
Citation: Lian, B.; Wang, D.; Wang, X.;

Tan, W. Early Identification and

Dynamic Stability Evaluation of

High-Locality Landslides in Yezhi Site

Area, China by the InSAR Method.

Land 2024, 13, 569. https://doi.org/

10.3390/land13050569

Academic Editor: Deodato Tapete

Received: 18 March 2024

Revised: 11 April 2024

Accepted: 18 April 2024

Published: 24 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

land

Article

Early Identification and Dynamic Stability Evaluation of
High-Locality Landslides in Yezhi Site Area, China by the
InSAR Method
Baoqin Lian 1, Daozheng Wang 1,*, Xingang Wang 1 and Weijia Tan 2

1 State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University,
Xi’an 710069, China; baoqinlian@nwu.edu.cn (B.L.); xgwang@nwu.edu.cn (X.W.)

2 College of Geological Engineering and Surveying, Chang’an University, Xi’an 710054, China;
vjtan@chd.edu.cn

* Correspondence: dzwang@nwu.edu.cn

Abstract: In mountainous regions, high-locality landslides have the characteristics of a latent disaster
process with a wide disaster range, which can easily cause large casualties. Therefore, early landslide
identification and dynamic stability evaluation are significant. We first used multi-temporal synthetic
aperture radar data to detect potential landslides at Yezhi Site Area during the 2015–2020 period,
identifying and mapping a total of 18 active landslides. The study area was found to have an
average deformation rate between −15 and 10 mm/y during the period. Then, time series and
spatiotemporal deformation characteristics of landslides were examined using interferogram stacking
and small baseline interferometry techniques. The results show that the majority of the landslide
deformations detected exhibit a periodic variation trend, and the study area was in a slow deformation
state before 2017. Finally, combined with detection results, Google Earth optical images, and field
investigations, it is concluded that the main factors affecting the time series deformation and spatial
distribution of landslides in the study area are rainfall, geological factors, and engineering activities.
The results of this study provide valuable technical references and support for early identification
and dynamic stability evaluation of regional active landslides in complex terrain, especially for
high-locality landslides.

Keywords: InSAR; high-locality landslides; time series deformation; small baseline interferometry;
early identification

1. Introduction

In recent years, landslide disasters that cause economic losses and much damage have
increased in complex terrain areas as a result of an increase in human engineering activities
and extreme weather conditions [1–4]. In the alpine-valley regions, high-locality landslides
have the characteristics of a latent disaster process and a wide disaster range, which can
easily cause large casualties and property damage [5–7]. Therefore, early identification and
dynamic stability evaluation are crucial to minimizing landslide disasters [8–11]. Yezhi
Town Planning, located in the southwest of Diqing Prefecture, Yunnan Province, China, is
the core hinterland of the natural landscape of “Three rivers (Jinsha River, Lancang River,
and Nujiang River) flowing together” (Figure 1). The study area is frequently subjected to
landslides and other geological hazards due to the intense tectonic activity and strong river
erosion [12]. Currently, many researchers have investigated the disaster-causing mecha-
nism and distribution characteristics of geohazards in the study area. However, previous
research mainly focuses on small-scale areas because of the constraints of currently avail-
able technology and the complexity of regional terrain conditions. Therefore, there are few
studies on automatic identification and evaluation of regional geological hazards [13,14].
Thus, generating an accurate evolution map of landslides is crucial to understanding their

Land 2024, 13, 569. https://doi.org/10.3390/land13050569 https://www.mdpi.com/journal/land

https://doi.org/10.3390/land13050569
https://doi.org/10.3390/land13050569
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/land
https://www.mdpi.com
https://orcid.org/0000-0002-1744-8712
https://doi.org/10.3390/land13050569
https://www.mdpi.com/journal/land
https://www.mdpi.com/article/10.3390/land13050569?type=check_update&version=3


Land 2024, 13, 569 2 of 19

evolution and providing early warning of landslides [2,15,16]. Furthermore, studying
landslide deformation patterns in time and space can help reduce the risk of landslide
disasters [11,17,18].
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Figure 1. (a) Study area, Yunnan Province; (b) unmanned aerial vehicle (UAV) images, Yezhi
Town; (c) digital elevation model (DEM); (d,e) tectonic erosion landscapes and depositional
terrace landforms.

