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Abstract: Land use and land cover (LULC) change detection and prediction studies are crucial for
supporting sustainable watershed planning and management. Hence, this study aimed to detect
historical LULC changes from 1985 to 2019 and predict future changes for 2035 (near future) and 2065
(far future) in the Gumara watershed, Upper Blue Nile (UBN) Basin, Ethiopia. LULC classification
for the years 1985, 2000, 2010, and 2019 was performed using Landsat images along with vegetation
indices and topographic factors. The random forest (RF) machine learning algorithm built into
the cloud-based platform Google Earth Engine (GEE) was used for classification. The results of
the classification accuracy assessment indicated perfect agreement between the classified maps
and the validation dataset, with kappa coefficients (K) of 0.92, 0.94, 0.90, and 0.88 for the LULC
maps of 1985, 2000, 2010, and 2019, respectively. Based on the classified maps, cultivated land and
settlement increased from 58.60 to 83.08% and 0.06 to 0.18%, respectively, from 1985 to 2019 at the
expense of decreasing forest, shrubland and grassland. Future LULC prediction was performed
using the cellular automata–Markov (CA–Markov) model under (1) the business-as-usual (BAU)
scenario, which is based on the current trend of socioeconomic development, and (2) the governance
(GOV) scenario, which is based on the Green Legacy Initiative (GLI) program of Ethiopia. Under
the BAU scenario, significant expansions of cultivated land and settlement were predicted from
83.08 to 89.01% and 0.18 to 0.83%, respectively, from 2019 to 2065. Conversely, under the GOV
scenario, the increase in forest area was predicted to increase from 2.59% (2019) to 4.71% (2065).
For this reason, this study recommends following the GOV scenario to prevent flooding and soil
degradation in the Gumara watershed. Finally, the results of this study provide information for
government policymakers, land use planners, and watershed managers to develop sustainable land
use management plans and policies.

Keywords: land use and land cover prediction; Google Earth Engine; random forest; CA–Markov;
scenario-based prediction

1. Introduction

Recently, land use and land cover (LULC) change detection and prediction have
become popular research topics in the area of remote sensing; thus, these issues have
attracted the attention of several researchers and land use planners [1,2]. This is due to the
significant effect of LULC changes on altering the hydrological characteristics of basins and
watersheds [3,4], climate change [5], and other environmental issues [6]. Globally, different
LULC classes of basins and watersheds have undergone considerable changes from one
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category to another due to increasing anthropogenic activities such as deforestation, agri-
cultural expansion, urbanization, mining, and other related activities [7–9]. For this reason,
regularly updating LULC maps is an important task for capturing the dynamic nature of
land use [10].

For spatiotemporal LULC mapping, remotely sensed multispectral images available
at various spatiotemporal resolutions provide vital information. Some of these images
include Moderate Resolution Imaging Spectroradiometer (MODIS), Pourl’Observation de
la Terre (SPOT), Synthetic Aperture Radar (SAR), Landsat series, Sentinel-2 missions, and
Rapid Eye Earth Imaging System (REIS) images [1]. From these images, the Landsat series
has been used in a number of LULC mapping studies [5,11].

In LULC classification studies, the use of cloud-free composites of time-series images
is more strongly recommended than the use of single images [10,12]. However, the tra-
ditional methods of searching, filtering, cloud masking, compositing, downloading, and
classifying time series images require high computing power and a large volume of data
storage. For this purpose, Google Earth Engine (GEE), which is a cloud-based platform, can
solve the problems associated with big data processing [7,13]. This platform has recently
been considered a powerful tool for processing and analyzing large volumes of remote
sensing data. In the GEE environment, there are various supervised machine learning
(SML) classification algorithms. Some of these include decision tree (DT), random forest
(RF), naive Bayes (NB), minimum distance (MD), and classification and regression tree
(CART) methods [6,14,15]. In this regard, several studies comparing SML classifiers have
recommended the RF algorithm because it has the highest classification accuracy and the
potential to handle high-dimensional data with a minimum number of parameters [16–18].
Moreover, the use of topographic factors and spectral indices can improve classification
accuracy [19].

In addition to the LULC classification discussed above, LULC prediction is important
for simulating future landscape conditions and determining the potential driving factors
that cause land use change. According to the comprehensive review of [1], there are various
temporal prediction models (for example, the Markov chain and system dynamics (SD))
and spatial prediction models (for example, cellular automata (CA) and conversion of
land use and its effects (CLUE)) and hybrids of the two model categories. Recently, LULC
prediction using hybrid models, such as the cellular automata–Markov (CA–Markov)
model, has become an effective approach because it integrates both spatial and temporal
simulation powers of the CA and Markov models. For this reason, a number of researchers
have applied the CA–Markov model for predicting future LULC dynamics at the basin,
watershed, and even city levels [20–22].

The prediction of future LULC dynamics based on historical trends is a critical is-
sue [23]. However, the assumption of the continuity of the current land use trend is
mostly susceptible to uncertainties due to the dynamic nature of land use change driver
variables [24,25]. For this purpose, scenario-based LULC change analysis is mostly recom-
mended as a tool to explore such uncertainties [26]. Recently, five shared socioeconomic
pathways (from SSP1to SSP5) have been proposed for possible future socioeconomic devel-
opment, climate change, and land use policies [27,28]. These SSP-based pathways provide
information for research and policies related to land use and climate change to reduce
the adverse impacts of rapid population growth, intensive agricultural cultivation, and
greenhouse gas emissions [28]. Therefore, several scenario-based LULC change analysis
studies have also been conducted at different spatiotemporal scales. For example, Wang,
et al. [29] employed the CA–Markov model for simulating future LULC under environmen-
tal protection (EPS), crop protection (CP), and spontaneous (SP) scenarios in Tianjin city.
The authors found a dramatic increase in built-up areas under the SP scenario relative to
those under the EP and CP scenarios. Similarly, Gebresellase, et al. [30] simulated future
LULC dynamics in the Upper Awash Basin of Ethiopia using the CA–Markov model for the
years 2030 and 2060 under the BAU and governance (GOV) scenarios considering various
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spatial driving variables. The authors found a significant increase in cultivated land and
settlement under the BAU scenario and an increase in forest area under the GOV scenario.

In Ethiopia, several studies have been conducted on historical LULC change detection
at the basin and watershed scales [31–33]. These historical LULC change detection studies
are vital for better understanding the interactions between human activities and their
surroundings [34,35]. In addition to historical LULC change detection, information on
future LULC change trends over a long period of time is also critical. As LULC change
rapidly varies in Ethiopia due to human and natural factors [36], modelling and document-
ing future LULC dynamics is important for providing information for land use planners
and policymakers to develop sustainable land use management plans [37]. However, in
Ethiopia, less attention has been given to the prediction of future LULC dynamics, ex-
cept for a few recent studies conducted in the Omo-Gibe River Basin [38], Upper Awash
River Basin [30], Nashe watershed [21], Goang watershed [22], Majang Forest biosphere
Reserve [2], and Addis Ababa and surrounding areas [39].

The Gumara watershed is a subwatershed of the Lake Tana subbasin in the Upper Blue
Nile Basin (UBNB) of Ethiopia. Previous studies conducted in watersheds frequently used
the maximum likelihood (ML) algorithm for LULC classification [40,41], which requires
normally distributed data for classification [42]. However, less consideration has been given
to robust machine learning classifiers such as the RF algorithm, which does not require
the assumption that the data need to be normally distributed. The Gumara watershed
was selected as the study area since it is highly prone to soil erosion in the uplands and
flooding in the lowlands resulting from LULC change [36,43]. For these reasons, the
present study aims (1) to map the historical LULC dynamics using the RF algorithm built
into the GEE environment for the years 1985, 2000, 2010, and 2019; (2) to detect LULC
changes in the historical period (1985–2019); and (3) to predict future LULC dynamics
under the BAU and GOV for the years 2035 and 2065 using the CA–Markov model, which
is available from the IDRISI Selva17.0 software package. In this regard, the BAU scenario is
based on the current trends of socioeconomic development, urbanization, intensive crop
production, rapid population growth, the development of large industrial parks, and the
construction of infrastructure [39]. On the other hand, the GOV scenario is based on the
Green Legacy Initiative (GLI) program, which was launched in 2019 by the Ethiopian
government to regreen the country by initiating massive tree seedling plantations [44,45].
These two scenarios were selected after identifying the land use characteristics of the study
watershed, available data for land use drivers, and reviewing studies related to scenario-
based simulations conducted in Ethiopia [30,39,46]. This study differs from previous
studies conducted in the Gumara watershed: (1) it employed the RF algorithm, which is a
robust machine learning LULC classifier, and (2) it provided scenario-based future LULC
predictions for the near future and far future periods.

