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Abstract: Ecological quality in China has experienced significant improvements due to the interplay
of climate change and human activities. Nevertheless, previous studies exploring the trend of
ecological parameters have always overlooked the effects of land use types. Therefore, in this study,
we explored the spatiotemporal variation in ecological parameters in various land use types and
discussed the relationship between ecological parameters and climatic factors in China during the
first 20 years of the 21st century. The results show that: (1) The area of grassland and unutilized
land decreased, and the area of other land use types increased. (2) Distinct variations in the average,
slope, and interval distribution of ecological parameters across various land use types were evident.
Particularly significant increases in ecological parameters were observed in cultivated land and
forest. (3) The influence of land use and land cover change on ecological parameters was evident.
The conversion of cultivated land, forest, and grassland into water bodies, constructive land, and
unutilized land resulted in a significant decrease in ecological parameters. (4) The distinct climatic
conditions resulted in heightened monthly variations in the ecological parameters. Significant
monthly fluctuations in ecological parameters were observed for cultivated land, forest, grassland,
and constructed land, while water bodies and unutilized land did not exhibit such variations. (5) The
correlation between ecological parameters and climatic factors varied considerably in various land
use types in different regions.

Keywords: land use and land cover change; ecological parameters; China

1. Introduction

Land use and land cover (LULC) changes represent a direct manifestation of the
impact of human activities on the Earth’s surface ecosystem, serving as a crucial link
between the natural ecosystem and social and economic endeavors [1–4]. This phenomenon
significantly contributes to global change processes by impacting various biophysical
parameters, including surface albedo and roughness, photosynthetically active radiation,
and evapotranspiration [5,6]. These effects have far-reaching implications on surface radiant
energy balance, biogeochemical cycles, and ecosystem services [7–9]. LULC is commonly
utilized in modeling global climate and biogeochemical effects, with the United Nations
Sustainable Development Goals (SDGs) underscoring its pivotal role in goal formulation
and attainment [10–14]. In response to escalating challenges related to population–resource–
environment dynamics, the research on LULC has evolved to include a more nuanced
examination of its impacts at diverse spatiotemporal scales, the driving forces behind its
changes, and the resultant effects [15,16].
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In the context of climate change, vegetation exhibits distinct seasonal and interannual
variations [17,18], playing a crucial role in climate regulation through its impact on factors
such as evapotranspiration, surface albedo, and surface roughness. Additionally, vegetation
significantly contributes to soil and water conservation and ecological enhancement [18].
The evaluation of vegetation ecosystem quality is commonly employed to assess the growth
status of vegetation in specific areas [19]. The most recent ecological environment standard,
HJ1172–2021 [20], released by the Ministry of Ecology and Environment of the People’s
Republic of China in May 2021, outlines the technical guidelines for the National Ecological
Condition Survey and Assessment, particularly focusing on Ecosystem Quality Assessment.
This assessment primarily considers parameters such as vegetation coverage (VC), leaf area
index (LAI), and gross primary productivity (GPP). VC is utilized to describe the horizontal
structural state of vegetation [21,22], while LAI indicates the vertical structural complexity
of vegetation [23,24], and GPP reflects the photosynthetic capacity of vegetation [25,26]. It is
worthwhile that VC calculations often rely on the dimidiate pixel model, which assumes a
pixel comprises vegetation and non-vegetation components, with its spectral characteristics
being influenced by soil and vegetation types [27]. Consequently, the normalized difference
vegetation index (NDVI) is proposed as an alternative to VC for assessment purposes.