It has been recognized that traditional disaster identification methods are hard to im-
plement because some disaster sites have a wide range of study areas, complex and varied
terrain, and high altitude [17,19]. Once triggered on mountain slopes, landslides can move
even considerably away from their sites of origin, and propagate at high speed until they
impact infrastructure or urbanized areas. In order to analyze these aspects, it is necessary to
combine evolutionary modeling techniques [20] with susceptibility analyses [21], in order
to assess the overall hazard (and thus also the risk). In the last few years, the Unmanned
Aerial Systems [22] and the advancement of the Interferometric Synthetic Aperture Radar
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(InSAR) technique has enabled the detection of slope deformation with high accuracy,
which can also be facilitated by the use of new techniques. Especially, the InSAR technique
has been widely employed in the landslide field and plays an essential role in landslide
disaster evaluation [23–28]. The advantage of InSAR is its wide spatial coverage and
high accuracy, breaking through the limitation that traditional manual investigation and
inspection cannot identify potential landslides from small deformation, thereby improving
the landslide monitoring and identification accuracy [29–33]. The InSAR technique not
only identifies spatial and temporal movements but also identifies the moments when
landslide deformation accelerates and generates a time series of ground deformation to
assess the degree of risk [27,34–39]. Moreover, with the progress of algorithm development,
many researchers have utilized multi-source monitoring technologies and InSAR together
to investigate landslide movements, which overcame the shortcomings of using only a
single type of information in large-scale active landslide mapping and provided important
support for the general survey and research of landslide hazards [40–42]. SBAS-InSAR
technology allows for an increase in the number of interferograms by a main image and
reduces the influence of spatio-temporal decoherence on the quality of interferograms by
creating short baseline SAR image pairs to generate interferogram sets [42,43]. To ensure
the effectiveness of D-InSAR in the short-baseline combination, images within a specific
time baseline and vertical baseline threshold are usually selected to form temporal image
pairs for interference. The selection principle is to ensure that the baseline distance within
the same set is small, while the baseline distance between sets is large. Then, the terrain
phase was removed by utilizing the external DEM data and thus obtaining the differential
phase. Finally, the discrete high-quality coherent point target selected according to the
coherence coefficient is unwrapped to form the final deformation result [41,44,45].

In this study, multi-active landslides were mapped throughout the Yashi Town plan-
ning. Active landslides in topographically complex areas were detected and mapped based
on the SBAS (Small Baseline Subsets)-InSAR deformation analysis technique by combining
surface deformation and topographic features. Finally, based on the catalog results (the
catalog of geological hazards identified from three different orbital SAR data), we inspected
the spatial distribution and major contributing factors of landslides. The findings in this
work provide a basis for studying geological hazards such as landslides in Yezhi Town
planning, and the results are beneficial to the early identification and dynamic stability
evaluation of landslides, especially for high-altitude landslides.

2. Datasets and Methods
2.1. Study Region

The study region of this investigation (Yezhi Town) is located in the southwestern part
of Diqing Tibetan Autonomous Prefecture, between longitude 98◦54′~99◦34′ E and latitude
26◦53′~28◦02′ N. The main types of landforms in the region are tectonic erosion landscapes
and depositional terrace landforms with relatively complex geomorphology [13], of which
the tectonic erosion landforms are distributed in the area of the three rivers, Lancang River,
Jinsha River, and Nujiang River canyon slopes in the upper part of the nearby watershed;
depositional terraces are distributed intermittently along the banks of the Lancang River
and show asymmetrical erosion or accretion terraces, and in the confluence of the various
tributaries of the main river, show flood terraces. Yezhi Town is located on river terraces
and floodplain (fan) terraces. The Lancang River valley lies at an altitude of approximately
1710.0 m, which is the lowest area, and the valley is cut at a depth of between 800 and
1500 m. Additionally, the peaks on either side of the valley range in elevation from 3200 to
3400 m above sea level (Figure 1). The Lancang River runs through the whole area, and
the study area comprises complex geological structures, where folds and faults are well
developed [12].

