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Abstract: The critical role of high-quality urban development and scientific land use in leveraging
big data for air quality enhancement is paramount. The application of machine learning for causal
inferences in research related to big data development and air pollution presents considerable
potential. This study employs a double machine learning model to explore the impact of big data
development on the PM2.5 concentration in 277 prefecture-level cities across China. This analysis is
grounded in the quasi-natural experiment named the National Big Data Comprehensive Pilot Zone.
The findings reveal a significant inverse relationship between big data development and PM2.5 levels,
with a correlation coefficient of −0.0149, a result consistently supported by various robustness checks.
Further mechanism analyses elucidate that big data development markedly diminishes PM2.5 levels
through the avenues of enhanced urban development and land use planning. The examination of
heterogeneity underscores big data’s suppressive effect on PM2.5 levels across central, eastern, and
western regions, as well as in both resource-dependent and non-resource-dependent cities, albeit
with varying degrees of significance. This study offers policy recommendations for the formulation
and execution of big data policies, emphasizing the importance of acknowledging local variances
and the structural nuances of urban economies.

Keywords: big data development; PM2.5; double machine learning; land use; high-quality urban
development

1. Introduction

The development of big data plays a crucial role in enhancing high-quality urban
development and land use, improving urban air quality, and promoting sustainable urban
growth. In the past decade, the global landscape has undergone a significant digital trans-
formation, with big data development at its core. The digital economy’s impact on China is
comprehensive, evident across all sectors. It harbors the potential to drive sustainable urban
development through industrial agglomeration, advancements in green technology, and the
acceleration of industrial structural upgrades [1,2]. Moreover, it can facilitate high-quality
economic growth via industrial digitalization and the enhancement of human capital [3,4].
The digital economy also plays a critical role in promoting the green transformation of
agriculture, advancing high-quality agricultural development, and accelerating rural re-
vitalization [5,6]. Research indicates that the digital economy significantly contributes to
enhancing the commonwealth, boosting the competitiveness of imports and exports, and
improving environmental quality [7–9]. Additionally, studies have found that the long-term
impact of the digital economy on employment is overwhelmingly positive [10]. The digital
economy is transforming every aspect of our lives, underscoring the transformative power
of big data and digital technologies in fostering a more sustainable, efficient, and dynamic
urban development paradigm.

At the same time, air pollution, particularly PM2.5 pollution, persists as a formidable
global challenge. PM2.5 represents a significant environmental and public health hazard.
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As a fine particulate matter capable of penetrating deep into the lungs and entering the
bloodstream, PM2.5 poses a grave threat to human health [11]. Recent years have seen China
achieve notable improvements in air quality [12]. Significant strides have been achieved
in reducing major air pollutants and enhancing air quality, attributed to initiatives such
as the Action Plan for Prevention and Control of Air Pollution and the Three-Year Action
Plan for Winning the Battle for the Blue Sky. The average PM2.5 concentration in China
witnessed a 57% decrease from 2013 to 2022, alongside rapid economic growth. However,
despite these advancements, the average annual PM2.5 concentrations in 339 prefectural-
level cities and above in 2022 still surpassed the latest air quality guideline issued by the
World Health Organization, highlighting a distinct disparity in the concentration levels
between Europe and the United States. Studies have indicated that PM2.5 pollution levels
exceed international health standards, underscoring the ongoing need for enhanced pol-
lution prevention and control efforts [13]. The state council’s recent promulgation of the
Action Plan for Continuous Improvement of Air Quality reflects the Chinese government’s
steadfast commitment to pollution prevention and treatment. The challenge of particulate
matter pollution in China is exacerbated by rapid economic development, urbanization,
significant industrial production growth, and increased automobile usage. The 2022 China
Ecological Environment Status Bulletin reported that national emissions of particulate
matter from exhaust gas amounted to 4,934,000 tons, with industrial sources contributing
62.0% and residential sources 37.0%. The prolonged suspension of fine particles in the
atmosphere facilitates the formation of PM2.5 pollution. Research indicates that industrial
emissions, along with coal and biomass combustion for daily living, are principal sources
of PM2.5 [14–16]. Additionally, socio-economic and meteorological factors, as well as the
generation of secondary particulate matter, further contribute to PM2.5 pollution [17–19].
Meteorological conditions exacerbate PM2.5 pollution through atmospheric effects and sec-
ondary aerosol formation [20]. Population density and economic growth are recognized as
primary factors leading to more severe PM2.5 pollution [21]. A U-shaped relationship exists
between regional economic disparities and PM2.5 pollution, suggesting that both extremely
high and low levels of economic development can aggravate PM2.5 pollution. Furthermore,
the interplay between economic development and PM2.5 levels can influence population
migration, thereby impacting PM2.5 concentrations. Consequently, socio-economic factors
are intricately linked with PM2.5 pollution [22,23].

The establishment of public big data comprehensive pilot zones is recognized as a
strategic initiative to address environmental challenges and transform economic growth
models. For instance, since Guizhou was designated as the inaugural public big data com-
prehensive pilot zone, the digital economy’s value added has accounted for approximately
37% of the province’s GDP, highlighting the pivotal role of digitalization in economic
expansion. Furthermore, the implementation of the pilot zone has exerted a favorable
influence on environmental protection, notably in reducing carbon emissions and miti-
gating environmental pollution [24,25]. In the context of China’s contemporary economic
development, the digital economy assumes a critical role. Its advancement facilitates the
fusion of industrialization and informatization, thereby elevating the level of industrial-
ization. This process could potentially reduce PM2.5 emissions from industrial sources to
a certain degree [26]. Recent studies have indicated that the development of the digital
economy significantly impacts the reduction in PM2.5 pollution [27]. The influence of
the digital economy on PM2.5 is primarily mediated through key factors, such as urban
quality development and land use planning [28–32]. The exact manner in which the digital
economy affects PM2.5 pollution is not yet fully understood, necessitating further research
to elucidate its mechanisms comprehensively. Such investigations will furnish a theoretical
foundation for formulating national economic development and environmental protection
policies and strategies.