2. Materials and Methods
2.1. Study Area

This study was conducted in the Gumara watershed, which is a subwatershed of
the Lake Tana subbasin in the Upper Blue Nile Basin (UBNB) of Ethiopia (Figure 1a,b).
The watershed boundary lies between 11◦35′ N–11◦55′ north latitude and 37◦30′ E–38◦15′

east longitude (Figure 1c). The main river of the watershed is the Gumara River, which
originates from the Guna Mountains and drains into Lake Tana. The total drainage area
of the watershed delineated using the 30 m × 30 m digital elevation model (DEM) is
approximately 1425 square kilometers (km2) (Figure 1c). The elevation of the watershed
generally ranges between 1782 and 3712 m above mean sea level (amsl) (Figure 1c). The
watershed is characterized by a mountainous terrain with a steep gradient in the upstream
part and an undulating terrain with a gentle gradient in the downstream part of the
watershed [41]. Climatologically, the watershed experiences a long rainy season from
June to September, with an average annual areal rainfall of 1445 mm. The average annual
temperature of the watershed is approximately 20.5 ◦C. The lowland part of the watershed
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is prone to flooding in the wet season (June to September), and it also deposits eroded
soil from upland subwatersheds [47]. In the watershed, cultivated land is the major LULC
class and accounts for more than 75% of the watershed area; the remaining watershed
area is covered with grassland, shrublands, forests, and settlements [32]. The lower part
of the watershed adjacent to Lake Tana is known for rice cultivation [43]. In watersheds,
rapid transitions of grassland, shrubland, and forest to cropland have been observed in
recent decades. The majority of the watershed is dominated by rural kebeles with scattered
settlement and their livelihood is based on mixed farming system by growing crops (teff,
rice, wheat, barely, maize beans, oats, potato, etc.) and raising of livestock (goat, sheep,
cattle, hen, etc.) [41]. In addition, watersheds have the potential for growth in different
sectors, such as agroindustry, ecotourism, agroforestry, livestock, and energy [48]. The
watershed under study was selected because it is prone to soil erosion and flooding as a
result of intensive agricultural cultivation, as shown in previous studies [49,50].
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Figure 1. Location map of the study area: (a) River basins of Ethiopia, Upper Blue Nile Basin, and
Lake Tana subbasin; (b) Lake Tana subbasin, Lake Tana, and Gumara watershed; and (c) Gumara
watershed boundary, location of towns, road networks, river networks, and elevation map of the
Gumara watershed.

2.2. Data Used

LULC maps of the study watershed were prepared using surface reflectance (SR)
image collections from Landsat-5/Thematic Mapper (TM) for 1985, 2000, and 2010 and
from Landsat-8/Operational Land Imager (OLI) for 2019. The images were accessed from
the U.S. Geological Survey website via the GEE data catalog. Table 1 presents a description
of the Landsat images used for LULC classification of the Gumara watershed. In the GEE
environment, the images were filtered by the area of interest (AOI), the date of acquisition,
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and the percentage of cloud cover (less than 1%). Figure 2 shows the final median composite
of the Landsat images for the years 1985, 2000, 2010, and 2019.

Table 1. Description of Landsat surface reflectance images used for LULC classification of the Gumara
watershed.

Landsat Image Date of Acquisition Path/Row No. of Image Resolution (m)

Landsat-5/TM 1 January–30 April 1985 169/052 6 30
Landsat-5/TM 1 January–30 March 2000 169/052 6 30
Landsat-5/TM 1 January–30 March 2010 170/052 3 30
Landsat-8/OLI 1 January–30 March 2019 169/052 6 30
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Figure 2. False color composites (NIR, red and green bands) of Landsat-5/TM (a–c) and Landsat-
8/OLI (d) images used for LULC classification for the years (a) 1985, (b) 2000, (c) 2010, and (d) 2019.
The deep red areas represent areas covered with scattered plants; the darker red areas represent
densely vegetated areas.

In LULC classification using the SML algorithm, training and testing stages are im-
portant. For this study, training and testing data were collected through a field survey
using a global positioning system (GPS) from January to February in 2022. Additionally,
high-resolution historical satellite images from Google Earth Pro and Collect Earth Online
(CEO) [51] were used to collect training and testing points. On this basis, points and
polygons were randomly collected for each LULC class identified in Table 2. Accordingly,
a total of 1784, 2226, 2910, and 2729 points were collected for the years 1985, 2000, 2010,
and 2019, respectively. A table showing the number of training and testing/validation
points collected for each LULC class can be found in the Supplementary Materials (S1).
For classification, the shape files of the collected training/testing data were imported as
assets into the GEE environment. Furthermore, other LULC change driving variables,
such as elevation, slope, distance from roads, distance from streams, and distance from
towns, were collected from different sources and processed using ArcGIS 10.4. The dis-
tance from roads was derived from the shape file of road network data acquired from the
OpenStreetMap database (https://www.openstreetmap.org/#map=10/11.9090/38.2297,

https://www.openstreetmap.org/#map=10/11.9090/38.2297
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accessed on 2 February 2022). The distance from streams and the distance from towns
were derived from the shape files of the stream network and town location, respectively.
The elevation and slope were derived from the 30 m resolution DEM of the Shuttle Radar
Topography Mission (SRTM) [52].

Table 2. Description of identified LULC classes in the Gumara watershed.

LULC Class Description

Forest Areas covered with open forest, dense forest, and woodland. This class mainly includes Eucalyptus tree
and other woody plantations of the watershed.

Shrubland Area of land covered with open and closed bushes and shrubs mainly found along the banks of rivers
and streams.

Grassland Areas covered with grasslands mainly used for grazing.

Cultivated land Areas of agricultural land mainly used for crop cultivation. It also includes rice cultivation which
concentrates at wetland part of the watershed.

Settlement Areas of urban and rural settlements and other developments like roads.

2.3. Overview of the Methodology

This study mainly comprises two main sections: (1) LULC classification and change
detection and (2) future LULC prediction. The first section was mainly focused on LULC
classification for the years 1985, 2000, 2010, and 2019 and change detection (1985–2000,
2000–2010, 2010–2019, and 1985–2019), as presented in Figure 3. In this section, satellite
image collection (Landsat-5/8), filtering image collection (by area of interest, date of acqui-
sition, and metadata), computation of the median composite of filtered image collection,
preparation of input variables (vegetation indices and topographic variables), collection
and merging of training points, sampling region by integrating the median composite
and merged training points, classification using the RF algorithm, accuracy assessment,
and exporting of classified images were performed in the GEE environment. As GEE is a
petabyte cloud-based platform, it makes image processing and classification easier without
downloading the input satellite images [12]. Mapping of exported LULC images and
change detection were performed using ARC-GIS 10.4. In this study, a change detection
starting year (1985) was selected since substantial land use change was observed in most
parts of Ethiopia during this year following the land reform proclamation of 1975 [35,53].

The second section of this study focused mainly on future LULC predictions, as
presented in Figure 4, for the years 2035 and 2065. For this section, classified images from
the first section and LULC change driver variables processed in ArcGIS 10.4 were used
as inputs for the LULC prediction model. For the prediction, the CA–Markov model was
employed because it combines the temporal prediction power of the Markov model with
the spatial prediction power of the CA model. The procedures of this section were as
follows: (1) preparation of input data (historical classified images and LULC change driver
variables); (2) computation of transition probability matrices (TPMs) using the Markov
model; (3) computation of transition suitability maps (TSMs); (4) prediction of LULC maps
using the CA–Markov model for the reference year (2019); (5) validation of the CA–Markov
model using the predicted and reference map of the year (2019); and (6) prediction of future
LULC under the BAU and GOV scenarios for the years 2035 and 2065. In this study, LULC
prediction years (2035 and 2065) were selected to examine the land use dynamics of the
study watershed in the near future and in far future years.
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2.4. LULC Classification and Change Detection

The following subsections (Sections 2.4.1–2.4.5) discuss the details of LULC classifica-
tion using the RF algorithm in the GEE environment, including variable selection, variable
importance, classification accuracy assessment, and change detection methods.