Generally, the study region is characterized by the subtropical and temperate monsoon
plateau mountain climate. The annual average temperature is 15.3 ◦C. The study area
has extremely rich forest resources, and ecological status is very important, serving as an
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important ecological barrier in the upper reaches of Lancang River. Unfortunately, human
activities and deforestation have greatly impacted the ecological environment, which has
been identified as one of the essential factors that affect geological disaster occurrence. The
average annual precipitation is about 938.1 mm, and there is a pronounced rainy season
(May to September) in the study area, with heavy rains and rainstorms occurring. In
addition, most precipitation falls between June and August. In particular, extreme rains
often lead to geological disasters such as mudslides, landslides, etc. [13,14].

Field investigations have shown the presence of groundwater seepage at the foot
of some landslides, which may affect local slope stability (Figure 2a). Furthermore, pho-
tographs taken at the scene reveal that the toe of the landslide crosses the ditch bed and
that the slope eroded under the influence of seasonal flooding in the channel, which ac-
celerated the rate of landslide deformation (Figure 2b). In addition, exposed rocks and
slopes are fragmented due to many years’ weathering and are, therefore, easily infiltrated
by rainwater (Figure 2c). Also, numerous fissures and cracks in the landslide body can
increase permeability and thus water infiltration, reducing soil layers and causing slope fail-
ure [21,46]. Prolonged rainfall can saturate, soften, and collapse soil, enhancing landslide
movements. The new engineering activities also aggravated movements in time series [47].
Figure 2d shows that HP11 and HP13 were relatively stable before May 2018 and moved
significantly after May 2018 due to human activities and road engineering.
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2.2. Datasets

To effectively deal with the decoherence resulting from the existence of vegetation and
ice–snow cover in the study area, and to prevent landslides from being overlooked and
misclassified at various times [43,48,49], we use 290 Sentinel-1A SAR images, including
121 Sentinel-1A images over descending Track 33 from 7 October 2014 to 7 July 2020,
56 Sentinel-1A images over ascending Track 172 from 29 October 2014 to 11 March 2017,
and 113 images along ascending Track 99 from 9 June 2015 to 30 June 2020. With these
data, it is possible to determine deformation of the research region between October 2014
and July 2020 from different angles. Figure 3 depicts the SAR scene in the ascending and
descending paths covering Yezhi Town and the Sentinel-1 data parameters are listed in
Table 1. In order to separate surface deformation, topographic phase contribution needs
to be removed. Therefore, DEM data at 30 m resolution in the study area are collected for
InSAR data processing and result expression [50–54].

Land 2024, 13, x FOR PEER REVIEW 5 of 21 
 

2.2. Datasets 
To effectively deal with the decoherence resulting from the existence of vegetation 

and ice–snow cover in the study area, and to prevent landslides from being overlooked 
and misclassified at various times [43,48,49], we use 290 Sentinel-1A SAR images, includ-
ing 121 Sentinel-1A images over descending Track 33 from 7 October 2014 to 7 July 2020, 
56 Sentinel-1A images over ascending Track 172 from 29 October 2014 to 11 March 2017, 
and 113 images along ascending Track 99 from 9 June 2015 to 30 June 2020. With these 
data, it is possible to determine deformation of the research region between October 2014 
and July 2020 from different angles. Figure 3 depicts the SAR scene in the ascending and 
descending paths covering Yezhi Town and the Sentinel-1 data parameters are listed in 
Table 1. In order to separate surface deformation, topographic phase contribution needs 
to be removed. Therefore, DEM data at 30 m resolution in the study area are collected for 
InSAR data processing and result expression [50–54]. 

Table 1. Parameters of the Sentinel-1 data used. 

Satellite Path Orbit Period Azimuth 
Angle 

Angle of 
Incidence 

Number 

33 descending 7 October 2014 to 7 July 2020 10.5 39 121 
99 ascending 9 June 2015 to 30 June 2020 −10.7 33 113 

172 ascending 
29 October 2014 to 11 March 

2017 9.8 43.8 56 

 
Figure 3. The SAR scene in the ascending and descending paths covering Yezhi Town. 

Based on the sensor type of Sentinel-1A satellite, the Sentinel-1A Track 99 ascending 
data were assigned a time baseline of 36 days and the spatial baseline of 100 m, forming 
254 interference pairs for time series deformation calculation (Figure 4a). For the Sentinel-
1A Track 33 descending data, the time baseline of 24 days and the space baseline of 100 m 
was utilized, forming 177 interference pairs for time series deformation calculation (Figure 
4b). For the ascending data from Sentinel-1A Track 172, the time baseline was defined as 
36 days and the space baseline was defined as 100 m, resulting in 111 interference pairs to 
calculate time series deformation (Figure 4c). 