This paper introduces a double machine learning model to assess the impact of estab-
lishing comprehensive big data pilot zones on urban PM2.5 concentrations, utilizing panel
data from 277 prefecture-level cities across China. It delves into the creation of national big
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data comprehensive pilot zones in various regions of China and investigates the influence
of big data development on the PM2.5 levels in these areas. The study highlights regional
disparities and examines how big data development affects PM2.5 concentrations through
mechanisms such as capital and labor reallocation, technological innovation, population
migration, and the upgrading of industrial structures. To verify the robustness of these
findings, the research conducts several robustness tests.

The paper offers significant contributions in two main areas: firstly, it introduces a
novel research angle by analyzing the connection between big data development and PM2.5
concentrations within the framework of national policies, underlining the importance of
big data policies in environmental management. Secondly, it pioneers a methodological
approach by employing a double machine learning model to directly assess the impact of
big data development on PM2.5 levels. This approach provides a comprehensive theoretical
framework that intricately links big data development with environmental governance,
offering insights into the multifaceted ways big data initiatives influence PM2.5 levels and
enhancing the precision of causal inference.

The paper is methodically structured as follows: the second section discusses the ratio-
nale and significance of the National Big Data Comprehensive Pilot Zone, the relationship
between big data development and environmental pollution, and outlines the research
hypotheses. The third section details the design of the double machine learning model,
the selection of the variables, and the data sources employed. The fourth section presents
an analysis and discussion of the empirical findings. The concluding section summarizes
the study’s findings and offers policy recommendations based on the research outcomes.
This comprehensive study provides a foundation for leveraging big data development to
support the formulation of effective environmental policies, offering a fresh perspective on
the role of digital technologies in environmental sustainability.

2. Background, Literature Review, and Hypotheses
2.1. Background

The National Comprehensive Pilot Zone for Big Data stands as a crucial policy in
China, aimed at navigating the digitization trend, enhancing the strategic importance of
data resources, and propelling the development of the digital economy. This initiative was
initially highlighted in the 2014 Government Work Report, signifying the onset of the “big
data” era. Concurrently, numerous policy documents, such as the “Action Plan to Promote
Big Data Development”, were issued. In August 2015, the State Council promulgated
the “Action Outline to Promote Big Data Development”, recommending pilot projects in
specific areas and the advancement of comprehensive big data pilot zones in Guizhou
and other regions. By 2016, the pilot zone initiative had expanded to encompass Beijing-
Tianjin-Hebei, the Pearl River Delta, Shanghai, Henan Province, Chongqing City, Shenyang
City, and the Inner Mongolia Autonomous Region. The establishment of the National Big
Data Comprehensive Pilot Zone reflects China’s proactive stance in adapting to global
digitization trends and fostering the domestic digital economy, supported by a series of
policy documents like the Action Plan for Promoting Big Data Development. The National
Big Data Comprehensive Pilot Zone has recorded remarkable achievements. According
to the National Big Data (Guizhou) Comprehensive Pilot Zone Development Report 2022,
the digital economy accounted for approximately 37% of the province’s GDP in 2022,
maintaining the highest growth rate in the nation for seven consecutive years. The report
also details the promotion of the National Integrated Big Data Network National (Guizhou)
Hub Node and an investment of 3.913 billion yuan in addition to the construction of
31,000 new 5 G base stations, totaling 84,300 stations.

These pilot zones have effectively spurred digital transformation and development,
which are believed to significantly lower regional carbon emissions and meet emission
reduction goals. Research has demonstrated that the digital economy has an inverted
U-shaped correlation with environmental pollution, where pollutants may initially increase
during the early stages of economic development but tend to decline after reaching a certain
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level of development due to enhanced environmental protection efforts and the advent of
new technologies [33]. Moreover, the establishment of big data pilot zones has been linked
to increased environmental productivity in urban areas, particularly in cities with high
levels of marketization and resource-based economies [34]. Guo et al. (2022) [35] found
that the expansion of the digital economy could significantly improve urban air quality, not
only fostering the enhancement of local air quality but also motivating reductions in air
pollution in neighboring cities. These findings highlight the significant role that big data
pilot zones play in urban environmental governance.

2.2. Literature Review and Hypotheses
2.2.1. Literature Review

The establishment of big data pilot zones has been instrumental in driving enterprise
digital transformation, leading to a decrease in regional carbon emissions and the fulfillment
of emission reduction objectives [36]. Chuai et al. (2019) [37] devised a novel approach to
analyze carbon emissions in Nanjing, concentrating on land use and socio-economic factors
at a 300 m resolution. Hien et al. (2020) [38] investigated the effects of urban expansion in
Hanoi on air quality, assessing ambient NO and SO concentrations in urban and peri-urban
districts, thus highlighting the environmental implications of transforming agricultural
land into urban areas. Huang et al. (2020) [39] explored big spatial data (BSD) across
four case studies, which included detecting polycentric urban structures, evaluating urban
vibrancy, estimating PM2.5 exposure, and classifying urban land use with deep learning
techniques. Wang et al. (2020) [40] developed an air quality prediction model utilizing
big data and neural networks, demonstrating its proficiency in learning and forecasting
air quality trends. Wu et al. (2021) [41] applied big data and machine learning to uncover
the various mechanisms driving urban land use expansion in downtown Huizhou, noting
the differential impacts of distinct factors according to land use types and development
stages. Guo et al. (2021) [42] examined the correlation between street dynamic vitality and
the distribution and combination of land use, identifying a positive relationship between
vitality intensity and land use density and emphasizing the significance of transportation
facilities and land use diversity in enhancing vitality stability.