2.4.1. LULC Classification

Among several classification algorithms available in the GEE environment, the RF
algorithm, which was proposed by Breiman [17], was used for this study. As stated in
previous studies [11,38,54], RF has gained popularity for image classification for a num-
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ber of reasons: (a) it is capable of handling high-dimensional datasets; (b) it speeds up
classification processes by selecting the most important variables; (c) it is an ensemble
method; and (d) recent studies conducted on comparative analysis of classification algo-
rithms have reported the superiority of RF over other SML algorithms for areas where
agricultural cultivation is most dominant [6,16]. In addition, compared to other ML classifi-
cation algorithms, RF requires a minimum number of parameters to be tuned. In LULC
classification using SML algorithms, it is mostly recommended to use a larger percentage
of the data for training than for testing to improve the performance of the classifier and
to enhance the classifier to learn more about the spectral signatures of different LULC
classes [10,18,19]. For this reason, the RF algorithm was trained using 70% of the ground
truth data, and the accuracy of the classification was tested using 30% of the ground truth
data. To split the data into training and testing sets, the “randomColumn()” function of
GEE was used. For classification, the “smileRandomForest()” function of GEE was used.
In the GEE environment, the “smileRandomForest()” function requires two main input
parameters (Ntree and Vsplit). For this study, optimized values of these two parameters
were estimated considering the classification accuracy and values of the parameters used
in previous studies [55,56]. Accordingly, Ntree was found to be 200, and Vsplit was found
to be 3, which is approximately the square root of the number of input variables. Using
these optimized parameters of the RF algorithm, LULC classification was performed for
the four historical years (1985, 2000, 2010, and 2019). Based on this, five LULC classes were
identified for the Gumara watersheds, as shown in Table 2.

2.4.2. Input Variables

The spectral bands SR_B1 to SR_B5 and SR-B7 for Landsat-5/TM and SR_B2 to SR_B7
for Landsat-8/OLI were used as the input variables for the RF classifier. In addition to the
spectral bands, vegetation indices and topographic factors (elevation and slope) were used
to improve the classification accuracy. For the vegetation indices, the normalized difference
vegetation index (NDVI) and soil adjusted vegetation index (SAVI) were used for this study.
The NDVI is the most widely used indicator of vegetation greenness [57]. The NDVI values
ranged from −1 to 1; low NDVI values (less than or equal to 0.1) corresponded to areas of
bare land, rock, water, sand, or snow; moderate NDVI values (0.2 to 0.5) corresponded to
sparse vegetation cover; and high NDVI values (greater than or equal to 0.6) corresponded
to dense vegetation cover. The SAVI is a modified version of the NDVI that considers
the effect of soil reflectance [58]. In the SAVI expression (Equation (1)), L takes different
values depending on vegetation cover, where L = 1 in areas with no green vegetation
cover, L = 0.5 in areas with moderate green vegetation cover, and L = 0 in areas with
very high vegetation cover (which is equivalent to the NDVI equation). For this study,
L = 0.5 was used considering the vegetation cover of the study watershed. Here, all the
indices were computed in the GEE environment using the final median composite of the
Landsat-5/8 images by applying Equations (1) and (2). Figures 5 and 6 show the computed
spectral indices of the Gumara watershed for 1985, 2000, 2010, and 2019.

NDVI =
NIR − RED
NIR + RED

(1)

SAVI =
(

NIR − RED
NIR + RED + L

)
∗ (1 + L) (2)

where NIR is the near-infrared band (770–895 nm) and RED is the red band (630–690 nm).
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tural lands.
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2.4.3. Variable Importance

In this study, a total of 10 variables, which included spectral bands, vegetation in-
dices and topographic factors, were used to train the RF algorithm as mentioned above
(Section 2.4). In this case, all the input variables are not equally important when training the
RF algorithm. In other words, each input variable has a different importance in separating
one LULC class from another. Therefore, the impact of variables on LULC classification
must be checked by computing variable importance (VI) [6,59]. For this purpose, the
“explain()” function of GEE was used to generate the VI for each variable.

2.4.4. Accuracy Assessment

In image classification, it is vital to assess the performance of classifiers using test/validation
datasets to determine whether the classification result is poor, satisfactory or strong [60,61]. For
this study, a confusion matrix was produced in the GEE environment and exported as a comma
separated value (csv) to evaluate the accuracy of the RF classifier. The accuracy was evaluated
using the most widely used accuracy metrics, such as producer accuracy (PA), user accuracy
(UA), overall accuracy (OA), and the kappa coefficient (K). Following Foody [61] PA, UA, OA,
and K can be determined using Equations (3)–(6).

PA(%) =
Xij

xi+
∗ 100 (3)

UA(%) =
Xij

x+i
∗ 100 (4)

OA(%) =
∑r

i=1 Xii

N
∗ 100 (5)

K =
N ∑r

i=1 Xii − ∑r
i=1 xi+ ∗ x+i

N2 − ∑r
i=1 xi+ ∗ X+i

(6)

where r is the number of rows in the confusion matrix, Xij is the data in row i column j, Xii
is the number of correctly classified data in row i and column i (diagonal entries), xi+ is the
marginal total of row i, x+i is the marginal total of column i, and N is the total number of
data points.

2.4.5. LULC Change Detection

LULC change detection analysis is important for determining the amount and type
of land use changes that occurred over certain study periods. Among several change
detection approaches, post classification change detection (PCCD), or map-to-map compar-
ison approaches were employed for this study. This approach is most widely applied for
comparing classified maps of different years [62,63]. In this study, for each of the LULC
class percentage changes and rates of change for the four periods of 1985–2000, 2000–2010,
2010–2019, and 1985–2019 were computed to detect LULC changes in the study watershed
using Equations (7) and (8).

P∆(%) =
A2 − A1

A1
∗ 100 (7)

R∆
(

km2/year
)
=

A2 − A1

t
(8)

where P∆ is the percentage change, R∆ is the rate of change, A1 is the area of the LULC
class in km2 in the initial year, A2 is the area of the LULC class in km2 in the final year, and
t is the time interval of the period. Additionally, the amount of gain, loss, and net change
were computed for each class in the four periods following the methodology provided
in [64].

Gain
(

km2
)
= CT − D (9)
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Loss
(

km2
)
= RT − D (10)

Net change
(

km2
)
= Gain − Loss (11)

where CT is the column total, RT is the row total, and D is the diagonal value of each LULC
class that showed persistence.

2.5. LULC Prediction

Among the available future LULC prediction models, the combined cellular au-
tomata (CA) and Markov chain (CA–Markov) model has been frequently used in several
studies [65–68]. This is because the CA–Markov model integrates the CA model for simu-
lating the spatial dynamics of LULC changes and the Markov chain model for predicting
the transition probabilities of LULC classes from one category to another over a certain
period [2,23]. For this study, the main procedures followed to construct LULC maps of
the Gumara watershed for the years 2035 and 2065 using the CA–Markov model avail-
able in the land change modeler (LCM) module of IDRISI Selva 17.0 are discussed in the
following subsections.

2.5.1. LULC Change Driver Variables

There are many variables that drive LULC changes, which are related to land use policy,
demographic distribution, socioeconomic development, climate change, and variability
and topography [1,31,69]. However, these variables should be selected considering the
specific conditions/characteristics of the study area. Based on these data, the elevation,
slope, distance from streams, distance from roads, distance from towns, and evidence of
likelihood of change were selected for this study, as illustrated in Figure 7. Elevation and
slope were selected because these variables are important for determining suitable areas
for cultivated land. The distance-to-socioeconomic development variables, such as distance
from towns, distance from roads and distance from streams, were selected because these
variables mainly influence the location of settlements. Here, the smaller the distance to
towns, roads, or streams the greater the possibility for the LULC class to be converted to
a settlement area. Evidence of likelihood of change was also selected to determine the
probability of disturbance or to explain the change that occurred during the study period.
In addition to the variables discussed here, population density is also a significant factor
driving land use change. However, due to a lack of reliable census data, this factor was not
considered in the present study. For this study, the variables presented in Figure 7a–e were
processed in ArcGIS 10.4 using the Euclidian distance and surface function of the spatial
analyst tool, while the evidence likelihood (Figure 7e) was processed in the land change
modeler (LCM) module of IDRISI Selva 17.0. In the LCM module, driver variables can
be modeled as dynamic or static. In this study, distance to roads, towns and streams and
evidence of likelihood of change were modelled as dynamic variables to account for new
developments in infrastructure in future years, whereas elevation and slope were modelled
as static variables [70]. To facilitate future land use prediction, all the variables presented in
Figure 7 were converted to the same pixel size (30 × 30 m), number of columns and rows
(2398, 1279), and projection (WGS 1984 UTM Zone 37 N).

