological
processes of plants because it involves plant water and gas exchange. The LOS is crucial for
the functionality of ecosystems because it directly influences water and energy exchange
processes [49].

4.2. Effect of the Terrain on Vegetation Phenology

The results of this study show that topographical factors (elevation, slope, and aspect) sig-
nificantly affect the vegetation phenology in Central Asia. With increasing elevation, the SOS
is delayed, and the LOS shortens. The phenological trends of EOS vary at different elevations.

The delay in SOS and shortening of the LOS with increasing elevation occur for the
following reasons: As elevation increases, temperatures typically decrease. Areas at higher
elevations are generally colder, leading to lower soil temperatures that delay the initiation
of plant growth [50]. In high-elevation areas, the duration of snow cover may be longer, and
snow cover may inhibit plant growth. High-elevation regions may also experience shorter
daylight hours because mountainous terrain obstructs sunlight [51]. This results in less
sunlight being received by plants per day, thereby delaying the start of the growing season.
High-elevation areas often have poor soil conditions, such as infertile and poorly drained
soils, which can limit the growth rate of plants. Therefore, the SOS occurs relatively later,
and LOS is relatively shorter because plants require more time to adapt to these unfavorable
conditions. The influence of elevation on EOS often exhibits different trends. Below an
elevation of 3000 m, the earlier EOS may be due to a decrease in temperature. Areas at
lower elevations are generally warmer, and a decrease in temperature can accelerate the
end of the plant-growing season, resulting in an earlier EOS [52]. Precipitation patterns
may also influence the EOS. Some areas at lower elevations might have distinct dry seasons,
and a decrease in precipitation could lead to an earlier end of the plant-growing season.
At elevations ranging from 3000 to 4000 m, the delay in the EOS may be due to regions
at higher elevations accumulating more snow. Snow cover continues to reflect sunlight
and maintain relatively low temperatures [53]. Lower temperatures might slow plant
growth and the process of leaf color change, leading to a relatively later appearance of
autumn phenology. Additionally, high-elevation areas may experience shorter daylight
hours, resulting in insufficient sunlight and delayed plant growth and leaf color change [54].
Elevation primarily regulates phenological changes in vegetation by affecting the VPD
and SM (Figure 8b). With increasing elevation, the atmosphere is typically thinner, and
the temperature and humidity may decrease. Lower atmospheric pressure and humidity
can influence changes in the VPD. Higher elevations, which often have lower VPDs, help
vegetation maintain moisture because of lower evaporation rates. This may lead to slower
phenological processes, such as flowering and leaf color changes [55]. Increased elevation
also influences the availability of SM. Higher altitudes are typically characterized by a
greater accumulation of snow and ice during colder seasons, prolonging the thawing and
melting processes of the soil. This phenomenon may lead to a delayed release of SM in
spring, consequently affecting the phenological changes of vegetation and resulting in a
delayed occurrence thereof [56].

Augmentation of slope inclination results in the postponement of the SOS. This can
be attributed to the steeper nature of these slopes, where the angle of solar irradiation is
relatively shallow, potentially yielding lower ground temperatures. This, in turn, retards the
vernal reawakening of vegetation. Vegetation requires a protracted duration to acclimatize
to diminished temperatures and reduced solar exposure, thus resulting in a delay in the
SOS [57]. Conversely, an increase in the slope inclination may induce the advancement
of the EOS. On steeper slopes, the solar angle of incidence becomes more acute, resulting
in a swifter temperature increase. Consequently, vegetation may enter dormancy earlier,
leading to the premature occurrence of EOS [58].

Aspect primarily influences vegetation phenology through its effects on precipitation
and temperature. Aspect can significantly modulate the precipitation distribution. In
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Central Asia, north-facing slopes tend to be warmer because they are sunward-oriented;
thus, they absorb a greater amount of solar radiation. In contrast, south-facing slopes
typically remain cooler because they are sun-averse and have diminished solar exposure.
This disparity may result in reduced precipitation on north-facing slopes and increased
precipitation on south-facing slopes [59]. This divergence in precipitation may affect the
water supply to vegetation, consequently influencing its phenology. This also influences
the temperature distribution. The orientation of the slope governs the direct angle of solar
incidence on the ground. South-facing slopes are more prone to direct solar exposure
during the day, resulting in elevated soil and surface temperatures. Conversely, north-
facing slopes receive comparatively less solar radiation, leading to lower temperatures.
This temperature differential can influence the rate of vegetation growth and development
as well as the timing of phenological events.