Figure 3. The SAR scene in the ascending and descending paths covering Yezhi Town.

Table 1. Parameters of the Sentinel-1 data used.

Satellite Path Orbit Period Azimuth Angle Angle of
Incidence Number

33 descending 7 October 2014 to 7 July 2020 10.5 39 121

99 ascending 9 June 2015 to 30 June 2020 −10.7 33 113

172 ascending 29 October 2014 to 11 March 2017 9.8 43.8 56

Based on the sensor type of Sentinel-1A satellite, the Sentinel-1A Track 99 ascending
data were assigned a time baseline of 36 days and the spatial baseline of 100 m, forming
254 interference pairs for time series deformation calculation (Figure 4a). For the Sentinel-
1A Track 33 descending data, the time baseline of 24 days and the space baseline of
100 m was utilized, forming 177 interference pairs for time series deformation calculation
(Figure 4b). For the ascending data from Sentinel-1A Track 172, the time baseline was
defined as 36 days and the space baseline was defined as 100 m, resulting in 111 interference
pairs to calculate time series deformation (Figure 4c).
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2.3. Methods

The deformation of landslides could be registered using the InSAR technology, which
allows for landslide investigation and monitoring. The existing InSAR technologies mainly
include conventional Differential Interferometry SAR (D-InSAR), Stacking (Stacking) tech-
nology, and Small Baseline Subsets (SBAS) technology [55,56]. To efficiently and appropri-
ately obtain the active landslide distribution in the study area, a preliminary inventory was
initially compiled using InSAR (SBAS-InSAR) technology to acquire deformation rates with
high accuracy and DEM, and then four kinds of data products of time series deformation
map, coherence map, intensity map, and overlay shadow map were comprehensively
analyzed to determine the disaster point [42,44,57,58]. The deformation map indicates that
the activity of the geological disaster points was detected, and the coherence map and
intensity map mean that the deformation monitored by InSAR meets certain accuracy and
reliability. Overlapped shadow map is used to eliminate disasters in areas that cannot
be monitored by InSAR. In order to make a preliminary selection of geological hazard
locations, the yearly average deformation rate of the research region was calculated using
the InSAR technology and coupled with data on the elevation, slope, and azimuth of the
survey area [59]. The main processing steps are listed below:

Step 1. In SAR imaging, due to the geometric relationship between radar and ground
scene as well as its side-view imaging mechanism, mountains with large fluctuations in the
scene are prone to form overlapping, shadow phenomena when imaging. When the radar’s
downward viewing angle α is less than the slope angle β, it is the overlapping area, and
when β is less than π/2-α, it is the shadow area. Consequently, the overlapping and shadow
areas of the study area were obtained according to DEM and SAR side perspectives, and
the mask processing was performed on the deformation map.

Step 2. The masked deformation map is combined with the SAR intensity map and
InSAR coherence map to screen the deformation area, and the false deformation area caused
by low coherence and water area is eliminated (the coherence threshold is set to 0.6, and
the intensity threshold is −1 dB) [41].

Step 3. By combining SAR geometry, DEM, optical remote sensing images, and high-
resolution optical UAV images, the position and the boundary of the suspected landslides
were revealed and mapped based on the deformation patterns. In addition, to further
investigate the deformation time series of landslides, the time series deformation results of
three different tracks were determined based on short baseline InSAR technology [45].
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3. Results
3.1. Deformation Identification Results