The quantitative association between the LULC changes and the driver variables
was checked using Cramer’s V test [71]. According to [72], the value of Cramer’s V
ranges between 0 and 1, with a high Cramer’s V indicating good explanatory power of
the variable. In this test, the p value also indicates the probability that Cramer’s V value
does not significantly differ from 0. Thus, a low p value is a good indicator that Cramer’s V
value should not be rejected, while a high p value is also a sure that the test is rejected.
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2.5.2. Transition Probability Matrix (TPM)

Markov chain analysis is mostly applied for simulating complex processes by consid-
ering the initial and final states from an available set of states [8,68]. In the Markov chain
model, the recent state of LULC (Sy) transforms to another state (Sy+1) at the next time, with
the possibility indicated by the transition probability matrix (Pjk) (Equations (12)–(14)).

Sy+1 = Pjk ∗ Sy (12)

Pjk =

P11 P12 . . . P1n
...

...
...

Pn1 Pn2 Pnn

 (13)

0 ≤ Pjk ≤ 1 and
n

∑
i=1

Pjk = 1, i, j = 1, 2, 3 . . . ..n. (14)

where Pjk is the transition probability matrix, which describes the likelihood of changing
LULC from the (j) category to the (k) category in the LULC class at time Sy LULC; (y);
Sy+1 is the predicted LULC map at time (y + 1); and n is the number of LULC classes. A
low value of the transition probability (approach to 0) indicates a decreased possibility of
transition, while a high transition probability (approach to 1) indicates a high possibility
of transition of a particular class to another [37]. For this study, the transition probability
matrices was computed for the periods from 1985 to 2000, 2000 to 2010, 2010 to 2019, and
1985 to 2019. Afterwards, the generated TPMs were used to construct LULC maps for
future years (for 2035 and 2065).

2.5.3. Transition Suitability Map (TSM)

In LULC prediction, the TSM provides information on the suitability of LULC for
converting one class of cells to another [21,73]. In the LCM module of IDRISI Selva 17.0,
the three most popular supervised machine learning algorithms, logistic regression (LR),
similarity-weighted instance-based machine learning (SimWeight), and MLP-ANN, were
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used for generating TSMs. Among these algorithms, the MLP was used for this study since
it is capable of modelling nonlinear relationships between dependent and independent
variables [70]. In addition, multiple transition maps can be generated at once without
the intervention of the modeler. The algorithm works as a feed forward ANN with one
directional flow of data between the input, hidden, and output layers [14,74]. To generate
the TSMs, historical LULC change patterns were used as the dependent variable, and
topographic data (elevation and slope) and other proximity/distance-related driving factors
were used as the independent variables (Section 2.5.1). For this study, the LULC TSMs were
generated for the same periods as the TPM considering the most dominant LULC transition
by setting a transition threshold of 2 km2 in the LCM module. Based on these data, six
dominant transitions, which included (1) transition from forest to shrubland, (2) forest to
cultivated land, (3) shrubland to forest, (4) shrubland to cultivated land, (5) grassland to
cultivated land, and (6) cultivated land to settlement, were identified. The reliability of the
generated transition potential maps was evaluated by checking the accuracy of the MLP
algorithm, where an accuracy greater than 80% was considered acceptable [70].

2.5.4. CA–Markov Model

As mentioned in Section 2.5.2, Markov chain analysis is important for estimating
the TPM between earlier and later LULC maps. However, the model neglects spatial
explicitness, and it does not provide information on the likely spatial distribution of LULC
transitions [20]. Hence, by integrating CA with the Markov chain, this limitation can be
overcome since the CA model uses spatial contiguity elements in its model structure [37,68].
CA is a bottom-up dynamic model that is mainly applied for spatiotemporal computa-
tions [68]. The model contains the cell space, cell, neighbors, set of rules, and time (Beroho
et al., 2023). In the model, the neighbors can be identified by providing a contiguity filter to
the CA model. It can simulate LULC changes over a certain time by using a set of rules
that govern how a cell can change according to its initial state and its neighborhood, as
expressed in Equation (15).

Sy+1 = f
(
Sy, N

)
(15)

where Sy+1 is the later state that is predicted from the LULC map at time (y + 1); Sy is the
initial state or the base LULC map at time (y); N is the neighborhood of each cell; and f is
the governing transformation rule for the local space. In this study, future LULC maps of
the Gumara watershed were generated for the years 2035 and 2065 using the CA–Markov
model, which is available from IDRISI Selva 17.0. For prediction, earlier and latter LULC
maps, Markov chain TPMs, and TSMs were used as inputs to the CA–Markov model.

2.5.5. Validation of the CA–Markov Model

In geospatial simulation, model validation is used to evaluate the accuracy, function-
ality and reliability of prediction performance [24]. For this study, model validation was
performed by comparing the predicted LULC map from 2019 with the reference LULC
map from 2019. For evaluation, commonly used kappa coefficients, namely, kappa for no
information (Kno), kappa for location (Klocation), and kappa for standard (Kstandard), were
computed using the “VALIDATE” module in IDRISI Selva 17.0. According to Congal-
ton [75], a kappa coefficient less than 0 indicates no agreement, 0 to 0.2 indicates slight
agreement, 0.2 to 0.41 indicates fair agreement, 0.41 to 0.60 indicates moderate agreement,
0.60 to 0.80 indicates substantial agreement, and 0.81–1.0 indicates perfect agreement.

2.5.6. Scenario-Based LULC Prediction

Recently, scenario-based (“what-if”) prediction of future LULC has become a hot
topic of research in the geospatial scientific community for identifying future land use
dynamics under different socioeconomic conditions [9,20,30,66]. This scenario-based LULC
prediction can serve as a robust tool for making and implementing decisions related to
land use policies. For this study, two scenarios, (1) BAU and (2) GOV, were considered to
predict the future LULC conditions of the Gumara watershed. These two scenarios were
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selected considering (1) the aim of the study, (2) the current land use conditions of the study
watershed, (3) the availability of data for setting the scenarios, and (4) the future plans of
the country Ethiopia (for example, the GLI program). The scenarios considered for this
study were the same as the scenarios used in recent work of [30], which was conducted in
the Upper Awash Basin of Ethiopia. However, the method used to determine the transition
potential maps was different from this study.

The first scenario (BAU) assumes the continuity of the current trends in LULC changes
and socioeconomic development (intensive agricultural cultivation, urbanization, and
development infrastructures). The scenario was designed to answer the following question:
“What will happen if the current trend of LULC changes and socioeconomic development
continue in the future?” [9]. For this scenario, all the driving variables mentioned in the
previous section (Section 2.5.1) and all dominant LULC “from–to” transitions were used
to generate transition potential maps in the MLP algorithm. Under the BAU scenario,
LULC drivers such as distance to roads, distance to towns, distance to streams, and
evidence of likelihood of change were assumed to be dynamic variables to account for
the future development of new infrastructure. Topographic factors (slope and elevation)
were considered static variables. In this scenario, the expansion of agricultural lands and
settlement areas is highly expected.

On the other hand, the second scenario (GOV) considers the GLI Program of Ethiopia.
The GLI is a massive tree planting program that was first launched in 2019 with the
objective of restoring degraded lands, increasing forest cover and reducing the impact of
climate change [45,46]. Following the launch of the program, Ethiopia planted more than
20 billion tree seedlings from 2019 to 2022 and plans to plant 50 billion tree seedlings by
2026 [44]. In general, the objective of the program is to make Ethiopia a green and climate-
resilient country [46]. In contrast to the BAU scenario, in the GOV scenario, increases in
forests and other vegetation cover are expected due to controlled anthropogenic activities.
For this scenario, only topographic/static variables (slope and elevation) were considered
as driver variables. The other dynamic variables related to infrastructure development were
neglected for this scenario. This scenario also assumes restricted transitions of different
LULC classes to cultivated land and settlement, but it allows the transition of cultivated
land to settlement.

