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Abstract: Ephemeral gully (EG) erosion is an important type of water erosion. Understanding the
spatial distribution of EGs and other influencing factors at a regional scale is crucial for developing
effective soil and water management strategies. Unfortunately, this area has not been sufficiently
studied. The present study visually interpreted the EGs based on Google Earth images in 137 small
watersheds uniformly distributed in the Loess Plateau, compared them with measured results, and
analyzed the factors influencing EG formation and density using GeoDetector. The results showed
that visually interpreting EGs from Google Earth images was suitable for EG regional studies. Out
of the 137 small watersheds, 33.6% had EG occurrence with an average density of 3.41 km/km2.
Rainfall (R) and slope gradient (S) were the primary factors influencing the formation of EGs, while
the area proportion of sloping farmland (APSF) and soil erodibility (K) were the main factors affecting
EG density. The interaction of dual factors had a greater influence compared to single factors, with
the interaction between S and Normalized Difference Vegetation Index (NDVI) having the greatest
impact on EG formation and the interaction between K and NDVI on EG density. Although natural
forces significantly influence whether EGs can form in a specific area, human activities greatly affect
the density of the gullies that develop. This underscores the importance of proper land management
in controlling gully erosion. These findings could provide theoretical support for EG prediction
models and a scientific basis for soil and water loss control strategies at the regional scale.

Keywords: Loess Plateau; soil erosion; ephemeral gully; regional scale; influencing factors

1. Introduction

Soil erosion is a major threat to ecosystems and land sustainability worldwide [1].
Ephemeral gully (EG) erosion is an important type of soil erosion [2], accounting for
26.6–59.2% of the total erosion amount on the Loess Plateau [3]. This form of erosion is also
common globally. For example, ephemeral gully erosion contributes more than 30% and
50% of the total erosion in areas with active water erosion in the United States and Western
Europe, respectively [4,5]. In central Belgium, ephemeral gully erosion accounts for 44%
of the total sediment yield [6], and the percentages are even higher in the Mediterranean
coastal regions and southern Africa [7]. Ephemeral gully erosion leads to severe land
degradation, particularly in loess regions [8]. At the regional scale, the primary need
for control of EGs involves identifying areas where efforts should be concentrated and
determining the most effective measures. This emphasizes the importance of understanding
the spatial distribution and influencing factors, which are key scientific questions that this
research addresses.
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EGs, referring to erosion channels that can be crossed and filled by ordinary farming
tools, will reappear in the same position during subsequent erosion events [9–11]. The
width and depth of EGs fall between those of rill and permanent gullies [12], typically
reaching down to the bottom of the plow layer (20 cm), with a width of approximately
30–50 cm [13]. A tile-backed landform may develop through repeated erosion and cultiva-
tion [13], which is more obvious on steep slopes. Because of the temporary nature of EGs,
surveys are generally conducted at the base of these tile-backed landforms [14].

Understanding the spatial distribution and influencing factors of EGs is important
for soil and water conservation planning. Current research on EGs focuses more on
hillslopes and small watershed scales. For example, Xu et al. [15] quantified the spatial
distribution of water flow dynamics on EGs by performing simulations under various
rainfall and slope gradients in the laboratory. Geng et al. [16] analyzed the effects of a
series of factors on EG erosion processes based on laboratory experiments. Ollobarren
et al. [17] analyzed the soil characteristics that most reflect erodibility for EG erosion in
small watersheds in Spain and Italy. Tang et al. [18] investigated the effects of rainfall and
contour farming on the development of EGs in croplands at the small watershed scale.
The lack of data sources is the most important reason for the limited knowledge of EG
distribution and influencing factors at the regional scale. The rapid development of remote
sensing technology has provided new possibilities for this research. High-resolution remote
sensing images are becoming more commonly used in gully surveys and have become
quite valuable data sources at the regional scale. Currently, research on gully surveys using
remote sensing technology mainly focuses on permanent gullies (PGs), emphasizing gully
extraction [19,20], spatial distribution, susceptibility area mapping [21,22], and erosion
rates [23–25]. Using remote sensing images for EG studies is much more difficult at a
regional scale since EGs normally have smaller features than PGs, are harder to identify,
and are usually temporary; therefore, sub-meter or higher resolution images are usually
needed. Reece et al. demonstrated the effectiveness of Google Earth imagery with sub-
meter resolution in accurately extracting EGs in 72 fields [26]. Karydas and Panagos used
Google Earth imagery to detect the national spatial distribution of EGs in Greece using a
sampling strategy [27], marking a significant advancement in large-scale EG surveys.