Numerous studies have investigated alterations in ecological parameters and their
reactions to climate change in the broader context of global change [28–30]. However,
it is important to highlight that a majority of these studies has typically examined the
entire study area as a whole [24,31–34], with a limited focus on variations in ecological
parameters across different land use or vegetation types in the region in response to climate
change [35,36]. For instance, studies have demonstrated significant fluctuations in the
correlations between the normalized difference vegetation index (NDVI) and temperature
among diverse vegetation types in Inner Mongolia [37], as well as varying associations
between leaf area index (LAI) and a range of climatic factors across different vegetation
types in China [24]. Furthermore, existing studies predominantly concentrate on individ-
ual ecological parameters [38–41], with fewer investigations into the changes in multiple
ecological parameters and their responses to climate variations. Therefore, this study intro-
duces the enhanced vegetation index (EVI) and net primary productivity (NPP) in addition
to the commonly used ecological parameters to enhance ecosystem quality assessment,
enabling a more comprehensive understanding of vegetation dynamics related to growth
status and photosynthetic capacity influenced by LULC. It is crucial to acknowledge that
the NDVI is influenced by atmospheric conditions, soil characteristics, and the vegetation
canopy [42], leading to issues such as saturation. Hence, the inclusion of the EVI addresses
the limitations of the NDVI by incorporating soil adjustment parameters and feedback
mechanisms to effectively resolve the related challenges [43,44]. Net primary productivity
(NPP), on the other hand, represents the organic carbon fixed by vegetation minus that
consumed through respiration, thereby emphasizing the distinction between vegetated
and non-vegetated areas [45–48].

The surge of industrialization and urbanization accompanying global economic ex-
pansion has played a significant role in the rise of warming trends worldwide [49–54]. A
global phenomenon is the widespread degradation of vegetation, as many vegetated areas
have been converted into urban and industrial zones [55,56]. However, it is important to
highlight that China has initiated a series of ecological initiatives that have helped mitigate
degradation and promote greening efforts. As a result of the combined impacts of global
warming, industrialization, urbanization, and ecological projects, China has successfully
curbed and begun to restore land degradation, with the ecological environment showing
positive progress. Nevertheless, there are significant spatial variations in the extent of
restoration efforts across different regions.

Hence, it is imperative to investigate alterations in ecological parameters across various
land use types and their reactions to climate change. The objectives of this research were to
(1) analyze the evolution of land use types and ecological parameters in China over the
past two decades; (2) investigate the relationship between ecological parameters of various
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land use types and meteorological variables; and (3) elucidate the influence of LULC on
ecological parameters. The outcomes of this study are anticipated to provide valuable data
and findings to inform the development of ecological rehabilitation strategies.

2. Materials and Methods
2.1. Research Area

The range of the study area is 73◦40′ E~135◦2′ E and 3◦51′ N~53◦31′ N. Located in East-
ern Asia and near the Pacific Ocean (Figure 1a), it covers a land area of about 960 × 104 km2

and an ocean area of about 473 × 104 km2. The topography presents a terraced distribution,
decreasing from West to East. It is mainly dominated by plateaus and mountains, account-
ing for 59.3% of the land. The Tibetan Plateau is located in Western China, whose average
altitude is higher than 4000 m. The direction of the mountains is mainly East–West and
Northeast—Southwest. It is divided into three steps by high mountains. The divided lines
are the Kunlun–Qilian–Hengduan Mountains and the Daxinganling–Taihang–Wu–Xuefeng
Mountains. The plains are situated on the third terrace, encompassing regions such as
Northeast China, North China, and the Middle and Lower Yangtze Plain. The distinct
geographical positioning and elevation gradients result in regional climatic variations,
categorized as continental, monsoon, and plateau mountain climates, with the monsoon
climate being the most prominent. Temperature exhibits a decreasing trend from lower
to higher latitudes, with the Tibetan Plateau acting as a low-value center due to its uplift.
Precipitation patterns are influenced by the region’s land–sea location and topography,
showing a decline from Southeast to Northwest. Land use and land cover predominantly
comprise grassland and unutilized land, accounting for 46.31% and 23.72% in 2020, respec-
tively (Figure 1c). Considering factors like topography and climate, the research area was
divided into eight regions based on provincial administrative districts (Figure 1b), includ-
ing Northwest China (NWC), North China (NC), Northeast China (NEC), East China (EC),
Central China (CC), South China (SC), Southwest China (SWC), and Qinghai–Tibet (QT).
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2.2. Data Sources

In this study, the NDVI, EVI, LAI, GPP, and NPP were selected as parameters to
characterize vegetation growth dynamics. These variables were obtained from MODIS
datasets as outlined in Table 1. The NDVI was computed based on the reflectance values
between red (620~670 nm) and near-infrared (841~876 nm) bands, while the EVI was
derived from the reflectance values across red, blue (459~479 nm), and near-infrared bands.
Annual datasets for NDVI, EVI, and LAI were constructed by calculating the mean values
for each year. The MOD17A3HGF dataset was utilized to represent vegetation productivity,
encompassing both GPP and NPP, with a temporal resolution of 1 year, facilitating direct
utilization in the study.