3. Results
3.1. LULC Classification

Figure 8 shows the generated LULC maps of the Gumara watershed with five identi-
fied classes (forest, shrubland, grassland, cultivated land, and settlement). Based on the
four LULC maps, cultivated land was the most dominant class, followed by shrubland,
while settlements exhibited minimal areal coverage. For instance, in 1985, cultivated land
accounted for 58.6%, followed by shrubland (31.72%), forest (5.22%), grassland (4.40%), and
settlement (0.06%). In 2019, cultivated land accounted for more than 83.08%, followed by
shrubland (12.79%), while forest, grassland, and settlement accounted for 2.59%, 1.36%, and
0.18%, respectively. This shows the significant expansion of cultivated land and settlement
at the expense of reductions in shrubland, grassland and forest. As shown in Table 3 and
Figure 9, between 1985 and 2019, the area of cultivated land and settlements significantly
increased from 837.79 to 1187.48 km2 and from 0.81 to 2.63 km2, respectively. Consistently
with these findings, Chakilu and Moges [32] reported significant expansion of cultivated
lands in the Gumara watershed.
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3.2. Accuracy Assessment

Figure 10 and Table 4 present the results of the accuracy assessment in terms of UA,
PA, OA, and K. Based on these results, the overall accuracies of the LULC maps of 1985,
2000, 2010, and 2019 were found to be 94.39%, 94.84%, 93.13%, and 91.13%, respectively
(Table 4). The kappa coefficients were 0.92, 0.94, 0.90, and 0.88 for the corresponding
years, respectively (Table 4). Based on the criteria provided in Congalton [75], all of the
LULC maps showed perfect agreement with the validation dataset, with a kappa coefficient
greater than 0.81. The confusion matrices used for accuracy assessment can be found in the
Supplementary Materials (S2a–S2d).
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Figure 10. (a) UA and (b) PA assessment results for each class for the LULC maps for the years 1985,
2000, 2010, and 2019.
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Table 4. Results of the classification accuracy assessment in terms of the overall accuracy (OA) and
kappa coefficient (K).

LULC Map Overall Accuracy Kappa Coefficient Status of Agreement

1985 94.39 0.92 Perfect agreement
2000 94.84 0.94 Perfect agreement
2010 93.13 0.90 Perfect agreement
2019 91.13 0.88 Perfect agreement

3.3. Variable Importance

In this study, a total of 10 variables (6 spectral band Landsat images, 2 vegetation
indices and 2 topographic factors) were used to train the RF algorithm. Figure 11 shows the
relative importance of these variables used for mapping LULC in the Gumara watershed.
Among these variables, elevation was found to be the most important. Consistently with
these findings, several studies have reported the importance of vegetation indices and
topographic factors in improving LULC classification [55,76]. Among the vegetation indices,
the NDVI was more important than the SAVI in most cases.
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3.4. Change Detection (1985–2019)
3.4.1. Percentage Change and Annual Rate of Change

Table 5 shows the percentage change and annual rate of change in each LULC class.
According to the results, shrubland and grassland exhibited negative changes or reductions
throughout the study period. Similarly, forestlands exhibited negative changes during
all of the periods except for the period from 2000 to 2010. Considering all the percentage
change values, the maximum positive change (41.74%) in cultivated land was detected
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for the period 1985 to 2019, while the maximum negative change (−69.05%) in grassland
was detected for the same period. In terms of the rate of change, the maximum rate of
increase (16.22 km2/year) in cultivated land was detected for the period 1985 to 2000, while
the maximum rate of decrease (−11.57 km2/year) in shrubland was detected for the same
period (1985–2000), as shown in Table 5.

Table 5. Percent change (P∆) in (%) and annual rate of change (R∆) in km2/year for the four study
periods.

LULC Class
1985–2000 2000–2010 2010–2019 1985–2019

P∆ R∆ P∆ R∆ P∆ R∆ P∆ R∆

Forest −62.98 −3.13 37.64 1.32 −9.24 −0.42 −50.40 −1.11
Shrubland −38.26 −11.57 −22.86 −6.40 −15.36 −3.69 −59.69 −7.96
Grassland −36.48 −1.53 −23.33 −0.93 −36.46 −1.24 −69.05 −1.28
Cultivated land 29.05 16.22 5.45 5.90 4.15 5.26 41.74 10.28
Settlement 22.31 0.01 39.32 0.09 40.29 0.08 34.86 0.05

3.4.2. Gain, Loss, and Net Change

Table 6 shows the gains and losses of different LULC classes in the Gumara watershed
for the four study periods computed using the LCM module of IDRISI Selva 17.0. The
net change in each LULC class was also computed by taking into account the difference
in the gain and the loss. For the first period (1985–2000), gains and losses of (322.28,
−80.18), (91.32, −262.25), (23.87, −46.45), and (4, −52.45) km2 were observed for cultivated
land, shrubland, grassland, and forest, respectively (Table 6). For the second period (2000–
2010), cultivated land gained 139.77 km2, while shrubland and grassland lost 125.20 and
31.16 km2, respectively. Similarly, in the other periods, larger values of gains than losses
were found for cultivated land and settlement, while smaller values of gains than losses
were found for the other classes. For this reason, the net changes were found to be positive
for cultivated land and settlement and negative for the other classes (Figure 12). For
example, for cultivated land, positive net changes of 242.10, 56.31, 49.59, and 348.01 km2

were found for the corresponding periods. For shrubland, negative net changes of −170.93,
−61, 03, −34.87, and −266.83 km2 were found for the corresponding periods. For the
forest class, negative net changes were found, with the exception of the second period
(2000–2010).

Table 6. Gain and loss of each LULC class for the four study periods.

LULC Class
1985–2000 2000–2010 2010–2019 1985–2019

Gain
(km2)

Loss
(km2)

Gain
(km2) Loss (km2) Gain (km2) Loss (km2) Gain (km2) Loss (km2)

Forest 4.00 52.45 14.58 1.57 8.43 12.01 11.15 50.16
Shrubland 91.32 262.25 64.17 125.20 56.74 91.61 51.74 318.56
Grassland 23.87 46.45 21.29 31.16 9.86 21.72 9.15 53.45

Cultivated land 322.28 80.18 139.77 83.46 113.48 63.88 399.17 51.16
Settlement 0.71 0.57 2.00 0.57 2.29 1.72 2.86 0.71
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Figure 12. Net change (gain-loss) in each LULC class for the four study periods (1985–2000, 2000–2010,
2010–2019, and 1985–2019).

3.4.3. Contribution to the Net Change in Cultivated Land

To show the contribution of the four LULC classes to the net change in cultivated land
over the study period, four graphs were generated, as shown in Figure 13a–d. In all the
periods, shrubland was found to be the main contributor to the increase in the net change
in cultivated land, followed by grassland. For example, in the first period (1985–2000),
200.54, 22.46, and 21.0 km2 area of land were contributed by shrubland, grassland and
forest, respectively, to increase the net change in cultivated land area (Figure 13a). Similarly,
in the fourth period (1985–2019), areas of 280.67, 44.80, and 28.75 km2 were contributed by
shrubland, grassland, and forest, respectively, to increase the net change in cultivated land
by 353.5 km2 (Figure 13d). Overall, shrubland and grassland contributed to the increase
in cultivated land in all four periods. Forests contributed to the increase in the net change
in the first and fourth periods (Figure 13a,d) and contributed to the reduction in the net
change in the second and third periods (Figure 13b,c); however, settlements contributed to
the reduction in the net change in the second and third periods (Figure 13b,c), and they
also contributed negligibly to the increase in the other periods.
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3.5. LULC Change Driver Variables

For this study, topography and distance-/proximity-related driver variables that
influence LULC changes were considered to generate the TSMs of the most dominant
changes that occurred in the study watershed. These driver variables were modelled either
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as static or dynamic variables in the LCM module of IDRISI Selva 17.0. Before the drivers
were used for predicting transition potential or suitability maps, the explanatory power
of each variable was evaluated based on Cramer’s V and p values (Table 7). Although
Cramer’s V value does not offer strong evidence for describing the explanatory power
of the driving variable, it can be taken as a simplified approach to test the influence of
the variables [8,21]. Based on the Cramer’s V values presented in Table 7, the evidence of
likelihood (probability disturbance) was found to be the most important variable, as it had
the highest Cramer’s V value (0.4885). Similarly to these findings, several studies have
shown the importance of topographic factors and evidence of likelihood in influencing the
spatial distribution of LULC changes [31,33].