Recent research suggests an inverted U-shaped relationship between the digital econ-
omy and environmental pollution. As the economy progresses, sulfur dioxide emissions
increase but eventually start to decline after reaching a certain development threshold,
possibly due to enhanced environmental protection measures and technological advance-
ments [33]. Conversely, another study discovered that the growth of the digital economy
significantly mitigates environmental pollution, especially industrial sulfur dioxide pollu-
tion, likely a result of technological innovation and the upgrading of industrial structures [4].
Additional studies have also noted improvements in environmental quality and a reduction
in pollution attributable to the digital economy, which has facilitated the development
of numerous green technologies and industries [43]. Big data is pivotal in the economic
transformation towards green technological innovation, enabling enterprises to leverage
big data for sustainable practices [33,44]. The advancement of the digital economy directly
promotes high-quality green development, with the adjustment of industrial structures and
innovation in green technology playing essential roles in this process [45]. Furthermore, the
creation of comprehensive big data pilot zones is widely recognized for boosting the green
total factor productivity of cities, particularly in highly marketized and resource-based ur-
ban areas, where the promotion of green total factor productivity is more pronounced [34].
The role of the digital economy in environmental improvement is further exemplified in
green finance, which can serve as a negative regulator in addressing environmental pollu-
tion issues [46]. Communication ICT capital, in particular, can enhance carbon emission
efficiency and contribute to emission reductions [47], demonstrating the digital economy’s
potential to support green financial activities and foster the growth of the “green economy”,
thereby aiding in the alleviation of environmental pollution through the adoption of clean
technology and the optimization of industrial structures.
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The impact of the digital economy on urban carbon emissions is influenced by spatial
dynamics, demonstrating that the effects vary across different regions. In the eastern region,
the digital economy does not have a noticeable impact on carbon emissions. Conversely, in
the central region, the digital economy exacerbates carbon emissions, while in the western
region, it serves to reduce them [48]. Contrarily, another investigation highlighted that
the growth of the digital economy resulted in a significant decrease in pollution levels in
the eastern region and a notable reduction in CO2 emissions in the western region [49].
Bai et al. (2022) [50] corroborated these findings, revealing that larger cities, with their
advanced digital infrastructure and systems, were more effective in reducing pollution.
Nevertheless, the influence of the digital economy and big data is not universally positive.
As identified by Ma (2023) [51], an intriguing paradox exists where, in cities with low
innovation levels and underdeveloped digital economies, the digital transformation of
commercial banks contributes to an increase in PM2.5 pollution. This can be attributed
to factors like inadequate infrastructure, a lack of expertise, or insufficient regulatory
measures, which can impede the effective execution of digitalization initiatives.

Moreover, the development of the digital economy can also mediate carbon emissions
through its effects on land use. Rapid urbanization in China has led to an extensive increase
in construction land, resulting in the diminution of arable land. Land use changes indirectly
influence anthropogenic carbon emissions and, consequently, environmental quality [52,53].
The digital economy could potentially lower carbon emissions from cropland by fostering
innovation in green technologies and enhancing the efficiency of cropland’s green trans-
formation [54,55]. Furthermore, it can significantly boost the efficiency of urban land use
and the ecological integrity of land use practices, promoting a low-carbon development
trajectory [56–58]. The digital economy is poised to improve the quality of new urban
development, address the imbalance of land resources in urban growth, and elevate the
efficacy of urban green development [59,60]. In the realm of digital economic advancement,
big data plays a crucial role in optimizing land use and reshaping conventional perspec-
tives on land management. It enhances land planning and management capabilities and
supports the development of modern urban areas [61–63]. Additionally, big data facilitates
participatory approaches in land use planning, encouraging community involvement [64].
The interaction between land use changes and the digital economy also influences the
relationship between digital economic growth and air pollution.

The impact of digital economy development on air pollution remains a contentious
topic, with scholars yet to arrive at a consensus. While numerous studies have examined the
relationship between big data development and environmental outcomes, the majority have
concentrated on carbon emissions, leaving a gap in the literature regarding air pollution.
Moreover, there is a scarcity of research employing machine learning for causal inferences
in investigations of big data development and its effects on air pollution. This indicates a
significant opportunity for further exploration into how digital transformations, driven
by big data, influence various forms of environmental pollution, including air quality.
The application of machine learning techniques could provide nuanced insights into the
complex dynamics between digital economy growth and air pollution, offering a more
comprehensive understanding of the potential benefits and challenges associated with
digitalization in the context of environmental sustainability.

2.2.2. Hypotheses

Drawing on the Green Solow model [65], this study employs the super-efficiency
SBM model to assess the eco-efficiency of 152 Chinese prefecture-level cities from 2003 to
2016. Subsequently, the DID model is utilized to investigate the impact of smart city pilot
policies on eco-efficiency. Wu et al. (2022) [66] explored the implications of urbanization on
energy conservation and emission reduction across 196 Chinese cities from 2011 to 2018,
using a slacks-based approach. They advocated for policies that promote high-quality
urban development and ECER, highlighting the critical roles of economic growth, resource
allocation, internet technology, and employment structure, with a particular emphasis on
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innovation, coordination, and green development. This paper delves into high-quality
urban development, concentrating on the resource mismatch index, urban green patent
technology, and industrial structure upgrading.

The mismatch between labor and capital resources is identified as a significant con-
tributor to environmental pollution [67]. Studies have investigated city cluster construction
and economic agglomeration as viable strategies for diminishing environmental PM2.5
levels. The formation of city clusters enhances resource distribution, thereby reducing
environmental PM2.5 concentrations. Economic agglomeration, on the other hand, lessens
PM2.5 pollution through the acceleration of industrial clustering and the minimization of
resource mismatches [68–70]. The digital economy, as a nascent economic paradigm, has
garnered interest for its potential to rectify resource mismatches. Various studies have
posited that the digital economy can effectively mitigate resource mismatches, offering a
theoretical foundation for the reduction in environmental PM2.5 levels [71]. Consequently,
this paper introduces hypothesis one:

H1. The development of big data optimizes resource allocation, mitigates resource mismatches in
cities, and thereby reduces PM2.5 concentrations.

The exponential growth of big data significantly impacts numerous sectors, notably in
technological innovation. This influence is prominently observed in the digital economy,
which is progressively shaping the urban innovation landscape. These advancements are
closely associated with green, low-carbon development, playing a crucial role in pollution
mitigation. Numerous studies [30–32] have highlighted the digital economy’s role in
fostering the development of cleaner technologies and greener products. This is facilitated
through the promotion of scientific and technological innovations, especially patents in
green technology. Innovations driven by data enhance the efficacy of pollution reduction
technologies, culminating in cleaner and more sustainable urban ecosystems. Thus, this
paper posits hypothesis two:

H2. The advancement of big data fosters urban innovation, particularly by encouraging patents in
green and low-carbon technologies, which in turn reduces PM2.5 concentrations.