NDVI =
ρNIR − ρRED
ρNIR + ρRED

(1)

EVI =
2.5 × (ρNIR − ρRED)

ρNIR + 6 × ρRED − 7.5 × ρBLUE + 1
(2)

where ρNIR, ρRED, and ρBLUE are the reflectance values of the near-infrared, red, and blue
bands after atmospheric correction, respectively.

Table 1. Data source in this study.

Data EI Spatial Resolution Time Resolution

MCD12Q1 LULC 500 m 1 Year
MOD/MYD13A1 EVI/NDVI 500 m 16 Days
MOD15A2H LAI 500 m 8 Days
MOD17A3HGF GPP/NPP 500 m 1 Year

The data utilized in this study include MCD12Q1/MOD15A2H/MOD17A3HGF covering
the period from 2001 to 2020, with the MOD/MYD13A1 data being incomplete due to the
commencement of MYD13A1 data in July 2002. Consequently, only the annual mean values of
MOD13A1 were considered for the NDVI and EVI in 2001 and 2002, while the annual mean
values of both MOD13A1 and MYD13A1 were used for the years 2003 to 2020, respectively.

The MCD12Q1 dataset, updated in 2001, was employed for land use type (LUT) differ-
entiation, with the IGBP system comprising seventeen types, including natural vegetation
and human-altered and non-vegetation types, being selected for classification. This study
integrated the IGBP classification system into six types, as illustrated in Figure 2, based on
the data characteristics and previous research by Liu’s team [57–59].
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In this study, we utilized the 1 km national spatial resolution dataset on air temperature
and precipitation developed by Wang et al. [60]. The dataset covers the period from
2000 to 2012 and was derived from the “Daily value dataset of China’s surface climatic
data” compiled by the National Meteorological Information Center of China. The data
preprocessing procedure involved various steps, such as data reading, merging, verification,
statistical analysis, and the creation of a spatial interpolation batch code. Subsequently,
the annual temperature and precipitation dataset with a spatial resolution of 1 km was
produced using ANUSPLINE interpolation software (version 4.3) [61,62]. The dataset is
accessible for download at http://www.sciencedb.cn/dataSet/handle/319 (accessed on
20 December 2023), and for the purposes of this study, it was updated to include data up
to 2018. To align with the spatial resolution of the land use and ecological parameters
considered in this research, the dataset was resampled by the bilinear method to a resolution
of 500 m.

2.3. Methods

The article includes a flowchart illustrating the data processing step in Figure 3, which
is divided into three modules based on various datasets. Furthermore, some important
methods are discussed in the additional details in this section.
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2.3.1. Land Use Change

This study utilized the map fusion [63] method to extract LULC at the pixel level. This
was achieved through map algebraic operations in ArcGIS 10.4 software. The equation is
as follows:

LC =
n

∑
i=1

(
Ai × 10i−1

)
(3)

where LC is the result of LULC at the pixel scale, i represents different periods, and Ai is
the pixel value of land cover types in the i periods. When Ai is equal to Ai–1, we believe
that the LUTs of this pixel has been unchanged. Otherwise, it has been changed.

http://www.sciencedb.cn/dataSet/handle/319
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2.3.2. Linear Regression

This research utilized linear regression to calculate the trend of ecological parameters.
The fundamental concept of linear regression is the least squares method [64]. R and
p-values are key parameters in assessing the impact of linear regression. R represents the
proportion of the predicted value explained to assess the effect of linear regression, and p
indicates the significance test value of the regression effect.

θSlope =

n ×
n
∑

i=1
i × EIi −

n
∑

i=1
i

n
∑

i=1
EIi

n ×
n
∑

i=1
i2 −

(
n
∑

i=1
i
)2 (4)

where θSlope is the variation slope of the annual ecological parameters for each pixel.
θSlope > 0 suggests an increasing trend of ecological parameters, while θSlope < 0 repre-
sents a decreasing trend. n is the count of years and EIi is the mean value of the ecological
parameters of the ith year.