Table 7. Cramer’s V values of LULC driver variables.

Driver Variables Cramer’s V p Value

Elevation 0.2105 0.0000
Slope 0.0437 0.0000

Distance from streams 0.0868 0.0000
Distance from roads 0.1004 0.0000
Distance from towns 0.0521 0.0000
Evidence likelihood 0.4885 0.0000

3.6. Transition Probability Matrix (TPM)

In LULC change studies, the TPM shows the probability of conversion of LULC classes
from one category to another. For this study, four 5 × 5 Markovian TPMs were generated
for the periods from 1985 to 2000, 2000 to 2010, 2010 to 2019, and 1985 to 2019 (Table 8a–d)
using the Markov module of IDRISI Selva 17.0. In the matrices, the columns show the later
or the newer year LULC classes (e.g., the LULC class of 2000), while the rows show the
previous or earlier year LULC classes (e.g., the LULC class of 1985). The diagonal values
shaded in grey show the proportion of the classes that showed persistence (LULC classes
remaining unchanged), whereas the off-diagonal values show the proportion of the LULC
classes that changed from one category to another between the earlier and the later years.
High percentages of persistence were observed for the cultivated land in the four respective
periods, with values of 91.41, 91.48, 93.81, and 96.99%. Similarly, settlements also exhibited
persistent proportions of 87.44, 81.17, 82.49, and 81.80% for the corresponding periods.
The other LULC classes (forest, shrubland, and grassland) exhibited minimum values of
persistence percentages or probabilities. For instance, between 1985 and 2000 (Table 8a),
persistent percentages of 18.48, 28.88, and 25.97% were observed for forest, shrubland,
and grassland, respectively. Regarding the transition between LULC classes (off-diagonal),
high percentages of conversion of shrubland, grassland, and forest to cultivated land were
observed in the four periods. For example, high percentages of conversion of shrubland to
cultivated land were observed, with values of 69.70, 66.78, 74.32, and 76.91% for the four
respective periods, as presented in Table 8a–d. Similarly, percentages of 67.47, 76.50, 79.78,
and 75.33% were observed for the conversion of grassland to cultivated land (Table 8a–d).
These results indicate the expansion of agricultural cultivation and settlement areas in the
Gumara watershed at the expense of forest, shrubland, and grassland. For this purpose,
rapid population growth, demand for wood for charcoal and construction material, and
extensive rice cultivation are the main factors influencing the expansion of cultivated
land [41,43].
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Table 8. (a) Transition probability matrix of LULC classes in the Gumara watershed from 1985 to
2000. (b) Transition probability matrix of LULC classes in the Gumara watershed from 2000 to
2010. (c) Transition probability matrix of LULC classes in the Gumara watershed from 2010 to 2019.
(d) Transition probability matrix of LULC classes in the Gumara watershed from 1985 to 2019.

(a)

1985

2000

Forest Shrubland Grassland Cultivated
Land Settlement

Forest 0.1848 1 0.4651 0.0043 0.3447 0.0010
Shrubland 0.0053 0.2888 0.0087 0.6970 0.0002
Grassland 0.0013 0.0643 0.2597 0.6747 0.0000
Cultivated land 0.0020 0.0614 0.0218 0.9141 0.0007
Settlement 0.0000 0.0048 0.0000 0.1208 0.8744

(b)

2000

2010

Forest Shrubland Grassland Cultivated
Land Settlement

Forest 0.8073 0.0872 0.0017 0.0526 0.0012
Shrubland 0.0710 0.2508 0.0092 0.6678 0.0012
Grassland 0.0072 0.0997 0.1275 0.7650 0.0006
Cultivated land 0.0045 0.0598 0.0191 0.9148 0.0018
Settlement 0.0018 0.0248 0.0071 0.1546 0.8117

(c)

2010

2019

Forest Shrubland Grassland Cultivated
Land Settlement

Forest 0.4571 0.2724 0.0030 0.2653 0.0022
Shrubland 0.0298 0.2198 0.0059 0.7432 0.0013
Grassland 0.0050 0.0305 0.1657 0.7978 0.0010
Cultivated land 0.0051 0.0461 0.0087 0.9381 0.0020
Settlement 0.0036 0.0246 0.0034 0.1434 0.8249

(d)

1985

2019

Forest Shrubland Forest Cultivated
Land Forest

Forest 0.5800 0.1526 0.0020 0.2594 0.0059
Shrubland 0.0082 0.2225 0.0000 0.7691 0.0002
Grassland 0.0006 0.0126 0.2335 0.7533 0.0000
Cultivated land 0.0034 0.0204 0.0051 0.9699 0.0012
Settlement 0.0016 0.0020 0.0000 0.4784 0.8180

1 The diagonal values shaded in grey colour show the proportion of the LULC classes that showed persistence
(remaining unchanged).

3.7. Transition Suitability Maps (TSMs)

In this study, the six most dominant “from–to” transition potentials were considered, as
discussed in section Section 2.5.3. To predict transition potentials, a feed-forward enhanced
MLP neural network model was employed using the IDISI Selva 17.0 LCM module. In this
regard, the main outputs of the MLP model are transition potential or suitability maps,
which provide information on the suitability for change [70]. The TSMs that show potential
for transition considered in this study can be found in the Supplementary Materials (S3).
On the basis of these maps, the potentials for the transition from shrubland to cultivated
land and from cultivated land to settlement are presented in Figure 14a,b. Hence, in the
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region of the watershed indicated by a circular shape, either the expansion of cultivated
land or the expansion of settlement areas is highly expected in future years. This part of
the watershed includes the town of Debre Tabor, which is the capital of the South Gonder
Zone in the Amhara regional state.
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Figure 14. Potential for transition: (a) shrubland to cultivated land and (b) cultivated land to
settlement. TP is the transition potential. The greater the TP is, the greater the possibility of a
transition from one class to another. The gray shaded regions show the orientation gradients of the
transition potential, wherein the maximum transitions are oriented along the northeastern part of
the watershed for both transitions. The areas bordered by circles indicate the maximum values of
transition suitability. The triangle symbol in both of the figures indicates the location of the town
Debre Tabor.

3.8. Validation of the CA–Markov Model

In this study, the performance of the CA–Markov model in predicting future LULC
dynamics was evaluated by comparing the reference and predicted (simulated) LULC
maps from 2019 (Figure 15). For validation, the LULC map of 2019 under the BAU scenario
(Figure 15b) was generated using the LULC map of 2000 as an earlier image and the
LULC map of 2010 as a later image, along with the transition probability matrix and the
transition potential maps. Kno, Klocation, and Kstandard were found to be 0.89, 0.86, and
0.94, respectively. These results confirm the high reliability of the CA–Markov model for
predicting the future LULC dynamics of the Gumara watershed since all the kappa values
are greater than 0.81 based on the criteria provided in Congalton [75]. After evaluating
the performance of the CA–Markov model, future LULC maps were predicted under the
BAU and GOV scenarios for 2035 and 2065. Figure 16 also shows a comparison of the areas
of the LULC classes between the reference and predicted maps for 2019. Based on these
findings, the areas of the LULC classes are nearly similar except for slight overprediction of
the cultivated land and slight underprediction of all the other classes by the CA–Markov
model compared to the areas of the LULC classes of the reference map (Figure 16). As
mentioned above, LULC validation was performed to evaluate the prediction capability of
the CA–Markov model under the BAU scenario only. As the GOV scenario was recently
launched by the Ethiopian government in 2019, validation was not performed for this
scenario.
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Figure 16. Comparison of the reference (baseline) and predicted areas of the LULC classes in the
Gumara watershed in 2019.