The evolution of big data has significantly propelled digital development and trans-
formation across various industries, facilitating the acceleration of enterprises’ industrial
structure upgrading and transformation [72,73]. Research has demonstrated that the digital
economy enhances industrial structure upgrading, exerting a more substantial influence
on the rationalization of industrial structures than on the advancement of industrial struc-
tures [74,75]. Conversely, other studies have revealed that the development of the digital
economy notably encourages the advancement of the manufacturing industrial structure,
with the advanced industrial structure playing a more pronounced mediating role in fos-
tering industrial quality development through the digital economy [76–78]. The negative
correlation between haze pollution and industrial structure upgrading was established [79],
with a particular study in the Yangtze River Economic Zone showing that the optimization
and upgrade of the industrial structure could effectively mitigate PM2.5 pollution [80]. This
research indicates that optimizing industrial structure reduces emissions and that combin-
ing industrial structure upgrading with technological innovation significantly diminishes
PM2.5 pollution [81,82]. Through both separate and combined effects, the digital econ-
omy advances industrial structure upgrades and technological innovation, subsequently
reducing PM2.5 pollution. Hence, this paper introduces hypothesis three:

H3. Big data development facilitates the upgrading of urban industrial structures and contributes
to the reduction in PM2.5 concentrations.

Research has reported the practicality of using population density in urban plan-
ning [83]. There is a correlation between population density and land use planning. In
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western Germany, a correlation between land use and population growth is evident in
most areas [84]. Salvati (2012) [85] found that low population density could significantly
influence specific land uses, suggesting that population density acts as an indirect marker
for shifts in urban and rural land use patterns. Variations in population density are pivotal
in elucidating land use allocation [86,87]. Shen (2009) [88] utilized an urban population
density development model to simulate and validate sustainable land use and urban
development strategies in their research. The interplay between land use planning and
population density is significant; urbanization and land expansion directly affect urban
population density, with some studies incorporating land use structure as a variable in
population density models [89,90]. Consequently, this paper employs population density as
a proxy variable to signify land use. Domestic pollution, exacerbated by population agglom-
eration, accounts for a considerable share of air pollution. Economic growth significantly
influences both the total population and population mobility, with population agglomera-
tion, urbanization, and economic development correlating with PM2.5 emissions [91,92].
Rapid population agglomeration, especially over short durations, can precipitate a marked
increase in pollution emissions from domestic sources, surpassing the atmospheric envi-
ronment’s assimilative capacity and exacerbating environmental pollution [93]. Further
research indicates a nonlinear relationship between population density and domestic source
pollution emissions; an exceedingly high population density exacerbates air pollution [94].
Hypothesis three posits that big data development can diminish urban population density,
thereby reducing PM2.5 concentrations [69,95]. Based on these considerations, this paper
proposes hypothesis four:

H4. Big data development streamlines land use planning, thereby mitigating PM2.5 concentrations.

3. Methodology
3.1. Model Construction

This study delves into the influence of big data development on PM2.5 concentrations,
noting that existing research has predominantly relied on traditional econometric models
for causal inferences. These models, including difference-in-difference (DID) and complete
control approaches, present considerable limitations. DID models require extensive data
sets, while complete control models struggle to accommodate control groups with extreme
values. A significant shortcoming of traditional econometric models lies in their need for a
predefined model form, rendering them inadequate for capturing nonlinear relationships
and misaligned with the complexity of real-world scenarios. Additionally, these models
are susceptible to issues, such as endogeneity, multicollinearity, and limited covariate
adjustment, leading to biased estimates.

The integration of machine learning techniques with econometric analysis has emerged
as a vital research avenue. The double machine learning (DML) framework, introduced by
Chernozhukov et al. (2018) [96], addresses the limitations of traditional econometric models
by not presupposing the model’s structure a priori. It effectively tackles challenges like
nonlinear pattern recognition and endogeneity. The current scholarship on double machine
learning bifurcates into theoretical explorations and practical applications. For example,
Farbmacher et al. (2022) [97] combined double machine learning with a mediation effects
analysis, broadening its application from straightforward causal inferences to exploring
mediation mechanisms. Yang et al. (2020) [98] utilized double machine learning for a
causal analysis, examining the average treatment effect of audit firms. While domestic
(i.e., within-country) research on this topic is nascent, primarily concentrating on causal
inference applications via double machine learning, studies such as Zhang et al. (2023) [99]
have assessed the impact of network infrastructure on inclusive green growth in cities
using a double machine learning model, further probing the mechanisms at play through
mediation analysis. Wang et al. (2022) [100] developed a double machine learning model to
assess the effects of default risk on the bond market, indicating ample scope for theoretical
advancements in causal inference within double machine learning frameworks.
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Accordingly, this paper adopts double machine learning models to assess the impact of
big data development on PM2.5, utilizing the partial nonlinear model framework suggested
by Chernozhukov et al. (2018) [96], and constructs the model as follows:

lnPM2.5 = θ0Event + g0(X) + ξ, E(ξ|Event, X) = 0 (1)

Event = m0(X) + ψ, E(ψ|X) = 0 (2)

LnPM2.5 represents the logarithmic value of PM2.5. The variable “Event” is an explana-
tory variable, specifically a policy dummy variable that indicates whether the region is a
national big data comprehensive experimental area. Additionally, 0 indicates that the region
is not a comprehensive national big data experimental area and 1 indicates that the region
is a comprehensive national big data experimental area. X =

(
x1, x2, . . . , xp

)
is a vector of

high-dimensional control variables, including per capita GDP, infrastructure development,

etc. The form of
∧
g0(X) is unknown, but the machine learning model is utilized to estimate

the specific form of
∧
g0(X). The perturbation terms ξ and ψ have a conditional mean value

of 0. This paper focuses on θ0, which represents the effect of big data development on PM2.5.
The degree of influence can be obtained through Equations (1) and (2), corresponding to

the estimator
∧
θ0. The specific derivation process is not described in detail here, but can be

found in Chernozhukov et al. (2018) [96]. The final unbiased estimator can be obtained
by regressing Equations (1) and (2) twice using machine learning models, such as random
forests. This approach ensures objectivity and precision in the estimation process.

∧
θ0= (

1
n ∑

i∈I

∧
ψiEventi)

1
n ∑

i∈I

∧
ψi[Yi − g0(x)i] (3)

In the formula, i represents the ith observation, I represents the overall observation,
and n represents the sample size.