2.3.3. Coupled Analysis

In order to measure the influence of LULC on ecological parameters, we introduced
the idea of the coupled degree in relation to social science. This concept suggests that, when
changes in LULC consistently affect various ecological parameters in a similar way, we
consider the coupling between them to be significant.

DEI = EIi+1 − EIi (5)

RDEI =

{
0 DEI < 0
1 DEI ≥ 0

(6)

SDEI =
5

∑
i=1

RDEIi (7)

CDEI =



SDEI = 0 Negative − Strongly

SDEI = 1 Negative − Moderately

SDEI = 2 Negative − Weakly

SDEI = 3 Positive − Weakly

SDEI = 4 Positive − Moderately

SDEI = 5 Positive − Strongly

(8)

where DEI refers to the difference value of ecological parameters of LULC in alternate years.
Then we normalized DEI. If DEI is greater than 0 or equal to 0, we set it as 1; otherwise, it is
0. This allowed us to achieve RDEI. Next, we summed up the RDEI of different ecological
parameters to obtain SDEI. Finally, we reclassified SDEI and obtained the coupled degree of
LULC on ecological parameters, that is, CDEI.

2.3.4. Correlation Test

The parameters commonly used to test the correlation between multiple variables are
mainly divided into three categories, namely Pearson, Spearman, and Kendall. Taking into
account the characteristics of the research data, this study used the Pearson correlation
coefficient as the standard to quantify the correlation between ecological parameters of
different LUTs and meteorological data.
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R =

n ×
n
∑

i=1
Clii × EIi −

n
∑

i=1
Clii ×

n
∑

i=1
EIi√

n ×
n
∑

i=1
Clii2 −

(
n
∑

i=1
Clii

)2
×

√
n ×

n
∑

i=1
EIi

2 −
(

n
∑

i=1
EIi

)2
(9)

where R refers to the Pearson correlation coefficient between climatic data and ecological
indicators, n is the number of years. Clii and EIi are the annual climate data and the mean
value of EI of the i-th year, respectively.

3. Results
3.1. LULC Changes in the Research Area from 2001 to 2020

In 2020, the distribution of land use types varied, with grassland (46.31%) and unuti-
lized land (23.72%) comprising the largest areas, followed by cultivated land (15.40%)
and forest (11.29%). Water bodies (1.37%) and constructed land (1.56%) accounted for
the smallest proportions (Figure 4). Grassland dominated land use types across regions,
except for the NWC, NEC, and EC regions. The NWC region had the highest percentage of
unutilized land (57.20%), while the EC and NEC regions had the highest percentages of
cultivated land, at 54.86% and 44.21%, respectively. Regions with forest cover exceeding
20% included NEC (28.07%), SEC (24.25%), and SC (28.20%), which are recognized as
significant forested areas in China. The NEC region had the highest proportions of water
bodies (5.53%) and constructed land (8.41%). With the exception of NWC (57.20%), NC
(17.94%), and QT (34.06%), unutilized land ratios in other regions were below 1%.
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Our analysis of LULC on a yearly basis in China indicated that the majority of pixels,
accounting for 84.77%, experienced no change over time. Conversely, the rates of single,
double, and triple changes were 8.28%, 4.31%, and 1.64%, respectively. With the exception
of grassland and unutilized land, the land area of other categories expanded in 2001~2020
in China (Figure 5). Cultivated land, forest, water bodies, and constructed land exhib-
ited growth rates of 0.16 × 104 km2·a−1, 1.05 × 104 km2·a−1, 0.13 × 104 km2·a−1, and
0.15 × 104 km2·a−1, respectively. Conversely, the areas of grassland and unutilized land
decreased at rates of –0.96 × 104 km2·a−1 and –0.52 × 104 km2·a−1, respectively.
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During the period from 2001 to 2020, there were significant changes in land use pat-
terns across various categories, as illustrated in Figure 6. There was a consistent growth in
construction land without any corresponding decrease, indicating the ongoing urbanization
in China. The shifts in land area primarily occurred in transitions between grassland and
cultivated land, as well as forest areas. Conversely, there were minimal changes observed
in water bodies and constructed land. The LULC is closely linked to national policies,
particularly those focused on reforestation and converting cultivated land to promote the
expansion of grassland and forest. An obvious transition was observed between grassland
and unutilized land, where grassland was either degraded to unutilized land due to climate
change and human activities, or unutilized land was transformed into grassland as part
of ecological restoration efforts to harness the resource potential of unutilized land in the
context of climate change. It is important to note that, except for the conversion of other
land types to constructed land (coded 15, 25, 35, 45, and 65), which decreased after 2016,
the area of other LUTs has shown a relatively significant increase.
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3.2. Ecological Parameter Changes Considering LUTs