Combining InSAR results with DEM data, the deformation map can be obtained to
identify potential landslides [60]. Based on the InSAR annual deformation rate map, the
deformation identification results of the study area were obtained (Figure 4). It displays
11 deformed areas (named HP01, HP02, HP03, HP04, HP07, HP08, HP09, HP11, HP13,
HP14, and HP17) (Figure 5a), 9 deformed areas (named HP01, HP02, HP03, HP04, HP06,
HP08, HP10, HP12, and HP13) (Figure 5b), and 10 deformed areas (named HP01, HP02,
HP03, HP04, HP05, HP06, HP09, HP15, HP16, and HP18) (Figure 5c) which were identified
based on Sentinel-1A Track 99 ascending data, Sentinel-1A Track 33 descending data, and
Sentinel-1A Track 172 ascending data, respectively (Table 2). Notably, six deformed areas
(named HP01, HP02, HP03, HP04, HP08, and HP13) were identified jointly by Sentinel-1A
Track 99 ascending data and Sentinel-1A Track 33 descending data, and the other different
regions are mainly caused by different observation angles of the lifting track [43]. In
addition, due to the similar imaging geometry with Track 99, most of the identified areas by
Sentinel-1A Track172 ascending data coincide with Track 99. However, due to the different
imaging times, four more deformed areas (HP05, HP15, HP16, and HP18) were found
than in the Sentinel-1A Track 99 ascending data and Sentinel-1A Track 33 descending data
results (Figure 5c). The results reveal that the average deformation rate for the potential
landslides varies from −15 to 10 mm/y during the monitoring period (both in Sentinel-1A
ascending orbit and descending orbit), and the deformation areas mainly extend on both
banks of the Lancang River, particularly in the eastern part.
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Table 2. Deformation results acquired from Sentinel-1A data in the study region.

InSAR Annual Deformation Rate Map Deformation Identification Results

Along ascending Track 99 HP01, HP02, HP03, HP04, HP07, HP08, HP09,
HP11, HP13, HP14, and HP17

Along descending Track 33 HP01, HP02, HP03, HP04, HP06, HP08, HP10,
HP12, and HP13

Along ascending Track 172 HP01, HP02, HP03, HP04, HP05, HP06, HP09,
HP15, HP16, and HP18

The deformed areas identified from three different orbital SAR data were combined to
acquire a geological hazard catalog in the present study area (Figure 5d). The four deformed
areas delineated in yellow in Figure 5d are jointly identified by three types of data,
five deformed areas delineated in red are jointly identified by two types of data, and
nine deformed areas delineated by green are identified by one type of data, for a total of
18 deformed areas.

3.2. Time Series Deformation Characteristics

When using SBAS measurements for relative positioning, SBAS satellite errors must
be appropriately considered to obtain a less biased positioning solution. Based on the iden-
tification results, the deformation characteristics of landslide disasters within the research
region can be monitored using time series deformation. The time series deformation results
of different orbits are obtained and plotted in Figures 6–8. As displayed in Figure 6, it is
found that the study area remained in a state of slow deformation until November 2017
according to Sentinel-1A ascending Track 99 data, and cumulative deformation is only
3.6 mm (Figure 6). The difference is that large deformation occurred between December
2017 and February 2020, with a maximum deformation of 39 mm. Later deformation
magnitude is small and tends to be stable. However, in the monitored period, based on the
observation acquired from Sentinel-1A descending Track 33, the study area may remain
relatively stable until April 2018, with only slow deformation of 1.2 mm cumulative defor-
mation (Figure 7). The deformation of most slopes was noticeable after October 2018, but
deformation results were not as obvious as Track 99 ascending data monitoring. In addition,
deformation derived from the Sentinel-1A Track 172 ascending data demonstrates that a
large deformation occurred prior to February 2017, with the deformation rate mostly in the
range of −11–10 mm/a (Figure 8), which may be mainly caused by different observation
angles and imaging times [61].

3.3. Dynamic Stability Evaluation of Landslides

It is known that InSAR deformation results can only identify the areas with active
deformation. Additionally, it is unable to precisely detect whether an area is a landslide
or its boundary by using InSAR deformation results [43]. Therefore, to more accurately
determine the sites and scopes of the suspected landslides, comprehensively utilizing DEM,
high-resolution UAV optical images, optical remote sensing images, field surveys, and
InSAR results is needed [43,60]. To better explain the landslide mapping results, Figure 9
presents the optical images, deformation rate results, and time series deformation of typical
landslide identification results. Through comparison, the error region can be efficiently
eliminated by the deformation rate results, and the derived boundary of landslides agrees
well with the optical images. Furthermore, due to the high concealment characteristics of
some landslides, when used in conjunction with optical images, the InSAR method can
identify potential landslides’ hidden threats [57,60].
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According to the landslide identification data, the time series of a point on each land-
slide was selected to estimate their deformation trends. Based on the result, the majority of
the detected landslides deformation exhibited a periodic variation trend between 2017 and
2019, as shown in HP01, HP02, HP03, HP04, HP09, and HP12, which may be caused by
snow melting and rainfall [18,50]. Before 2019, with maximum cumulative displacements
reaching 30 mm, it was found that the deformation evolution at HP01, HP02, HP03, HP04,
HP09, HP12, and HP13 varied dramatically. After 2019, the maximum cumulative displace-
ment difference was less than 5 mm, indicating that the deformation reaches a relatively
stable state. However, some landslides exhibit different deformation characteristics (see
HP06, HP07, HP08, HP11, HP14, and HP17 (Figure 9H–M)). Prior to 2018, the deforma-
tion was assumed as a slow creep behavior. However, following 2018, the time series
displacement plots show an accelerated deformation trend, with a cumulative deformation
difference of 20 mm.