4.3. Effects of Climate, Terrain, and Greenhouse Gases on Vegetation Phenology

Conducting a PLS-PM path analysis to assess the integrated impact of climate, topog-
raphy, and greenhouse gases on vegetation phenology, we discern that climate change
stands as the principal factor influencing inter-annual variations in phenological patterns.
Climatic factors, including temperature, precipitation, and solar radiation, directly gov-
ern vegetation growth and development [60]. The direct influence of climatic factors on
vegetation plays a pivotal role in phenology. Climate change is typically accompanied by
a global temperature escalation. An increase in temperature leads to early spring warm-
ing, prompting plants to initiate their growth seasons sooner. This has resulted in the
advancement of phenological events, a trend observed in numerous regions [61]. Climate
change has also triggered erratic precipitation patterns, including droughts and uneven
rainfall. These irregular precipitation patterns directly affect the water supply to vegetation,
potentially resulting in irregular and delayed phenological events. Vegetation requires an
adequate water supply to sustain growth and flowering; hence, alterations in precipitation
patterns significantly influence the phenology [62]. Climate change is a global issue that
encompasses the integrated alteration of multiple climatic factors, including temperature,
precipitation, and extreme weather events [63]. These factors collectively influence the
growth and phenological changes in vegetation, rendering climate change a comprehensive
and multifaceted influencing factor. Long-term trends in climatic elements have sustained
and cumulative effects on vegetation phenology. As climate change continues, vegetation
gradually adapts to new climatic conditions, resulting in a shift in the timing of phenolog-
ical events. In summary, climate factors encompass the direct effects on vegetation, the
warming effect induced by climate change, erratic precipitation patterns, the global and
comprehensive nature of climate change, and the long-term trends of climatic elements
that converge to establish climate change as the primary driver of interannual vegetation
phenological variation. Temperature and VPD strongly correlate with phenology and
are among the most pivotal climatic factors. Elevated temperatures foster plant growth,
resulting in early spring warming and advanced phenology, whereas lower temperatures
may contribute to phenological delays. The VPD, which represents the disparity between
the leaf transpiration water demand and moisture requirement of the surrounding air,
signifies dry atmospheric conditions. This, in turn, prompts plants to adapt their water-
utilization strategies through phenological adjustments. Temperature and VPD directly
affect plant growth and phenological events [64]. The strong correlation among these
factors underscores their pivotal roles in governing the ecological responses of plants and
ecosystem phenology.

Topographic factors affect vegetation phenology that surpass their direct impact
through the indirect regulation of greenhouse gases and climatic elements. Mountains
induce upward air movement and augment precipitation, whereas valleys are often drier.
This divergence in precipitation distribution directly affects vegetation water utilization
and availability and consequently significantly influences phenological events. Therefore,
topography plays a pivotal role in the allocation of water resources within ecosystems [65].
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Topographical gradients give rise to temperature disparities, with high-altitude areas
typically being cooler and low-lying regions being warmer. These temperature differences
influence the seasonality and rhythm of vegetation growth. High-altitude areas may
experience spring at relatively low temperatures, resulting in delayed phenological events,
whereas low-lying regions enter spring at higher temperatures, potentially causing early
occurrences [66]. Topographic features can alter atmospheric circulation, including wind
direction and speed, thereby affecting the distribution and dispersion of greenhouse gases.
Mountains and valleys may lead to the accumulation of greenhouse gases in certain areas,
subsequently affecting the atmospheric temperature and humidity. Changes in climatic
factors directly influence vegetation growth and phenology.

We analyzed the correlation between greenhouse gases and vegetation phenology. The
results of this research indicate that CO2 significantly influences the SOS. Increased CO2
concentrations may stimulate plant growth and photosynthesis, resulting in the advance-
ment of the plant SOS [67]. The increase in the N2O content enhances the greenhouse effect
in the atmosphere because it has the capacity to absorb and re-emit the Earth’s surface
infrared radiation, thereby prolonging the retention of heat in the atmosphere. This, in
turn, influences the LOS of vegetation [68]. The effects of greenhouse gas changes on the
EOS of vegetation are not significant. This may be attributed to the fact that a multitude
of climatic and environmental factors, including temperature, precipitation, and solar
radiation, influence the EOS. The intricate interplay among these factors may obscure the
potential effects of greenhouse gas variations on the EOS. Further research and analysis are
required to elucidate the specific reasons for these effects.