Although Google Earth imagery could be a suitable data source for studying EGs
at the regional scale, particularly concerning their spatial distribution and influencing
factors, it remains uncertain whether it can be effectively used in the Loess Plateau. This
region not only features some of the most complex terrains but also suffers from one of the
severest rates of EG erosion globally. Furthermore, there is still a significant lack of deep
understanding regarding the factors influencing EG spatial distribution at the regional scale.
We hypothesized that Google Earth imagery with sub-meter or higher resolution would
be suitable for a survey of EGs in the Loess Plateau and that the main factors influencing
whether EGs could form in a specific area might differ from those dominating EG density.
This is because natural forces would affect the former more, whereas human activities
could primarily influence the latter.

In this study, we used Google Earth imagery combined with various datasets to
investigate the spatial distribution of EGs and their influencing factors in the China Loess
Plateau. Field measures employing the Global Navigation Satellite System Real-time
Kinematic (GNSS RTK) were used for accuracy analysis. The specific objectives of this
study are as follows: (1) to map the spatial distribution of EGs in the Loess Plateau
using Google Earth imagery, thereby providing a viable method for EG investigations
at a regional scale, and (2) to identify the main factors influencing both the potential
formation of EGs in specific areas and their density. This research aims to provide theoretical
support for EG erosion prediction models and a solid scientific basis for large-scale soil
conservation practices.
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2. Materials and Methods
2.1. Study Area

This research was conducted on the Loess Plateau of China, which is well known for
its large amount of erosion, complex terrain, and long cropping history. In 1999, the Chinese
government began to implement the “Green for Grain” project, which returned farmland
to forests and grasslands. The Loess Plateau took the lead as a pilot project, implementing
afforestation and turning sloping farmland into forest and grassland [28]. The boundary
of the Loess Plateau was delineated by Chen Yongzong in 1988 [29], with a total area of
approximately 380,000 km2. The multiyear average temperature ranges from 3.6 to 14.3 ◦C,
and the annual rainfall varies from 300 to 700 mm, gradually decreasing from the southeast
to the northwest. The main soil types on the Loess Plateau are cinnamon, dark loessial,
loessial, grey desert, and so on. Among them, loessial soil is the most widely distributed
soil, characterized by uniform soil texture that is loose and breathable but easily eroded.

Using a systematic sampling methodology, 137 sampling units were selected with an
interval of 0.5◦ for both latitude and longitude (Figure 1a). It would be beneficial to utilize
uniformly distributed small watersheds to comprehensively understand EG distribution
across a large region. The average slope gradient in each sampling unit was calculated
based on one arc-second resolution SRTM (Shuttle Radar Topography Mission) elevation
data. If the slope gradient was greater than 2◦, the sampling units were set to be shaped
like small watersheds with an area of approximately 0.3 km2 (Figure 1b). Otherwise, the
sampling units were rectangular in shape and 0.5 km × 0.5 km in size (Figure 1c). A typical
small watershed in the middle reaches of the Wuding River, with an area of 0.44 km2

(Figure 1b), was selected as the field measurement sample area. In this area, 45 EGs were
measured in the field to verify the accuracy of EG interpretation.
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Figure 1. Schematic diagram of the study area. (a) study area; (b) small watershed unit; (c) rectangu-
lar unit.

2.2. Base Data

Table 1 presents an introduction to the fundamental data of this study. Google Earth
images from 2015 to 2020 with resolutions of 0.25 m and 0.49 m were used to interpret
EGs. This approach was chosen because EGs exhibit significant variation across different
seasons and years, often necessitating a review of past occurrences. In addition, 30 m
SRTM data were used to extract was used for watershed boundaries, watershed elevation,
slope gradient, and slope length extraction. Soil erodibility data were obtained from China
National Soil and Water Conservation Census outcome datasets [30]. The land use data
utilized in this study were obtained from the Data Center for Resources and Environmen-
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tal Sciences, Chinese Academy of Sciences (RESDC) (http://www.resdc.cn (accessed on
20 October 2023)) [31], with a resolution of 30 m. This dataset primarily relies on satellite
remote sensing data from the Landsat MSS, TM/ETM, and Landsat 8 satellites, which the
United States operates. Select cultivated land with a slope greater than 5◦ from the year
2000 was analyzed to calculate the area within a 300 m by 300 m grid and determine the
area proportion of sloped farmland. The average rainfall data from 1981 to 2019 were
chosen based on precipitation data from the China Meteorological Administration. The
normal difference vegetation index (NDVI) is the most commonly used indicator of veg-
etation cover and growth, and it can objectively and effectively reflect vegetation cover
information at different spatial and temporal scales. The average NDVI from 1990 to 2019
was obtained based on the Google Earth Engine platform and calculated based on the
normalized vegetation index calculated from synthetic annual mean NDVI datasets in
near-infrared (B3) and red band (B4) from Landsat 5 and near-infrared (B5) and red band
(B4) from Landsat 7 and Landsat 8.