Chernozhukov et al. (2018) [96] provided a theoretical analysis of the unbiased esti-

mator
∧
θ0, which reveals that its estimation error can be divided into three parts via the

following equations:
√

n
(

θ0 −
∧
θ0

)
= a∗ + b∗ + c∗ (4)

a∗ =

(
E
[
ψ2
]
)−1 1√

n∑
i

ψiξi ∼ N(0, Σ) (5)

b∗ =

(
E
[
ψ2
]
)−1 1√

n∑
i

( ∧
m0(Xi)− m0(Xi)

)( ∧
g0(Xi)− g0(Xi)

)
(6)

It can be concluded that the estimator
∧
θ0 has a slower rate of convergence than 1√

n .∣∣∣∣√n
(∧

θ0 − θ0

)∣∣∣∣ p→ 0 (7)

The effect of big data development on PM2.5 varies across regions and economic
environments. Based on this heterogeneity, we refer to the more general interaction model
developed by Chernozhukov et al. (2018) [96] as follows:

lnPM2.5 = g0(Event, X) + ξ, E(ξ|Event, X) = 0 (8)

Event = m0(X) + ψ, E(ψ|X) = 0 (9)

The model yields treatment effects: θ0 = E[g(Event = 1, X)− g(Event = 0, X)].
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3.2. Variable Selection and Data Sources
3.2.1. Outcome Variables

The study’s primary explanatory variable is the average annual urban concentration
of PM2.5, which was log-transformed to address the skewed distribution of the data. The
data were obtained from the Washington University in St. Louis website (https://sites.
wustl.edu/acag/datasets/surface-pm2-5/#V5.GL.02. accessed on 1 November 2023).

3.2.2. Explanatory Variable

The principal explanatory variable in this study is the designation of cities as National
Big Data Comprehensive Pilot Zone. This classification serves to examine the impact of big
data development policies on PM2.5 concentrations.

3.2.3. Control Variables

To ensure the precision and reliability of this analysis, the study incorporates a range
of control variables. These include the logarithmic form of GDP per capita, serving as an
indicator of the potential influence of economic development on environmental quality.
The degree of urban infrastructure development is gauged through the proportion of fixed
asset investment in GDP, directly correlating with environmental quality. The financial
robustness of local governments, indicated by the ratio of local fiscal expenditure in the
general budget to GDP, potentially impacts their capacity and efficiency in environmental
conservation efforts. Financial development is assessed by examining the ratio of loans from
financial institutions to GDP, offering insights into a city’s level of financial development
and its association with environmental governance capabilities.

Human capital measurement is based on the ratio of college students to the population
at the end of a given period, reflecting the city’s educational standing. This factor could
influence residents’ environmental awareness and the effective implementation of policies.
The openness of a city to the global market, measured using the ratio of foreign direct
investment to GDP, serves as an indicator of economic openness. The study also accounts
for the impact of climatic factors on environmental quality using the logarithmic form of the
average annual precipitation and the logarithmic form of the average annual temperature,
acknowledging their direct effects on environmental quality.

These control variables are critical for mitigating the influence of the omitted variables
and other confounding factors. The economic data for this research were primarily derived
from the China urban statistical yearbook. The temperature data were sourced from the
global summary of the day station reports, and precipitation data were obtained from the
National Meteorological Science Data Sharing Service Platform-China Surface Climate Data
Daily Value Dataset (V3.0), ensuring a comprehensive and robust dataset for analysis.

4. Results
4.1. Baseline Results

Table 1 presents the benchmark regression results of this study. Model (1) employs the
lasso algorithm, which is particularly adept at handling high-dimensional data, characteris-
tic of this research. This algorithm mitigates the risk of overfitting by imposing penalties on
regression coefficients. The analysis reveals that the regression coefficient for the National
Big Data Comprehensive Pilot Zone policy on PM2.5 concentrations is −0.0149, significant
at the 1% level, indicating a substantial negative correlation between big data initiatives
and urban PM2.5 levels. To validate the robustness of these findings, the study further
explores the use of random forests, regression trees, and xgboost algorithms, resulting in
Models (2–4), respectively. These algorithms excel in managing nonlinear relationships and
complex interactions, offering a nuanced perspective for data analysis. The results consis-
tently demonstrate that, across the different methodologies, the impact of the National Big
Data Comprehensive Pilot Zone policy on PM2.5 concentrations remains negative and sta-
tistically significant at the 1% level. This consistency reinforces the conclusion that big data
development effectively reduces urban PM2.5 concentrations. Our comparative analysis

https://sites.wustl.edu/acag/datasets/surface-pm2-5/#V5.GL.02
https://sites.wustl.edu/acag/datasets/surface-pm2-5/#V5.GL.02
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across diverse algorithms confirms that the National Big Data Comprehensive Pilot Zone
policy exerts a consistent and significant negative impact on PM2.5 levels across all models,
substantiating hypothesis H1 that big data development beneficially influences urban air
quality improvement. These findings suggest that further investment and application of
big data technology in environmental monitoring and management could significantly
enhance environmental quality.

Table 1. Regression to the baseline.

Partial Linear Model

Lasso Random Forest Regression Tree Xgboost

Digital −0.0149 *** −0.1018 *** −0.1267 *** −0.0340 ***
SE 0.0049 0.0185 0.0145 0.0127

Control Variables Control Control Control Control
Year FE Control Control Control Control
City FE Control Control Control Control

Observations 3047 3047 3047 3047

Interactive Model

Lasso Random Forest Regression Tree Xgboost

Digital −0.1791 *** −0.1140 *** −0.1919 *** −0.2516 ***
SE 0.0060 0.0181 0.0346 0.0147

Control Variables Control Control Control Control
Year FE Control Control Control Control
City FE Control Control Control Control

Observations 3047 3047 3047 3047
Note: ‘SE’ indicates standard error; *** significant at 1%.

4.2. Mechanisms

The findings indicate that big data development can significantly decrease PM2.5
concentrations in urban areas. However, there is a need for additional research to explore
the mechanisms through which big data development influences PM2.5 reduction and
overall air pollution mitigation. This section delves into the mechanism by which the
National Big Data Comprehensive Pilot Zone policy contributes to the reduction in PM2.5
levels, employing a double machine learning model. The analysis reveals that the total
effects across various mediating paths are statistically significant at the 1% level.

Big data development plays a critical role in fundamentally enhancing resource alloca-
tion (as illustrated in Tables 2 and 3). By leveraging big data, the efficiency of resource flow
and utilization within the urban economy can be improved, directing capital and labor
towards industries and sectors where they are most effectively utilized. This optimization
minimizes environmental costs associated with resource mismatches, leading to more
efficient and environmentally sustainable production processes. Thus, hypothesis one
is confirmed.