Through a comprehensive consideration of temperature, topographical factors, water
resource management, climate change adaptation and mitigation measures, research and
technological innovation, as well as education and advocacy, one can more effectively
address ecological issues in the Central Asian region. This involves achieving efficient
utilization of water resources, safeguarding and restoring the stability and sustainable
development of arid ecosystems. These integrated measures include: adapting grassland
irrigation based on real-time temperature changes to accommodate early plant growth,
and reducing irrigation amounts to prevent premature vegetation growth. Selecting veg-
etation species with strong adaptability based on topographical factors, improving soil
drought resistance, and enhancing soil water retention capacity to increase the stability of
the vegetation ecosystem. Monitoring and predicting water resources, temperature, and
phenological changes, and dynamically adjusting water resource allocation and vegetation
management. Promoting low-carbon production methods, reducing greenhouse gas emis-
sions, and researching innovative technologies to understand the impact mechanisms of
meteorological factors on vegetation phenology, thereby reducing ecosystem vulnerability.
Through educational and advocacy activities, raising public and decision-makers’ aware-
ness of water resources and arid ecosystems, fostering public participation, and supporting
relevant policies and projects. These comprehensive measures can promote the effective
use of water resources and protect and restore the stability and sustainable development
of arid ecosystems. Additionally, ongoing research, technological innovation, education,
and advocacy are necessary to continually enhance understanding and problem-solving
capabilities regarding ecological issues in the Central Asian land ecosystems.

4.4. Uncertainty

This study delves deeply into the comprehensive mechanisms underlying the spa-
tiotemporal effects of climate, topography, and greenhouse gases on vegetation phenology,
providing a vital scientific foundation for ecosystem management and climate adaptation.
However, this study has certain limitations. First, the effects of seasonal meteorological
factors on vegetation phenology were not thoroughly explored. Seasonal meteorological
factors, including spring precipitation, high summer temperatures, and autumn droughts,
have significant and intricate effects on vegetation phenological events [69]. These seasonal
climatic factors may significantly affect vegetation growth and life cycles during specific
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seasons. Second, although we considered the integrated effects of climate, topography, and
greenhouse gases on vegetation phenology, the focus must be placed on the influence of ex-
treme weather events on phenology. Extreme weather events, such as droughts, floods, and
severe winds, may have a more pronounced effect on vegetation phenology, particularly as
climate change intensifies [70,71]. Hence, further research on how weather events shape
vegetation phenology will contribute to a more comprehensive understanding of vegetation
responses to climate change. Future research plans will focus on analyzing the impact of
government-implemented sustainable vegetation management, forest resource strategies,
human activities, and soil nutrient factors on vegetation phenology. The intention is to
propose methods that integrate complex models or technologies to offer more precise and
reliable predictions and explanations. This approach aims to enhance the understanding
and response to vegetation’s reactions to environmental changes. Finally, the validation
data mentioned in this study primarily focus on the Xinjiang region, whereas the data
measured in other parts of Central Asia are relatively limited. This could limit the overall
understanding of phenological changes in vegetation in Central Asia. Future research
should include the collection of measured data from a broader range of regions in Central
Asia to ensure more representative and credible study results.

5. Conclusions

Previous research predominantly focused on the correlation between Central Asian
vegetation phenology and climate change, emphasizing the impact of singular environmen-
tal factors on vegetation phenology while disregarding the direct and indirect influence of
various factors such as climate, topography, and greenhouse gases on vegetation phenology.
In this study, we conducted an in-depth analysis of spatiotemporal changes in Central
Asian vegetation phenology from 1982 to 2021 to identify the combined effect of climate,
topography, and greenhouse gas variables on vegetation phenology. The results of this
study indicate that vegetation phenology exhibited distinct interannual variations from
1982 to 2021. The annual decrease in the average SOS was 0.239 days, the average LOS
increased by 0.044 days, and the annual decrease in the average EOS was 0.125 days. Tem-
perature plays a dominant role in spatiotemporal variations of Central Asian vegetation
phenology, with each 1 ◦C rise in temperature leading to an advancement of the SOS by
0.34 days, an extension of the LOS by 0.34 days, and an earlier occurrence of the EOS (by
0.34 days). Furthermore, topographic factors, including elevation, slope, and aspect, also
significantly influence vegetation phenological changes. Elevation and slope regulate vege-
tation phenological variations by affecting VPD and SM, whereas aspect primarily shapes
the spatiotemporal patterns of vegetation phenology through its effect on precipitation and
temperature. Compared with topography and greenhouse gases, meteorological factors
are the dominant environmental factors influencing interannual phenological variations.
Temperature and VPD are the principal meteorological factors that profoundly affect the
interannual dynamics of vegetation phenology. The findings of this study contribute to
deepening our understanding of the integrated response relationships between Central
Asian vegetation phenology, climate, topography, and greenhouse gases. It provides crucial
scientific foundations for ecosystem restoration and environmental adaptation strategies in
the Central Asian region.
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