Table 1. Introduction to base data.

Data Name Cell Size Time Source

Google Earth image 0.25–0.49 m 2015–2020 https://google.cn/earth/
(accessed on 10 February 2020)

Shuttle Radar Topography Mission (STRM) 30 m 2014 https://earthexplorer.usgs.gov/
(accessed on 6 June 2020)

Field Measured data 2 cm 2021 GNSS RTK Field measured

Land use 30 m 2000 http://www.resdc.cn
(accessed on 20 October 2023)

Soil erodibility (K) 30 m 2011 China National Soil and Water
Conservation Census outcome datasets

Average multi-year rainfall (Rainfall) 3 km 1981–2019 China Meteorological Administration
Normal Difference Vegetation Index (NDVI) 30 m 1990–2019 Google earth engine

2.3. EG Interpretation Method and Quality Control

The EG survey started in May 2020 and was completed by the end of September 2020;
6 interpreters were involved, and two-level quality controls were carried out. The visual
interpretation process is as follows: (1) establishment of interpretation criteria based on
the definition of ephemeral gullies and field survey experience; (2) visual interpretation
conducted using Google Earth images for each sample unit; (3) the leader of the visual
interpretation team performs a 100% check according to the interpretation criteria and
makes careful corrections if any issues are identified; (4) experts in the EG research field
are invited to perform a 20% check, and if the accuracy of correctly interpreted units is less
than 90%, the results should be revised. The third step is then repeated for quality control.

EGs were interpreted using ArcGIS 10.5 software. The length of the EG, the length of
the flow path to the EG head, and the number of EGs for each sampling unit were visually
interpreted. The images were obtained mainly in spring and autumn to minimize the
impact of vegetation, ice, and snow cover. Google Earth images in multiple time periods
were used to avoid the loss of EGs because of possible unclear images. On images, EGs were
approximately 30–50 cm wide and generally appeared as shallow depressions arranged
according to a specific rule [13,32]. EGs were brighter or darker than the surrounding
ground objects in the images. The cross-section expanded in an arc shape, showing a tile
back landform without noticeable gully edges. Each EG was digitized from its watershed
position to the end of the EG. The part above the head of the EG was the flow path of the
EG head (Figure 2), and its length was considered to be the critical slope length for the EG
development used in the following analysis.

http://www.resdc.cn
https://google.cn/earth/
https://earthexplorer.usgs.gov/
http://www.resdc.cn
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Figure 2. Example of ephemeral gully interpretation.

2.4. Verification of Interpretation Accuracy

Global Navigation Satellite System Real-time Kinematic (GNSS RTK) was used to con-
duct field measurements of all EGs in a typical small watershed, and the three-dimensional
coordinates of each point of the EGs were measured at an average interval of 0.5 m.

The interpreted EGs based on Google Earth images were compared with the field-
measured data to determine whether the former was accurate. A Wilcoxon signed-rank
test was conducted to evaluate whether there was a significant difference between the
field-measured EG length and the interpreted EG length. The Wilcoxon signed-rank test
is a non-parametric test used to analyze paired data or single-sample questions. A paired
design is used to test the hypothesis that the probability distribution of the first sample is
equal to that of the second sample. This hypothesis can be tested by statistical analysis of
the differences calculated within pairs. The usual hypothesis tested is that these differences
come from a distribution centered on zero [33]. The relative error of EG length was
calculated (Equation (1)), as was the average value of the relative error of the EG length
(Equation (2)).