Previous studies [24,31–34] have typically examined the study area as a whole, over-
looking the impact of various LUTs on ecological parameters. In our research, we seg-
mented the study area into eight sub-regions based on natural characteristics and ad-
ministrative boundaries, and subsequently conducted a detailed analysis of ecological
parameter variations with respect to LUTs. For instance, the findings from previous stud-
ies were primarily applicable to changes in ecological parameters across China and its
eight sub-regions. The mean values of the NDVI, EVI, LAI, GPP, and NPP were 0.3058,
0.1845, 1.0291, 706.11 gC·m−2, and 316.75 gC·m−2 in 2001–2020, with corresponding slopes
of 0.0021, 0.0013, 0.0085, 6.30 gC·m−2·a−1 and 1.83 gC·m−2·a−1 in China, respectively.
Research efforts in sub-regions have primarily concentrated on ecologically vulnerable
areas like the NWC, NC, and QT, often with a regional focus that does not account for
LUTs. For instance, the mean values of the NDVI, EVI, LAI, GPP, and NPP were 0.1677,
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0.1018, 0.4113, 218.19 gC·m−2, and 120.84 gC·m−2, in the 2001–2020 period in QT, with
corresponding slopes of 0.0007, 0.0003, 0.0011, 1.29 gC·m−2·a−1, and 0.23 gC·m−2·a−1 in
QT, respectively. Compared to China as a whole, QT exhibited lower average values and
slopes for ecological parameters.

In contrast to numerous previous investigations, this study centers on the comparison
of ecological parameters’ value and slope among various LUTs in different sub-regions
(Figure 7). Initially, irrespective of whether considering China as a whole or its sub-regions,
forests exhibit the highest ecological parameters, followed by cultivated land and grass-
land, while water bodies and unutilized land show the lowest ecological parameters. In
regions where the forest area exceeds 20%, such as the NEC, SWC, and SC regions, all
ecological parameters are only lower than forests and higher than other LUTs. Furthermore,
in traditional pastoral areas, like the NWC, NC, and QT regions, the ecological parameters
of cultivated land surpass those of grassland, whereas in other regions, this relationship
is reversed. As anticipated, in traditional pastoral areas, the ecological parameters of the
vegetation areas exceed those of the non-vegetation areas. Constructive land’s ecological
parameters are higher than those of water bodies and unutilized land. In summary, the eco-
logical parameters of various LUTs can be categorized into two modes: (1) Forest > Whole
area > Cultivated land, Grassland > non-vegetation types (including NEC, EC, CC, SC, and
SWC), and (2) Forest > Cultivated land, Grassland > Whole area > non-vegetation types
(including NWC, NC, and QT). Among all ecological parameters, net primary productivity
(NPP) appears to be the ecological indicator that most closely adheres to the regulation, with
the order of NPP being Forest > Cultivated land, Grassland > Construction land > Water
body, unutilized land. This can be attributed to the NPP’s characteristic efficiency in which
vegetation captures and converts light energy into compounds. The NPP value is directly
linked to vegetation growth conditions and remains unaffected by other factors.

The comparison of changes in ecological parameters resulting from various LUTs
is a complex process. When considering the entire region and its sub-regions, it can be
observed that all ecological parameters exhibit an overall increasing trend, indicating
a positive stage of ecological restoration. Specifically, in terms of vegetation types, the
ecological parameters of forest decreased in the QT region but increased in other regions.
The NDVI, EVI, and NPP of water bodies, as well as the GPP and NPP of construction land,
showed an increase. Conversely, the LAIs of both LUTs experienced a significant decrease.
The ecological parameters of unutilized land increased in many sub-regions, although the
NPP in the NWC and NC regions decreased. The substantial area of unutilized land in the
NWC and NC regions contributed to a minor decrease in the NPP of unutilized land in
China. In summary, all ecological parameters of cultivated land and grassland increased in
China and its sub-regions. However, the ecological parameters of forests in the QT region
and the NPP of forests in the SC and SWC regions decreased. Additionally, the LAIs of
water bodies and construction land in each sub-region experienced a considerable decrease.