Thus, big data development aids in diminishing PM2.5 concentrations through foster-
ing green technology innovation, as illustrated in Tables 4 and 5. The advancement of big
data has significantly propelled the innovation of green and low-carbon technologies. An
increase in the number of patents, encompassing both utility model and invention patents,
serves as a robust indicator of innovation activities, highlighting big data’s pivotal role in
advancing environmental technologies. Patents in green low-carbon technologies, includ-
ing utility model patents and inventions, play a crucial role in reducing PM2.5 levels. These
innovations enhance energy efficiency and encourage the adoption of novel environmental
technologies in both production and everyday life, thereby lowering PM2.5 emissions.
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Table 2. High-quality urban development: capital mismatch.

Partial Linear Model

Lasso Random Forest Regression Tree Xgboost

Digital −0.0149 *** −0.1020 *** −0.1267 *** −0.0332 ***
SE 0.0049 0.0185 0.0145 0.0129

Control Variables Control Control Control Control
Year FE Control Control Control Control
City FE Control Control Control Control

Observations 3047 3047 3047 3047

Interactive Model

Lasso Random Forest Regression Tree Xgboost

Digital −0.1787 *** −0.1152 *** −0.1919 *** −0.2520 ***
SE 0.0060 0.0181 0.0346 0.0148

Control Variables Control Control Control Control
Year FE Control Control Control Control
City FE Control Control Control Control

Observations 3047 3047 3047 3047
Note: ‘SE’ indicates standard error; *** significant at 1%.

Table 3. High-quality urban development: labor mismatch.

Partial Linear Model

Lasso Random Forest Regression Tree Xgboost

Digital −0.0149 *** −0.1040 *** −0.1267 *** −0.0310 **
SE 0.0049 0.0185 0.0145 0.0128

Control Variables Control Control Control Control
Year FE Control Control Control Control
City FE Control Control Control Control

Observations 3047 3047 3047 3047

Interactive Model

Lasso Random Forest Regression Tree Xgboost

Digital −0.1780 *** −0.1158 *** −0.1919 *** −0.2486 ***
SE 0.0060 0.0181 0.0346 0.0147

Control Variables Control Control Control Control
Year FE Control Control Control Control
City FE Control Control Control Control

Observations 3047 3047 3047 3047
Note: ‘SE’ indicates standard error; **, ***significant at 5%, and 1%, respectively.

From the perspective of industrial structure upgrading, as detailed in Table 6, big
data development expedites the rationalization and advancement of industrial structures
towards a more sustainable and environmentally friendly orientation. The incorporation of
big data enables traditional industries to refine production processes, heighten resource
efficiency, and undertake industrial modernization, leading to decreased energy use and
emissions. Furthermore, the emergence of big data fosters the growth of new green
industries and supports the shift towards sustainable economic models, thereby improving
industrial competitiveness and environmental efficiency. Such industrial restructuring
alleviates environmental stress and contributes to the reduction in PM2.5 levels.
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Table 4. High-quality urban development: number of utility model patents in the city.

Partial Linear Model

Lasso Random Forest Regression Tree Xgboost

Digital −0.0180 *** −0.1053 *** −0.1267 *** −0.0392 ***
SE 0.0045 0.0186 0.0145 0.0134

Control Variables Control Control Control Control
Year FE Control Control Control Control
City FE Control Control Control Control

Observations 3047 3047 3047 3047

Interactive Model

Lasso Random Forest Regression Tree Xgboost

Digital −0.2133 *** −0.1175 *** −0.2332 *** −0.2504 ***
SE 0.0059 0.0179 0.0234 0.0149

Control Variables Control Control Control Control
Year FE Control Control Control Control
City FE Control Control Control Control

Observations 3047 3047 3047 3047
Note: ‘SE’ indicates standard error; *** significant at 1%.

Table 5. High-quality urban development: number of patents for municipal inventions.

Partial Linear Model

Lasso Random Forest Regression Tree Xgboost

Digital −0.0170 *** −0.1053 *** −0.1267 *** −0.0386 ***
SE 0.0050 0.0186 0.0145 0.0131

Control Variables Control Control Control Control
Year FE Control Control Control Control
City FE Control Control Control Control

Observations 3047 3047 3047 3047

Interactive Model

Lasso Random Forest Regression Tree Xgboost

Digital −0.1994 *** −0.1171 *** −0.1919 *** −0.2481 ***
SE 0.0060 0.0180 0.0346 0.0147

Control Variables Control Control Control Control
Year FE Control Control Control Control
City FE Control Control Control Control

Observations 3047 3047 3047 3047
Note: ‘SE’ indicates standard error; *** significant at 1%.

Table 6. High-quality urban development: Mediating factor: industrial structure.

Partial Linear Model

Lasso Random Forest Regression Tree Xgboost

Digital −0.0273 ** −0.0934 *** −0.1254 *** −0.0480 ***
SE 0.0112 0.0186 0.0145 0.0127

Control Variables Control Control Control Control
Year FE Control Control Control Control
City FE Control Control Control Control

Observations 3047 3047 3047 3047

Interactive Model

Lasso Random Forest Regression Tree Xgboost

Digital −0.0583 * −0.1140 *** −0.2195 *** −0.2502 ***
SE 0.0313 0.0178 0.0226 0.0149

Control Variables Control Control Control Control
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Table 6. Cont.

Partial Linear Model

Lasso Random Forest Regression Tree Xgboost

Year FE Control Control Control Control
City FE Control Control Control Control

Observations 3047 3047 3047 3047
Note: ‘SE’ indicates standard error; *, **, *** significant at 10%, 5%, and 1%, respectively.

Regarding land use, as presented in Table 7, big data development encourages rational
population distribution and optimal land use planning. Industries related to big data
generate a pull effect on population movements, influencing shifts in population density
and leading to more sustainable land use patterns. This adjustment mitigates environmental
pressures associated with overpopulation.

Table 7. Land use planning.