RLi =
|LGEi − LRTKi|

LRTKi
× 100% (1)

RL =
1
n

n

∑
i=1

RLi (2)

where RLi is the relative error of a single EG length, and RL is the average value of the
relative error of the EG length. LGEi and LRTKi are the length (m) of a single EG obtained
based on Google Earth image interpretation and actual measurement, respectively.

2.5. Analysis of Influencing Factors

The GeoDetector is a statistical method that can detect the spatial differentiation of
geographic elements and their influencing factors. It is immune to collinearity and can
effectively identify the spatial differentiation of geographic spatial elements and reveal the
driving factors [34]. It can detect the degree of interpretation of the impact factor X on the
spatial differentiation of the dependent variable Y. The expression is as follows:

q = 1 − 1
Nσ2

L

∑
i=1

Niσ
2
i (3)
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where i = 1,. . ., L is the stratification of variable Y or factor X, that is, partition or classifica-
tion; Ni and N are the number of units in layer i and the whole area, respectively; and σ2

and σi
2 are the variance of the Y value of layer i and the whole area, respectively [34]. The

value range of q is [0, 1] and, the more it tends to 1, the stronger the explanatory power of
the factor X on the variable Y and vice versa.

An interaction detector was used to detect whether the impact of the influencing
factors X1 and X2 on the density of the EGs was enhanced or weakened or whether the
influence on the density of the EGs was independent. First, the q values q(X1), q (X2),
and q(X1∩X2) of the impact factors X1 and X2 on the EG density were calculated, and
then the magnitudes of q(X1), q(X2), and q(X1∩X2) were compared. Five types of contrast
relationships were formed, representing five types of effects, as shown in Table 2.

Table 2. Types of interaction between two covariates.

Criterion Interaction

q(X1∩X2) < min(q(X1), q(X2)) Non-linear reduction
min(q(X1), q(X2)) < q(X1∩X2) < max(q(X1), q(X2)) Single-factor non-linear reduction

q(X1∩X2) > max(q(X1), q(X2)) Two-factor enhancement
q(X1∩X2) = q(X1) + q(X2) Independence
q(X1∩X2) > q(X1) + q(X2) Non-linear enhancement

2.6. Analysis of Influencing Factors

This study utilizes Google Earth imagery and ground-measured data sources, con-
sidering that topography, rainfall, soil, vegetation, and human activities all affect EGs; the
elevation, slope length (L), slope gradient (S), 1981–2019 average annual rainfall (Rainfall),
the area proportion of sloping farmland (APSF), NDVI, and soil erodibility (K) were selected
as impact factors. EGs were identified by visual interpretation, and the average values
of the corresponding impact factors were calculated for each survey unit. The natural
breakpoint method was used to classify the values of each impact factor of all survey units.
The main factors influencing the formation and density of EGs in the Loess Plateau were
analyzed using GeoDetector. The specific research process is shown in Figure 3.
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3. Results
3.1. Accuracy of EG Interpretation

A Wilcoxon signed-rank test was performed to compare the lengths of 45 field-
measured EGs with those obtained by visual interpretation of Google Earth images (Table 3).
The results showed that the means (difference of 0.11) and standard deviations (differ-
ence of 0.661) were essentially the same, with a significance of 0.346 (α = 0.05) under the
assumption that the median difference between the field measurements and the visual
interpretation results is equal to 0. This indicates that the hypothesis is valid and there
is no significant difference between the field measurements and the visual interpretation
results. Further analysis revealed that the relative error for interpretation of EG length
results based on the Google Earth image, RLi, was ranged from 0.07% to 11.66% (Figure 4a).
Approximately 58% of the EGs had RLi values below 5%, and less than 7% of the EGs had
an RLi value greater than 10% (Figure 4b). The average RL was 4.99%. The results showed
that reliable EG length results could be obtained using sub-meter resolution Google Earth
images. By measuring the length, we were able to further calculate the density of the
sampling units.

Table 3. Wilcoxon signed-rank test comparison of visually interpreted lengths and actual measurements.