3.9. LULC Prediction

The future LULC conditions of the Gumara watershed were predicted considering
the historical change trends under two distinct scenarios. Figure 17 and Table 9 present
the future LULC dynamics of the Gumara watershed in 2035 and 2065 under the BAU
and GOV scenarios simulated based on the CA–Markov model. Under the BAU scenario,
consistent increases in cultivated land and settlement will occur in the watershed relative
to those in the reference year (2019). Based on these results, the cultivated land area, which
accounted for 1187.48 km2 (83.08%) in 2019, will increase to 1240.61 km2 (86.77%) and
1272.62 km2 (89.01%) in 2035 and 2065, respectively (Table 9). In these years, cultivated
land is expected to expand in the lower part adjacent to Lake Tana and in the upper part of
the watershed near Debre Tabor town due to the suitability of the slope of the land surface
for crop production (Figure 14a,b). In particular, fragmented grassland covers found in the
lower part of the watershed adjacent to Lake Tana (wetland part) are highly likely to be
converted to cultivated land because this area is known for its potential for rice production.
Similarly, under the BAU scenario, the settlement area will increase from 2.63 km2 (0.18%)
in 2019 to 8.06 km2 (0.56%) and 11.90 km2 (0.83%) in 2035 and 2065, respectively (Table 9).
As presented in Figure 17a,b, significant expansion of urban settlements in and around
Debre Tabor town was predicted in the future years 2035 and 2065. Forests, shrublands,
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and cultivated land found near towns were the main contributors to the expansion of
settlements. In contrast to the expansion of cultivated land and settlements, consistent
decreases in forest, shrubland, and grassland areas will occur in the Gumara watershed
relative to those in the reference year (2019). Based on the results, the BAU scenario predicts
forests to be 20.53 km2 (1.44%) and 15.50 km2 (1.08%), shrublands to 149.5 km2 (10.46%)
and 119.70 (8.37%), and grasslands to be 11.12 km2 (0.78%) and 10.10 km2 (0.71%) in 2035
and 2065, respectively. Under this scenario, the forest and shrubland cover found near
Debre Tabor town was predicted to be converted to settlement and cultivated land; only a
small percentage of the forests were reserved at high elevations, while the shrubland was
reserved at mid-elevation areas (Figure 17a,b).
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Table 9. Predicted area and percentage of LULC classes in the Gumara watershed in 2019 and in 2035
and 2065 under the BAU and GOV scenarios.

LULC Class
Reference (2019) BAU (2035) BAU (2065) GOV (2035) GOV (2065)

Area (km2) % Area (km2) % Area (km2) % Area (km2) % Area (km2) %

Forest 37.01 2.59 20.53 1.44 15.50 1.08 52.05 3.64 67.30 4.71
Shrubland 182.81 12.79 149.50 10.46 119.70 8.37 81.74 5.72 73.28 5.13
Grassland 19.47 1.36 11.12 0.78 10.10 0.71 29.65 2.07 31.44 2.20

Cultivated land 1184.48 83.08 1236.61 86.77 1268.62 89.01 1259.44 88.36 1250.86 87.76
Settlement 2.63 0.18 8.06 0.56 11.90 0.83 2.93 0.20 2.96 0.21

Unlike in the BAU scenario, forest and grassland are expected to increase at the
expense of a decrease in cultivated land under the GOV scenario (Table 9). In this scenario,
forest cover is expected to reach 52.05 km2 (3.64%) and 67.30 km2 (4.71%), and grassland
cover is expected to reach 29.65 km2 (2.07%) and 31.44 km2 (2.2%) in 2035 and 2065,
respectively. Under this scenario, shrubland will cover a smaller percentage (5.72% in 2035
and 5.12% in 2065) of the watershed due to the conversion of shrubland to forest through
the implementation of afforestation programs. Under the GOV scenario, cultivated land
is expected to decline slightly from 1263.44 km2 (88.36%) in 2035 to 1254.86 km2 (87.76%)
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in 2065. This scenario also promotes controlled or limited settlement expansion to reduce
competition for various natural and economic resources.

3.10. Change Detection (2019–2065)

Table 10a,b shows the gains and losses of each LULC class in the Gumara watershed
for the future periods under the two different scenarios. The results revealed contrasting
changes under the different scenarios. For instance, under the BAU scenario, for the period
from 2019 to 2065, cultivated land increased by 60.45 km2, while forest and grassland
decreased by 9.86 and 8.29 km2, respectively (Table 10a). In contrast, for the same period,
under the GOV scenario, forest and grassland increased by 42.02 and 13.01 km2, respectively,
while cultivated land decreased by 26.30 km2 (Table 10b). Figure 18a,b also show the net
change values for the future periods for different LULC classes under different scenarios.
Based on the results, positive net change values of cultivated land and settlement and
negative net change values of other classes were found under the BAU scenario (Figure 18a).
For instance, net changes of 43.44, 8.00, and 3.85 km2 in cultivated land and 5.14, 3.85,
and 8.88 km2 in settlement were found for the three periods. In contrast, under the GOV
scenario, positive net change values for forestland and grassland and negative net change
values for the other classes were found in the three respective periods (Figure 18b). For
instance, the largest positive net change in forest area was detected in the period from
2019–2065, with a value of 42.01 km2, while a negative net change in forest area (loss) was
detected for shrubland, with a value of −28.58 km2. In general, in the BAU scenario, larger
values of losses than gains (negative net change) for forest, shrubland and grassland and
larger values of gains than losses (positive net changes) for cultivated land and settlement
were found for the future periods (Table 10a, Figure 18a). Under the GOV scenario, larger
values of gains than losses (positive net changes) for forest, shrubland and grassland and
larger values of losses than gains (negative net change) for cultivated land were found for
the future periods (Table 10b, Figure 18b).

Table 10. (a) Gains and losses of LULC classes between 2019 and 2065 under the BAU scenario.
(b) Gains and losses of LULC classes between 2019 and 2065 under the GOV scenario.

(a)

LULC
2019–2035 2035–2065 2019–2065

Gain Loss Gain Loss Gain Loss

Forest 0.00 6.72 0.00 3.14 0.00 9.86
Shrubland 3.43 37.87 2.57 10.29 2.57 44.73
Grassland 0.00 7.29 0.00 1.00 0.00 8.29

Cultivated land 48.59 5.15 11.86 3.86 60.45 9.00
Settlement 5.15 0.02 3.86 0.05 9.00 0.02

(b)

LULC
2019–2035 2035–2065 2019–2065

Gain Loss Gain Loss Gain Loss

Forest 26.73 0.00 15.29 0.00 42.02 0.00
Shrubland 0.01 20.15 0.05 8.43 0.09 28.58
Grassland 11.15 0.02 1.86 0.03 13.01 0.00

Cultivated land 0.00 17.72 0.00 8.58 0.00 26.30
Settlement 0.00 0.00 0.00 0.00 0.01 0.00
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Figure 18. Net changes (gain-losses): (a) net change (2019–2065) under the BAU scenario and (b) net
change (2019–2065) under the GOV scenario.

4. Discussion
4.1. LULC Classification and Change Detection

In this study, LULC classification was performed using the RF algorithm available in
the GEE environment, and a total of five classes were identified, including forest, shrubland,
grassland, cultivated land, and settlement. Based on the generated LULC maps of the four
years, cultivated land covers the largest area percentage, while settlement covers the small-
est. According to the classification accuracy assessment, the overall accuracies were 94.39%,
94.84%, 93.13%, and 91.13% for the years 1985, 2000, 2010, and 2019, respectively. In terms
of the kappa coefficients, 0.92, 0.94, 0.90, and 0.88 were found for the four corresponding
years. According to the criteria provided in Congalton [75], all of the historical LULC maps
showed perfect agreement, with kappa coefficient values greater than 0.81. The results
of the classification accuracy assessment found in this study showed slight improvement
relative to previous studies conducted in the Gumara watershed. For example, Chakilu and
Moges [32] reported an overall accuracy of 88.33% and a kappa coefficient of 0.73 for 2013



Land 2024, 13, 396 28 of 34

LULC map classified using the ML classifier. These improvements in classification accuracy
for this study may be due to the use of vegetation indices and topographic factors as
additional variables in refining the classification. In this regard, consistently with this study,
a number of studies have shown the importance of vegetation indices and topographic
factors in improving LULC classification accuracy [55,76,77].

In the study watershed, significant expansion of cultivated land and settlement and de-
clines in forest, shrubland, and grassland were observed in the historical years (1985–2019).
For this, deforestation for housing and charcoal consumption, overgrazing, extensive rice
cultivation and other natural and human-induced factors contributed to the decline of
forests, grasslands, and shrublands [31,43,78]. Similarly to this study, studies conducted
in the Lake Tana subbasin, where the Gumara watershed is located, have indicated the
expansion of cultivated land in recent decades [36,49]. Other local studies conducted in
the Didessa [35], Andassa [79], Koga [80], and Finchaa [34] watersheds have reported
significant expansion of cultivated land and settlement areas in recent decades, which is
consistent with the findings of this study.