In addition, the deformation characteristics of four more landslides (HP05, HP15,
HP16, and HP18) (Figure 9N–Q) identified by Sentinel-1A Track 172 ascending data reveals
that the deformation area was continuously deforming throughout the Track 172 ascending
data monitoring period, with the areas of deformation displaying a linear growth trend.
In contrast, during the Track 99 ascending data and Track 33 descending data monitoring
period, it might still be stable with no gradual deformation. It is likely that under the effect
of the rainfall or human activities, the deformation of the HP05, HP15, HP16, and HP18
was induced once more, which affects the slopes’ stability and thus certain monitoring
measures are necessary.
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4. Discussion

The study area is the core hinterland of the natural landscape of “Three rivers flow-
ing together”: Jinsha River, Lancang River, and Nujiang River, and it is distinguished by
its steep topography [13]. It is acknowledged that topographic factors such as elevation
and slope angle play a key role in the formation as well as the development of landslide
disasters [44,54,57,62,63]. To explore the influence of topographic factors on landslide
deformation and spatial distribution, DEM was used to generate an elevation map and
slope angle, as shown in Figure 10. The results reveal that landslide disasters gradually
increase and then decrease with elevation. Specifically, the total number of active landslides
increases significantly as elevation increases between 2000 and 3200 m above sea level,
while the total number of active landslides decreases obviously with elevation, as elevation
exceeds 3200 m. In addition, about 95.5% of the active landslides detected occurred between
2300 m to 3500 m above sea level, while only 2.3% of landslides are distributed above
3500 m (Figure 10c). The main explanation for the phenomenon is the deep and narrow
valley of the Lancang River, which cuts a depth of about 800 to 1500 m. Furthermore, the
riverbed is widened and deepened by strong water erosion, which can lead to landslide
disasters [13,60]. Similarly, it could be inferred that 90.7% of the landslides occurred on
slopes with a slope angle of 20–40◦, especially on the slopes with an angle of 30–40◦, the
landslide distribution reaches 72.9%. Figure 10c also demonstrates that the landslide distri-
bution gradually decreases with an increase in slope, reaching only 0.15% at slopes higher
than 60◦. This phenomenon occurs, on the one hand, due to the long distance between the
high-altitude areas and the Lancang River, which is the main reason for landslides caused
by down-slope cutting [64]. On the other hand, the low slope lacks sufficient dynamic
conditions, while high slopes are not conducive to landslide materials accumulation.

As can be seen from the time series of deformation data for typical landslide loca-
tions, most of the observed landslide deformation exhibits a pronounced nonlinear trend
(Figure 9). In addition, some landslides exhibit periodic fluctuations, especially on the
east bank of the Lancang River. This is mainly due to changes in local conditions, such as
excessive precipitation, snow melt, human activities such as downslope cutting due to road
construction, etc. [50,57,64,65]. Figure 11 shows the average time series displacements of
landslides and monthly precipitation within the research region. The displacement results
indicate that prior to March 2016, the study area was in a relatively stable state, and the
average deformation was no more than 5 mm. However, landslide deformation accelerated
significantly after May 2016 which may be due to the successive heavy rainfall (Figure 11).
During the period from November 2016 to May 2017, deformation decreased significantly
due to reduced rainfall and then accelerated again after heavy rainfall totaling more than
1916 mm in July 2017, with a maximum average cumulative displacement of 26 mm. Based
on the above results, it can be concluded that landslide deformation is closely related to
monthly precipitation. In general, precipitation or groundwater can easily infiltrate or
flow into the slopes along cracks and loose layers, which accelerates landslide deforma-
tion [44]. In addition, no consistent trend was also found, e.g., low precipitation during the
period from November 2017 to February 2018 caused significant deformation, which could
be due to seasonal snowmelt contributing to landslide deformation [18,66]. Snowmelt
and prolonged precipitation easily penetrate landslides through vertical joints and cracks,
contributing significantly to their deformation and subsequent failure. Precipitation and
snowmelt cause movement by altering pore pressure and water content, which increase
when precipitation penetrates the landslide body. As a result, the shear strength of the
landslide body decreases, accelerating its deformation [67–69].