Mean Standard Deviation
Wilcoxon Signed-Rank Test

Standardized Test
Statistic Statistical Significance

MR 23.730 16.514 −0.943 0.346VIR 23.420 15.583
α = 0.05; MR is measured results; VIR is visual interpretation results.
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Among the 137 sampling units on the Loess Plateau, 46 sampling units had EGs,
accounting for 33.6% of the total sampling units. The average density of EGs among these
units was 3.41 km/km2. These units were primarily located in the central-northern part
of the Loess Plateau (e.g., northern Shaanxi Province, central Shanxi Province) and the
western Loess Plateau (e.g., central and eastern Gansu Province) (Figure 5). The distribution
of units with EGs formed a strip from northeast to southwest. In northern Shaanxi, the
density of EGs exceeded 7 km/km2, indicating severe erosion; in central Shanxi and the
central and eastern parts of Gansu Province, densities ranged from 5 to 7 km/km2. The
density of EGs varied in this region.
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3.2. Analysis of Influencing Factors on EG Formation

The classification values Xn described in Section 2.5 and the EG density Y of all
sampling units were used as operating data for the geographic detector. If the EG density
was 0, Y was recorded as 0, and if the EG density was greater than 0, Y was recorded as
1. The result of the factor detector analysis using GeoDetector indicated that the order of
the factor q statistic influencing the formation of EGs was Rainfall > S > APSF > NDVI >
Elevation > K > L (Table 4). Rainfall played a crucial role in the formation of EGs, with S
also having a significant influence. In contrast, the influence of L on the formation of EGs
was comparatively small.

Table 4. Analysis results of the formation of EGs factor detector.

Rainfall S APSF NDVI Elevation K L

q statistic 0.173 0.168 0.115 0.078 0.063 0.057 0.005

Analysis of the spatial distribution of annual rainfall (Figure 6a) and slope gradient
(Figure 6c) on the Loess Plateau shows that the southern region receives more rainfall but
has a smaller slope gradient. This high surface vegetation cover results in low surface runoff
kinetic potential, thereby reducing the likelihood of EG formation. Conversely, despite
receiving less rainfall. The northern region has a steeper slope gradient and concentrated
rainfall in the summer, increasing the kinetic potential energy of surface runoff, thus
facilitating EG formation. Figure 6b displays the probabilities of EGs occurring at various
rainfall levels. The highest probability, 60%, appears in the 350–400 mm range. This is
followed by the 400–450 mm range, where over 50% of the sampling units have EGs.
Additionally, in the 300–350 mm range, the probability is also high, exceeding 40%. This
suggests that EGs are more likely to form within the 300–500 mm rainfall range. In areas
with rainfall between 300 mm and 600 mm, the probability of EG formation does not
exceed 15%, suggesting that EGs are less likely to form in this range. Figure 6d shows
the probabilities of EG occurrence across different slope grades. Nearly 50% of units in
areas with slopes between 10◦ and 15◦ experience EGs, followed by the 3–10◦ range, with
a proportion exceeding 40%, and the 15–25◦ range also having a high proportion, close
to 40%. This suggests that EGs are likely to form within the 3–25◦ slope range. In areas
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with slopes less than 3◦ or greater than 25◦, fewer than 10% of units experience EGs,
particularly in areas with slopes exceeding 35◦, where no EG formation is observed. Due to
significant spatial variability in rainfall and the steep slope gradient on the Loess Plateau,
we opted to calculate the proportion of units generating EGs within each grade level to
all units within that level. This approach helps to negate issues arising from inconsistent
quantities of sampling units within each grade. Further research reveals that the influence
of rainfall and slope on the genesis of EGs follows a pattern of initial increase followed
by a decrease. As rainfall and slope increase, soil moisture content gradually saturates,
leading to surface runoff. The continual increase in slope adds kinetic potential, increasing
the probability of breaking through the topsoil layer and forming shallow gullies. With
further increases in rainfall and slope gradient, the likelihood of EG formation decreases
once rainfall exceeds 400 mm and slope exceeds 15◦. However, this does not imply that soil
erosion does not occur; rather, it suggests that more severe forms of erosion, such as gully
erosion, are prevalent.
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units within the sample units with different slope gradient.