This study not only compared the average values and change rates of ecological pa-
rameters across various LUTs, but also conducted an additional analysis of the distribution
of their numerical intervals (Figure 8). The findings reveal that ecological parameters
related to water bodies, construction land, and unutilized land tend to be concentrated in
lower value ranges compared to cultivated land, forest, and grassland. When LUTs were
not taken into account, the proportion of ecological parameters in the highest value range
varied between 0.15% and 22.65%, while the proportion in the lowest value range ranged
from 1.64% to 34.70%. Forest exhibited a higher proportion of high ecological parame-
ters compared to other LUTs, with proportions in the highest value range ranging from
1.03% to 77.69%. In contrast, cultivated land showed a more evenly distributed proportion
of ecological parameters across different value ranges. Unutilized land had the lowest
proportion of ecological parameters in the highest value range among non-vegetation
regions. Additionally, except for the LAI, water bodies generally had a higher proportion
of ecological parameters in the low-value range compared to construction land.
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In summary, this section initially involves an examination of the average values and
trends of ecological parameters on a regional level, followed by overlaying LULC data
to assess the variations in average values, trends, and numerical ranges of ecological
parameters across various LUTs. Ultimately, it was determined that LULC change exerts
a substantial influence on ecological parameters, resulting in significant distinctions in
regional attributes.

3.3. Influence of LULC on Ecological Parameters

At first, we created the dataset of LULC year to year. Then, based on the dataset of
LULC and ecological parameters, the ecological parameters before and after the transfer of
land use were extracted and carried the average values. Finally, the ecological parameter
difference of overlapping LULC changes year to year was processed. The results were used
to analyze the influence of LULC on ecological parameters. This part mainly analyzes the
values change and coupled degree from two perspectives.

3.3.1. Value Change

Previous studies often ignore the impact of LULC changes on ecological parameters.
It is worth noting that the yearly variations in ecological parameters are less pronounced
in regions where LULC remains unchanged compared to those where the LULC has
changed, as depicted in Figure 9. Specifically, the disparity in ecological parameters in other
years when the LULC code was 11/22/33/44/55/66 was compared. The most significant
interannual differences were predominantly observed in areas characterized by LULC
changes coded as 14/15/16/23/24/32/34/41/42, with a focus on transitions between
vegetation and non-vegetation areas. In general, when the land use type changes from a
vegetation region to non-vegetation region, its ecological indicator exhibits a decreasing
trend, that is, the ten-digit value of the land use change code is 1/2/3 and the one-digit
value is 4/5/6, while the opposite is true regarding the change from a non-vegetation
area to a vegetation area. Noteworthy variations in ecological parameters were also
observed during transitions in vegetation and non-vegetation regions. Initially, the changes
in ecological parameters in vegetation regions were examined, revealing an increase in
ecological indicators when the LULC codes were 12, 31, and 32, while most indicators
decreased when the transformation trend was reversed. Subsequently, changes in ecological
parameters in non-vegetation regions were investigated, showing that the NDVI and EVI
primarily increased during transitions from water bodies to unutilized land, whereas the
LAI, GPP, and NPP mostly decreased. Conversely, transitions from unutilized land to water
bodies resulted in a reversal of this trend. Ecological parameters decreased predominantly
during transitions from water bodies to constructed land, while they increased during
transitions from unutilized land to constructed land. Overall, the comparison of various
ecological parameters suggests that LULC change impacts the LAI and GPP, particularly
during interconversions in vegetation regions.