Partial Linear Model

Lasso Random Forest Regression Tree Xgboost

Digital −0.0445 *** −0.1065 *** −0.1526 *** −0.0526 ***
SE 0.0105 0.0183 0.0134 0.0104

Control Variables Control Control Control Control
Year FE Control Control Control Control
City FE Control Control Control Control

Observations 3047 3047 3047 3047

Interactive Model

Lasso Random Forest Regression Tree Xgboost

Digital −0.1043 *** −0.1193 *** −0.2381 *** −0.2464 ***
SE 0.0230 0.0177 0.0218 0.0139

Control Variables Control Control Control Control
Year FE Control Control Control Control
City FE Control Control Control Control

Observations 3047 3047 3047 3047
Note: ‘SE’ indicates standard error; *** significant at 1%.

4.3. Heterogeneous Analysis

To facilitate the formulation of precise and effective regional environmental policies, our
study undertakes a heterogeneity analysis. This approach enables us to accurately comprehend
and quantify the distinct impact of big data development on environmental governance.

4.3.1. Central, East, and West Regions

Building on the aforementioned study, we conducted a heterogeneity analysis to ex-
amine the differential impacts of big data development on PM2.5 concentrations across
China’s central, eastern, and western regions. Given the considerable regional disparities
in environmental quality, industrial structure, and technological application levels among
these areas, the efficacy of big data policies in environmental governance is likely to vary.
Acknowledging these regional differences is crucial for the effective implementation of
such policies. Thus, this research seeks to elucidate the heterogeneity in the effects of
big data development on PM2.5 concentrations across different regions through a causal
inference methodology employing double machine learning. According to the findings
presented in Table 8, big data development exerts a significant suppressive influence on
PM2.5 concentrations in the central, eastern, and western regions in certain linear models. In
the interaction models, significant results were observed in the central and eastern regions,
whereas the western region’s results were not statistically significant, albeit indicating a
negative impact. This discrepancy may be attributed to the more advanced implementation
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of big data technologies and environmental regulatory mechanisms in the eastern and cen-
tral regions, which effectively contributes to air quality improvement. Conversely, despite
the western region’s lower economic development level and relatively delayed infrastruc-
tural development, the findings suggest a potential negative but non-significant impact
on PM2.5 concentrations. Overall, big data development positively influences air quality
by enhancing environmental monitoring and management capabilities. Furthermore, this
heterogeneity analysis underscores the importance of considering regional variations when
developing and implementing future big data initiatives. For instance, infrastructural
development in the central and western regions may require additional focus, whereas the
eastern region could benefit from further leveraging big data in environmental monitoring
and management.

Table 8. Heterogeneous analysis: central, east, and west regions.

Partial Linear Model Interactive Model

Central Eastern Western Central Eastern Western

Digital −0.0982 ** −0.0841 ** −0.1803 *** −0.1418 *** −0.0735 *** −0.0259
SE 0.0403 0.0373 0.0336 0.0121 0.0114 0.0222

Control
Variables Control Control Control Control Control Control

Year FE Control Control Control Control Control Control
City FE Control Control Control Control Control Control

Observations 1089 1067 891 1089 1067 891
Note: ‘SE’ indicates standard error; **, *** significant at 5%, and 1%, respectively.

4.3.2. Resource-Based and Non-Resource-Based Cities

This study posits that the structural characteristics of urban economies, notably the
variance in resource dependence, can markedly influence the effectiveness of big data initia-
tives in environmental governance. It delves into the disparities between “resource cities”
and “non-resource cities” regarding the impact of big data development on PM2.5 concen-
trations. Cities reliant on specific natural resources encounter considerable environmental
challenges and necessitate structural transformation. Employing the analytical framework
of double machine learning for causal inferences, this section investigates and contrasts the
influence of big data development on PM2.5 levels in resource-based cities. The regression
outcomes, depicted in the Table 9, reveal that big data development substantially reduces
PM2.5 concentrations in both resource-based and non-resource-based cities, indicating big
data technology’s versatile utility in enhancing air quality. However, in resource-based
cities, given their unique challenges, the deployment of big data may assume a more pivotal
role in driving environmental improvements and economic transition. In the formulation
and implementation of environmental policies related to big data, the structural dynam-
ics of urban economies ought to be thoroughly accounted for. For resource-based cities,
strategies should focus on leveraging big data technologies to refine industrial structures,
augment resource efficiency, and mitigate environmental pollutants. Conversely, in cities
not characterized by resource dependence, greater emphasis could be placed on advancing
the sophistication and accuracy of urban governance through big data utilization.

Table 9. Heterogeneous analysis: resource-based and non-resource-based cities.

Partial Linear Model Interactive Model

Resource-Based
City

Non-Resource-
Based City

Resource-Based
City

Non-Resource-
Based City

Digital −0.1803 *** −0.0879 *** −0.1251 *** −0.1117 ***
SE 0.0336 0.0232 0.0100 0.0076

Control Variables Control Control Control Control
Year FE Control Control Control Control
City FE Control Control Control Control

Observations 1210 1837 1210 1837
Note: ‘SE’ indicates standard error; *** significant at 1%.
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5. Robustness Check
5.1. Adding the Variable “Broadband China Pilot” to the Baseline Regression

In the robustness analysis, we incorporated additional policy influences that might al-
ter the study’s outcomes, notably the “Broadband China” policy. This initiative is designed
to enhance the national internet infrastructure, potentially influencing big data’s application
and evolution indirectly. To mitigate any conceivable effects of this policy on our results,
the “Broadband China” policy was integrated into our model to assess the steadfastness
of big data development’s impact on PM2.5 levels. The outcomes, displayed in Table 10,
affirm that the suppressive influence of big data development on PM2.5 concentrations
persists as robust and statistically significant at the 1% level, even when accounting for
the “Broadband China” policy’s effect. These findings reinforce our core assertion that big
data implementation plays a crucial role in diminishing urban PM2.5 levels. The impact
remains not only statistically significant but also steadfast upon the inclusion of other
pivotal policy considerations. The robustness analysis indicates that although initiatives
like “Broadband China” may affect environmental quality and technological advancements
in urban settings, the contribution of big data policies to environmental preservation stands
as independent and substantial.

Table 10. Robustness check A.