The interaction detection results of the GeoDetector reflect whether the joint effect of
factors X1 and X2 increases or decreases the explanatory power of the dependent variable
Y, an important outcome. The analysis of the interaction detection (Figure 7) shows that the
interaction between S and NDVI has the highest q statistic (q = 0.55), indicating that their
combined effect has the greatest influence on the formation of EGs. Following this, the
interaction between S and APSF (q statistic = 0.48) also significantly affects the formation
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of EGs when acting together. Additionally, the q statistics for the interaction detection
between APSF and Rainfall, APSF and NDVI, S and Rainfall, Elevation and Rainfall, and
K and Rainfall are all above 0.4, indicating significant influences on the formation of EGs.
Further analysis revealed that the minor q statistic in the interaction detection is between L
and K (q = 0.14), which is higher than the smallest single factor q statistic for L (q = 0.01).
The q statistic significantly increases when L interacts with other factors. This indicates
that the influence of dual factors on the formation of EGs is greater than that of a single
factor. Moreover, the q statistic for the dual factors involving rainfall and S is higher than
that for other dual factors, further demonstrating that these are the primary influencing
factors for the formation of EGs. Overall, the explanatory power of the dual factor is
significantly greater than that of the single factor, with Rainfall and S being the primary
factors influencing the formation of EGs.
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3.3. Analysis of Influencing Factors of EG Density

The natural breakpoint method was used to classify the influence factor values of the
sampling units with EGs, and the classification values of each factor corresponded to the EG
density of these units. The classification value Xn and the EG density Y of each influence
factor were used as the operating data of the geographic detector, where Y represented the
EG density value. The result of the factor detector analysis by the GeoDetector indicated
(Table 5) that the ranking of factors influencing EG density was APSF > K > NDVI > L > S
> Elevation > Rainfall. Among these, the area proportion of sloping farmland played the
most significant role, while soil erodibility and the average annual NDVI also provided
strong explanatory power. In contrast, mean annual rainfall had the least influence on the
density of EGs.

Table 5. Analysis results of the density of EGs factor detector.

APSF K NDVI L S Elevation Rainfall

q statistic 0.363 0.362 0.115 0.078 0.063 0.057 0.005
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In the analysis of the spatial distribution of the area proportion of sloping farmland
(Figure 8a) and t soil erodibility (Figure 8c) on the Loess Plateau, it can be seen that areas
with a higher proportion of sloping farmland are mainly concentrated in the northern and
central-western regions, while areas with greater soil erodibility are primarily distributed
in the northeastern and central parts. In these regions, the density of EGs is also relatively
higher, further indicating that APSF and K are the main influencing factors for the density
of EGs. Figure 8b shows the trend relationship between the APSF and the density of EGs.
It can be observed that as APSF increases, the density of EGs also increases. The maximum
density of EGs occurs near an APSF of about 60%, and the sampling units with higher EG
density are near this proportion. Figure 8d illustrates the trend relationship between the
K and the density of EGs. Similar to APSF, as K increases, the density of EGs also shows
an upward trend. The maximum sampling unit of EG density appears near 0.015, and the
sampling units with higher EG density are mainly concentrated between 0.01 and 0.015.
However, starting from 0.009, there is also a trend of density increase with the increase in
soil erodibility. Overall, as the proportion of sloping farmland and soil erodibility continue
to rise, the density of EGs also shows an upward trend. It is worth noting that the trend
lines for both sloping farmland and soil erodibility are relatively flat. This is because the
trend is obtained by integrating all units. We believe that considering all sampling units as
a whole can represent changes at the regional scale, and the results are more applicable to
the regional scale rather than just obtaining the trend of changes in sampling units with
EG density.
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Under the interaction detection of the dual factors, the explanatory power of the spatial
distribution of EG density om the Loess Plateau is significantly improved (Figure 9). The
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interaction detection between K and NDVI has the highest q statistic (q = 0.85), indicating
that it has the greatest influence on EG density, followed by the interaction between K and
APSF, which also has a relatively high q statistic (q = 0.81), suggesting it also significantly
affects EG density as well. Additionally, the interaction detection between Rainfall and
NDVI, as well as L and APSF, have relatively high q statistic of 0.80 and 0.77, respectively,
indicating they also influence EG density to a certain extent. On the other hand, the
interaction between Elevation and Rainfall has the lowest q statistic (q = 0.34), indicating
that their interaction detection has a smaller influence on EG density. However, it is still
greater than the smallest q statistic among single factors for Rainfall. The q statistic for the
interaction detection of Rainfall with other factors are all greater than its own, suggesting
that dual factors influence EGs significantly more than that of a single factor. Additionally,
interaction detection shows that the q statistic for dual factors containing APSF or K is
higher than that for other dual factors, further demonstrating that APSF and K are the main
factors influencing the density of EGs. Overall, the explanatory power of the dual factor
is significantly greater than that of the single factor, with APSF and K being the primary
factors influencing the density of EGs.
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4. Discussion

Our results supported the hypothesis that sub-meter resolution images provide a
practical way to survey EGs at a regional scale. They also confirm that factors influencing
the formation and density of EGs differ from each other. The EG density was high and
spatially heterogeneous in the Loess Plateau area. Both natural and human-related factors
influenced the distribution of EGs, but in different ways. Overall, human activities influence
the density of EGs, while whether a specific area has the potential for EG formation is
dominated by natural factors. The results reached the goals of this research and helped with
the knowledge gap in large-scale understanding of EG distribution and influencing factors.