As can be seen from the time series of deformation data for typical landslide loca-
tions, most of the observed landslide deformation exhibits a pronounced nonlinear trend
(Figure 9). In addition, some landslides exhibit periodic fluctuations, especially on the
east bank of the Lancang River. This is mainly due to changes in local conditions, such as
excessive precipitation, snow melt, human activities such as downslope cutting due to road
construction, etc. [50,57,64,65]. Figure 11 shows the average time series displacements of
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landslides and monthly precipitation within the research region. The displacement results
indicate that prior to March 2016, the study area was in a relatively stable state, and the
average deformation was no more than 5 mm. However, landslide deformation accelerated
significantly after May 2016 which may be due to the successive heavy rainfall (Figure 11).
During the period from November 2016 to May 2017, deformation decreased significantly
due to reduced rainfall and then accelerated again after heavy rainfall totaling more than
1916 mm in July 2017, with a maximum average cumulative displacement of 26 mm. Based
on the above results, it can be concluded that landslide deformation is closely related to
monthly precipitation. In general, precipitation or groundwater can easily infiltrate or
flow into the slopes along cracks and loose layers, which accelerates landslide deforma-
tion [44]. In addition, no consistent trend was also found, e.g., low precipitation during the
period from November 2017 to February 2018 caused significant deformation, which could
be due to seasonal snowmelt contributing to landslide deformation [18,66]. Snowmelt
and prolonged precipitation easily penetrate landslides through vertical joints and cracks,
contributing significantly to their deformation and subsequent failure. Precipitation and
snowmelt cause movement by altering pore pressure and water content, which increase
when precipitation penetrates the landslide body. As a result, the shear strength of the
landslide body decreases, accelerating its deformation [67–69].
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However, the use of InSAR technology to identify and evaluate landslides still presents
some challenges and shortcomings [33]. In particular, because of the steep terrain and
dense vegetation in some spots, the SAR images suffered from geometrical distortion
that might lead to landslide omission. Therefore, integrating sensor monitoring, field
investigation, UAV technology, and multi-track SAR data with landslide investigation is
highly promising.

5. Conclusions

The InSAR technique was used to detect ground deformation for Yezhi Site Area.
Using 320 scenes of Sentinel-1A SAR data, including Track 33 descending orbit images
(121 scenes), Track 172 ascending orbit images (56 scenes), and Track 99 ascending orbit im-
ages (113 scenes), we have successfully identified dangerous areas with high displacement
rates during the period 2015–2020. In this work, the following conclusions are drawn:

(1) By combining the deformation regions identified by three different orbital SAR data,
18 landslides were identified in total, and it was found that during the monitoring
period of Sentinel-1A ascending and descending orbit data, the average deformation
rate of the deformation zone ranges from −15 to 10 mm/y. In addition, the deforma-
tion zone is mainly distributed on both banks of the Lancang River, especially on the
east side.

(2) The utilization of both ascending and descending orbits can significantly enhance the
effectiveness of satellite monitoring. The time series deformation shows that most of
the high-locality landslides detected deformed periodically, and the study area was in
a slow deformation state before 2017, but there was a large deformation during the
period from 2017 to 2020 with the maximum deformation reaching 39 mm.

(3) According to the results of the landslide detection and field survey, the main factors
affecting the spatial distribution of high-locality landslides within the research region
are rainfall, geological factors, and engineering activities. The findings in this study are
useful for early landslide identification and dynamic stability evaluation of regional
active landslides on complex terrain, especially for high-locality landslides.
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