Partial Linear Model

Lasso Random Forest Regression Tree Xgboost

Digital −0.0149 *** −0.1016 *** −0.1267 *** −0.0335 ***
SE 0.0049 0.0185 0.0145 0.0127

Control Variables Control Control Control Control
Year FE Control Control Control Control
City FE Control Control Control Control

Observations 3047 3047 3047 3047

Interactive Model

Lasso Random Forest Regression Tree Xgboost

Digital −0.1824 *** −0.1155 *** −0.1919 *** −0.2516 ***
SE 0.0060 0.0181 0.0346 0.0147

Control Variables Control Control Control Control
Year FE Control Control Control Control
City FE Control Control Control Control

Observations 3047 3047 3047 3047
Note: ‘SE’ indicates standard error; *** significant at 1%.

5.2. Inclusion of the Variable “Province-Time Cross-Multiplier” in the Baseline Regression

As part of the robustness analysis, this study further examines potential similarities
and temporal dynamics in policy implementation, economic progression, and environ-
mental governance across different provinces. To precisely assess the influence of big data
policies on PM2.5 levels and mitigate potential biases stemming from provincial charac-
teristics and time variations, a “province-time cross-multiplier” variable is integrated into
the analytical model. This methodological approach is designed to account for varying
provincial effects over time, thereby enabling a more accurate delineation of big data
policy’s impact on environmental quality. The findings, detailed in Table 11, reveal that
the inclusion of the “province-time cross-multiplier” term does not alter the significant
suppressive influence of big data policies on PM2.5 concentrations, which remains robust at
the 1% significance level. This analysis underscores that the beneficial effect of big data
development on air quality enhancement is both significant and stable, even when control-
ling for potential province-specific and temporal-specific influences. Consequently, this
reinforces the preliminary conclusion that big data policies exert a distinct and meaningful
reduction on PM2.5 levels, unaffected by provincial and temporal variations.
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Table 11. Robustness check B.

Partial Linear Model

Lasso Random Forest Regression Tree Xgboost

Digital −0.0150 *** −0.1198 *** −0.1267 *** −0.0369 ***
SE 0.0046 0.0192 0.0145 0.0128

Control Variables Control Control Control Control
Year FE Control Control Control Control
City FE Control Control Control Control

Observations 3047 3047 3047 3047

Interactive Model

Lasso Random Forest Regression Tree Xgboost

Digital −0.1401 *** −0.1189 *** −0.1919 *** −0.2473 ***
SE 0.0057 0.0192 0.0346 0.0146

Control Variables Control Control Control Control
Year FE Control Control Control Control
City FE Control Control Control Control

Observations 3047 3047 3047 3047
Note: ‘SE’ indicates standard error; *** significant at 1%.

5.3. Endogeneity

To address the issue of endogeneity, this study employs an instrumental variable,
specifically the interaction term between the number of internet users in the country over
the past year and the number of landline telephones per 10,000 people in each city in
1984 [101,102]. The outcomes, displayed in Table 12, affirm that the development of big
data maintains a significant suppressive influence on PM2.5 concentrations, even after the
application of instrumental variables. This effect is statistically significant, indicating that
the study’s findings withstand the robustness test.

Table 12. Robustness check C.

Lasso Random Forest Regression Tree

Digital −0.4231 ** −0.5345 *** −0.4968 ***
SE 0.1720 0.1054 0.1356

Control Variables Control Control Control
Year FE Control Control Control
City FE Control Control Control

Observations 2387 2387 2387
Note: ‘SE’ indicates standard error; **, *** significant at 5%, and 1%, respectively.

6. Conclusions and Policy Implications

The advancement of big data is pivotal in enhancing air quality, facilitating high-
quality urban development, and optimizing land use planning. This study introduces
a double machine learning model to ascertain the impact of establishing National Big
Data Comprehensive Pilot Zone on urban PM2.5 concentrations, utilizing panel data from
277 prefecture-level cities across China. The investigation into the establishment of these
pilot zones across various Chinese regions indicates a marked negative correlation between
big data development and urban PM2.5 levels, a finding that withstands rigorous robust-
ness checks. This evidence suggests that the deployment of big data policies contributes
positively to air quality improvement. The research delineates multiple channels through
which big data development influences PM2.5 concentrations, including the enhancement
of urban development quality and the refinement of land use planning. These mechanisms
collectively contribute to the reduction in PM2.5 levels. Notably, the effect of big data
development on PM2.5 concentrations exhibits significant regional variation. For example,
in the economically advanced eastern region, the link between big data policies and re-
duced PM2.5 concentrations is particularly pronounced. The heterogeneity analysis further
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demonstrates that big data development exerts a substantial suppressive effect on PM2.5
levels across the central, eastern, and western regions. Moreover, big data initiatives signif-
icantly curb PM2.5 concentrations in both resource-intensive and non-resource-intensive
cities, albeit with varying degrees of impact across different urban contexts.

Arising from the research discussed herein, this paper delineates several policy recom-
mendations: Firstly, the endorsement and support for the adoption of big data technology
are advocated. Such measures are poised to augment the efficiency and efficacy of envi-
ronmental governance, particularly within the realms of environmental monitoring and
management. Additionally, this document advocates for an escalation in the deployment
of digital economy policies, reflecting the beneficial influence of big data advancements
on mitigating urban PM2.5 levels. Secondly, the crafting of big data policies must account
for regional disparities. This study highlights the variable impact of big data advance-
ments across different regions on PM2.5 concentrations, with a notable emphasis on the
pronounced effects within the economically advanced eastern region. Thus, the formula-
tion and execution of big data strategies should thoroughly incorporate considerations of
these regional distinctions. For example, enhanced infrastructural development may be
necessitated in the central and western regions, whereas the eastern regions could benefit
from a deeper integration of big data into environmental monitoring and management
practices. Thirdly, it is crucial to acknowledge the nuances of urban economic structures
and resource allocations. The development of big data exerts a notable suppressive influ-
ence on PM2.5 levels across both resource-centric and non-resource-centric cities, albeit with
varying degrees of significance contingent upon the city’s specific resource characteristics.
Consequently, when developing and applying environmental policies associated with big
data, an in-depth understanding of the city’s economic framework and resource assets is
imperative. In cities dependent on natural resources, the focus should be on leveraging
big data technologies to refine industrial configurations and enhance resource utilization
efficiency, thereby curtailing environmental pollutants. Conversely, in cities not predicated
on natural resources, the emphasis should be placed on advancing the sophistication and
accuracy of urban governance to bolster environmental management efforts.
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