4.1. Value of Google Earth Images in the Regional Study of EGs

This research conducted a regional survey of EGs. The accuracy was high, and it
showed that it was a reasonable way to survey EGs in large areas. Some other studies have
also confirmed this result [26,27,35]. Extracting the spatial distribution and morphological
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characteristics of EGs based on remote sensing images obtained by aerials and UAVs is
also an essential currently used method for obtaining erosion gully data [36]. However,
due to the high cost of large-scale image acquisition, this approach to surveying EGs has
been primarily focused on the watershed scale. It is difficult to survey and study the spatial
distribution of EGs at the regional scale using UAVs, which limits our capacity to identify
the influencing factors and developmental dynamics of EGs on a regional scale.

This paper utilizes a method that combines visual interpretation with field surveys
to conduct EG surveys on a regional scale. Regions with a high density of EGs are lo-
cated in the northern part of the Loess Plateau; this finding aligns with field surveys
conducted in the 1980s, which revealed EG densities of 19.80 km/km2 in Zhidan County
and 13.98 km/km2 in Ansai County, both in northern Shaanxi Province [37]. The northern
part of the Loess Plateau serves as China’s agriculture-pastoral transition zone and is
characterized by ecological fragility. Here, the combined effects of wind and water erosion,
along with the conflicts between human activity and land use, have led to severe soil
erosion in the region [38–40]. This study systematically sampled 137 units at intervals of
0.5◦, uniformly distributed across the Loess Plateau, effectively reflecting the differences in
EGs among various regions. This method is also applicable to selecting other large regional
sample areas.

4.2. Factors Influencing the Spatial Distribution of EGs

The GeoDetector results indicate that the formation of EGs is primarily controlled
by natural factors, with Rainfall and S being the most important factors. The continuous
impact of raindrops on the surface disperses soil aggregates, reducing soil porosity and
diminishes infiltration capacity, leading to concentrated runoff [41]. As rainfall and slope
gradient increase, the hydrodynamic force of surface runoff intensifies, further degrading
the surface to form EGs [42], aligning with current research findings [32,43]. The results
show that the probability of EG formation decreases once rainfall and slope reach a certain
threshold. This is attributed to the impact of rainfall on ground cover [44] and vegetation,
which reduces the kinetic energy of raindrops through canopy and litter components,
thereby mitigating erosion [45]. However, this does not imply the absence of soil erosion.
Exceeding the threshold in slope gradient or rainfall increases the splashing capacity of
raindrops and the erosive power of surface runoff, resulting in higher levels of erosion
gullies [42]. The density of EGs, which represents the length and number of gullies
within a watershed, indicates further development. Once an EG is formed, surface runoff
continues to converge at this location, and the gully head develops upwards along the
flow path [46,47]. The development of EGs depends on soil resistance to erosion. However,
soil erodibility is influenced by natural factors, such as the soil’s physical and chemical
properties, slope gradient, and human activities [48]. The results suggest that these factors
influence the density of EGs and exhibit a continuously increasing trend. In areas with
high EG density, there is a greater risk of progression to higher levels of erosion gullies.
Therefore, in regions with a higher probability and density of EGs, it is necessary to
construct engineering measures for soil and water conservation, increase vegetation cover,
and implement appropriate cultivation practices to prevent the development of EGs into
more severe forms of erosion gullies.

The formation and density of EGs is a complex process influenced by several factors,
including rainfall, topography, soil type, and vegetation cover [49–51]. The GeoDetector
results strongly support this view, indicating that the explanatory power of dual factors
working together is significantly greater than that of a single factor. The canopy of sur-
face vegetation can weaken the kinetic energy of raindrops, reducing their impact on the
soil surface [52]. However, with increasing slopes under the same rainfall conditions,
runoff generation occurs sooner and becomes more intense, and the total splash erosion in-
creases [53]. Therefore, planting drought-tolerant vegetation in areas with less precipitation
and increasing vegetation cover on steeper slopes can both effectively prevent the forma-
tion of EGs. To address the conflict between population growth and food supply, some
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areas of the Loess Plateau have cultivated farmland on slopes, which not only destroys the
topsoil but also causes the soil to become loose. Consequently, the Chinese government
has implemented the “Green for Grain” policy, which reduces the area of sloping farmland
while increasing the coverage of surface vegetation, effectively reducing soil erosion in the
Loess Plateau [23,54].