4.2. Impacts of LULC Change on Socioeconomic and Environmental Conditions

In this study, LULC prediction for the years 2035 and 2065 was performed under the
BAU and GOV scenarios. Under the BAU scenario, an increase in cultivated land and
settlements is highly expected. More specifically, under this scenario, the expansion of cul-
tivated land will occur in areas with gentle slopes suitable for agricultural crop production.
Consistently with these findings, similar scenario-based studies have reported a significant
increase in cultivated land and settlements under the BAU in future years [20,24,81]. This
significant LULC change has a number of implications for the socioeconomic and environ-
mental conditions of the study watershed. From a socioeconomic perspective, agricultural
cultivation practiced by local farmers plays an important role in ensuring food security
for the local community. Local farmers can also benefit from selling vegetables, fruits,
and cereal crops (for example, rice, wheat, barley, and millet) to the surrounding urban
community. However, intensive agricultural cultivation has had a significant negative
impact on reducing the quality of land resources and future productivity. It can also lead to
excessive erosion of topsoil (fertile soil), which is crucial for agricultural production. Rapid
population growth in the future could create competition for land resources and agricul-
tural inputs (for example, fertilizers, insecticides, pesticides, improved seeds, etc.) among
households. In the area, the significant conversion of grassland to cultivated land is also
currently affecting indigenous cattle production [43,82]. This problem is most common in
rural areas adjacent to the shore of Lake Tana [43]. Other similar studies also indicated the
negative consequences of intensive cultivation in reducing the economic value of livestock
production [83,84]. Furthermore, land degradation and loss of forest have negative impacts
on livelihoods and poverty levels, and can lead to migration and displacements.

From an environmental perspective, if intensive agricultural cultivation continues in
the future under the BAU scenario, the Gumara watershed may face serious environmen-
tal issues, such as soil erosion and degradation, deforestation, flooding, landslides, and
contamination of surface and groundwater resources due to intensive use of fertilizer for
cultivation, loss of biodiversity, and depletion of natural resources [32,36,41]. Intensive
agricultural cultivation and settlement expansions also have adverse effects on the ecosys-
tem service values and hydrology of the studied watershed. As the study watershed is
the main flow contributor to Lake Tana, sediments and contaminated surface runoff from
cultivated lands pollute the lake water. Recent studies have indicated that the deterioration
of the water quality of Lake Tana is the result of soil erosion and contaminant flows from
the contributing watersheds [50,85].

In contrast, under the GOV scenario, the expansion of cultivated land settlement areas
will remain steady, and forests and other vegetation cover are expected to improve in the
future. Compared to the BAU scenario, the GOV scenario is environmentally sustainable
and economically profitable [24]. Environmentally, the GOV scenario can be considered
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sustainable, as it can reduce the adverse impact of climate change on a local or regional scale
by increasing carbon sequestration and preserving biodiversity [46]. Economically, it can
provide revenue for the local community from timber and nontimber products, firewood,
spices, ecotourism, and medicinal plants [44]. In general, forests play a significant role in
the livelihood of rural communities and can be considered a pathway for green economic
growth [46].

As indicated in several studies [20,81], LULC dynamics are complex, and future LULC
predictions are prone to uncertainty due to the uncertainty of drivers in the future. In this
study, topographic, distance-to-socioeconomic development, and evidence of likelihood
of change (disturbance) driver variables were considered for future LULC prediction.
However, driver variables related to population density were not considered due to a lack
of accurate census data. Therefore, further research can be conducted by considering these
drivers when the government releases recent and reliable census data.

4.3. Relevance of Scenario-Based LULC Change Detection and Prediction to Policy and Practice

The scenario-based LULC change detection predictions covered in this study can
provide significant input for land use policy and practice. The results of change detection
under the BAU and GOV scenarios can help land use planners, policymakers, and water-
shed managers develop sustainable land use management plans for promoting sustainable
development goals. According to the results of this study, an expansion in cultivated
land and a reduction in forest and grassland over the past 34 years were observed. This
could create competition for crop cultivation and livestock grazing among households.
To handle such competition for land resources, introducing a more integrated sustainable
land resource management policy that accounts for the socioeconomic values of crop and
livestock production is recommended [84,86]. In this regard, the government and other
stakeholders should work to combat excessive land resource utilization and rapid popu-
lation growth to ensure the food security of local farmers [87]. Stakeholders should also
work cooperatively to address issues related to land tenure security, land use rights, and
land certification. Furthermore, to reduce the adverse effects of land use change on the
environment, stakeholders should encourage communities to participate in the GLI pro-
gram. It is also recommended that various land management practices, such as agroforestry,
polyculture, crop rotation, and smart agriculture, be implemented to increase the economic
productivity and environmental sustainability of the GLI program.

5. Conclusions

Long-term LULC change detection and prediction studies are crucial for providing
significant information on the current and future hydrological conditions of watersheds and
large river basins. For this reason, this study focused on change detection and prediction
of LULC in the Gumara watershed using the cloud-based platform Google Earth Engine
(GEE) and the geospatial prediction model cellular automata–Markov (CA–Markov). The
first part of the study focused on LULC classification and change detection in historical
periods. For LULC classification, Landsat-5/OLI and 8/TM images from 1985, 2000,
2010, and 2019 were used as inputs for the RF classification algorithm built into the GEE
environment. To improve the classification accuracy and distinguishability of complex
classes, other variables, such as vegetation indices (NDVI and SAVI) and topographic
factors (elevation and slope), were used as inputs for the RF classifier. Using this cloud-
based image classification approach, five major LULC classes, namely, forest, shrubland,
grassland, cultivated land, and settlements, were identified for the study watershed. The
results of the change analysis for the four historical periods (1985–2000, 200–2010, 2010–2019,
and 1985–2019) revealed significant LULC changes in the study watershed. Over the past
34 years (1985–2019), expansions of cultivated land and settlements and decreases in forest,
shrubland, and grassland were detected due to increasing anthropogenic disturbances.
From the analysis, a significant increase in cultivated land from 58.60 to 83.08% and a
decrease in forest from 5.22 to 2.59% were detected between 1985 and 2019.
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In the second part of this study, future LULC maps of the Gumara watershed were
generated for the years 2035 and 2065 using the CA–Markov model available in the land
change modeler (LCM) module of IDRISI Selva 17.0. To predict future LULC maps, earlier
and later images, the Markovian transition probability matrix (TPM), and transition suit-
ability maps (TSMs) were used as inputs for the CA–Markov model. To generate the TSMs,
a multilayer perceptron (MLP) artificial neural network (ANN) algorithm was employed
for this study. Two LULC scenarios, namely, the business-as-usual (BAU) and governance
(GOV), were considered. For the first scenario (BAU), the most dominant LULC TSMs were
generated based on the current trend of LULC change using six LULC driver variables,
such as elevation, slope, distance from streams, distance from roads, distance from towns,
and evidence likelihood. Under this scenario, significant expansions of cultivated land
and settlements were predicted for the years 2035 and 2065 due to human-induced anthro-
pogenic disturbances. Therefore, cultivated land and settlements are expected to increase
from 83.08 to 89.01% and 0.18 to 0.21%, respectively, between 2019 and 2065.

On the other hand, the GOV scenario considers the Green Legacy Initiative program,
which is currently under implementation. For this scenario, topographic factors (slope and
elevation) were considered to generate TSMs. Under this scenario, forest and grassland
areas are expected to increase from 2.59% in 2019 to 4.71% in 2065 due to the implementation
of afforestation and reforestation programs and controlled anthropogenic disturbances.
Overall, the scenario-based findings of this study can provide information for government
policymakers, land use planners, and watershed managers to developing sustainable land
management policies.

In this study, LULC classification was performed using spectral bands, vegetation in-
dices, and topographic factors as inputs for the RF algorithm. In this regard, further research
can be performed by considering texture information following recent studies [10,88]. In
this study, future LULC prediction was performed considering topographic and proximity-
related factors. Hence, future predictions of LULC maps can also be further researched by
considering population density data when the government releases accurate and updated
census data. Moreover, further studies could be performed by studying the impacts of
LULC on the hydrology and ecosystem service values of the studied watershed.
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