It is worth noting that this study determined the area proportion of sloping farmland
based on land use data from the year 2000. This choice is justified as long-term cultivation
on the Loess Plateau has historically caused severe soil and water loss. However, with the
implementation of the ‘Green for Grain’ by the Chinese government in 1999, the intensity of
soil erosion has decreased [55,56]. Therefore, we believe that the land use situation around
the year 2000 best reflects the impact of soil and water loss. At the same time, the biggest
obstacle to studying soil erosion at a regional scale is data collection. In our study, we made
significant efforts to unify the temporal and spatial resolution of the factors. Although
many types of factor data are now publicly available, unifying them for larger-scale studies,
such as national or global, remains a challenge. An important aspect of future research will
be to minimize the impact of different temporal or spatial resolutions on the results.

4.3. Implications and Limitations

In terms of regional analysis, two main inquiries stand out in soil conservation plan-
ning. First, it is essential to pinpoint which areas need conservation. Second, we must
decide on the most effective strategies for this purpose. Our research has effectively charted
the presence of EGs across a wide area. It has yielded precise data for the Loess Plateau.
Such information is vital for planning where to focus soil conservation actions. The in-
fluencing factors analyzed in this study are critical in choosing successful interventions.
Additionally, our findings extend to the domain of erosion modeling. A prevalent issue
in many erosion models is the precise identification of EGs. This precision is necessary to
distinguish different erosion types, such as rill, interrill, and gully erosion. The insights
gained from our investigation can facilitate pinpointing the origins of erosion channels.
They can also aid in the selection of fitting modeling approaches.

Field measurements could provide a solid accuracy assessment, but they are rather
time- and labor-consuming. Drone imagery could be an alternative since the accuracy
would reach up to a centimeter level [36], especially when reconstructing three-dimensional
features with LiDAR data to obtain erosion gully parameters [57]. A method of combining
drone data and limited field measurement should be explored in the future.

In this research, our primary method was visual interpretation. We used it to survey
EGs on a regional scale. Our goal was to achieve highly accurate results. In future studies,
employing artificial intelligence to automatically extract EGs could prove beneficial. For
instance, techniques such as object-oriented algorithms and random forest classification
have been utilized. These techniques were specifically applied in the study of permanent
gully systems, as referenced in sources [58,59]. However, EGs tend to be smaller in size. This
makes it challenging to attain high accuracy in their automatic extraction. Consequently,
additional efforts are necessary to address this challenge.

5. Conclusions

In this study, we describe the regional spatial distribution and influencing factors of
EGs on the Loess Plateau, known for its highly complex landscape in the world, from a
regional scale perspective. Our research has demonstrated that utilizing sub-meter resolu-
tion Google Earth imagery for surveying EGs at a regional scale is a suitable methodology.
We have also identified natural forces as the primary influencing factors determining the
formation of EGs in a specific area, while human activities significantly impact the density
of the gullies.

(1) Using sub-meter resolution Google Earth imagery and visual interpretation method,
the gully length error remained under 11.66%, averaging 4.99%. The results were not
significantly different from the GNSS RTK field measurements.
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(2) EGs were widespread across the Loess Plateau region, and the average density reached
3.41 km/km2, with relatively high spatial variability across the region.

(3) The formation of EGs is mainly influenced by natural factors, with Rainfall and S
having the greatest influence; the density of EGs is mainly influenced by the combined
action of natural and anthropogenic factors, with the area proportion of sloping
farmland and soil erodibility having the greatest influence. The influence of two
factors on variables is significantly greater than that of a single factor.

Since this research was completed in the Loess Plateau, the results would primarily be
applicable to areas characterized by highly complex terrain, severe EG erosion, ecosystems
dominated by agriculture and grassland, and a temperate continental monsoon climate.
The results of our study can provide an important scientific basis for soil and water loss
control and conservation measures. These findings can also provide insights for developing
predictive models for EG occurrence and development.
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