Beyond simply comparing the direct influence of LULC on ecological parameters, it
is essential to highlight the rate of change in these indicators. Figure 10 illustrates that
regions with the most significant annual variations in ecological parameters consistently
show a significant difference in pixel proportions between increases and decreases. This
discrepancy is particularly evident in regions identified as 14/41/35/63. Conversely, in non-
vegetation areas, the variance in the pixel count between increases and decreases is relatively
equal, approximately at 50%. The assertion that LULC has a more pronounced impact
on changes in ecological parameters, as previously mentioned, was further supported by
the observation that the difference in ecological parameters was greater in the transition
between vegetation and non-vegetation regions. It is worthwhile that the NPP appears to
exhibit a unique pattern in terms of differences in pixel proportions. For instance, when
transitioning between water bodies and unutilized land, the pixel proportion of increasing
NPP exceeds 85%, while the pixel proportion of increasing other ecological parameters



Land 2024, 13, 572 14 of 22

remains at 50%. This distinct characteristic can aid in the rapid detection and identification
of LULC changes.
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2001~2020.

3.3.2. Coupled Degree

Based on comparing ecological parameters’ differences between alternate years of
LULC, significant differences were observed. To further analyze these variances, a coupled
degree was introduced as a metric to more accurately depict the differences in changes
across different ecological parameters. By examining the trends of these ecological parame-
ters, the coupled degree was categorized into five distinct levels (Figure 11). Comparing the
couple degree of various ecological parameters, it was noted that an inverse relationship
between the coupled degree and the magnitude of parameter change exists. Specifically,
regions with less changes in ecological parameters exhibited higher coupled degrees. These
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regions primarily include transitions between vegetation and non-vegetation areas, de-
noted by LULC codes 11/12/13/21/22/23/31/32/33/44/45/46/55/64/65/66, where the
changes are minimal and uncertainties are greater. Conversely, areas with higher coupled
degrees were concentrated in the conversions between vegetation and non-vegetation
regions, indicating greater changes and lower uncertainties in ecological parameters in
these regions. The coupled degree serves as an effective indicator to reflect the relation-
ship between the extent of LULC variations and the alterations in ecological parameters.
Generally, a wider range of LULC changes corresponds to higher coupled degrees.
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4. Discussion
4.1. Monthly Dynamics of Ecological Parameters in China

The growth of vegetation is a gradual process, necessitating the monitoring of eco-
logical parameters with consideration of monthly dynamics. Figure 12 illustrates the
inter-monthly fluctuations of ecological parameters across different LUTs, while Figure 13
presents a comprehensive analysis of the data from Figure 12, focusing solely on the range
and coefficient of variation. Initially, the study discussed the changing characteristics of
ecological parameters in various LUTs in vegetation regions. Forest exhibited the highest
lower and upper limits of ecological parameters. The peak ecological parameters for culti-
vated land were observed in August, whereas for forest and grassland, they were in July.
The coefficient of variation for ecological parameters was lowest in forests, followed by
grasslands, and highest in cultivated lands. Subsequently, when comparing the changing
characteristics of various LUTs in non-vegetation regions, it was noted that, except for
LAI, the ecological parameters of water bodies were lower than those of built-up areas.
The coefficient of variation for NDVI and EVI in water bodies was the highest, indicating
significant inter-monthly variation. Specific changes in the NDVI and EVI were observed in
water bodies and unutilized land. The monthly dynamics of ecological parameters between
grasslands and constructive land were found to be similar. However, a distinct observation
was made regarding the trend of both LUTs from May to July. As depicted in Figure 12, the
trend of ecological parameters in grasslands from May to July appears smoother compared
to constructive land. This smoother trend was primarily due to a more gradual increase in
various ecological parameters from May to June, followed by a more rapid increase from
June to July.
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4.2. Relationship between Climatic Factors and Ecological Parameters of Various LUTs in China
and Its Sub-Regions

In the context of climate change, there are obvious regional and vegetation-type vari-
ances in how distinct meteorological factors impact vegetation growth [36,65–69]. Previous
research has tended to treat all vegetation types collectively, examining the relationship
between ecological parameters and climate variables by averaging values across the study
area, thereby overlooking the impact of land use variations on this correlation. Based on
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our previous studies, the mean values of temperature and precipitation in China from
2001 to 2018 were 7.93 ◦C and 672 mm, with rates of change of –0.0242 ◦C·(10a)−1 and
17.32 mm·(10a)−1, respectively, when the meteorological factors were ignored for the study
of various land types (Figure 14). The average annual temperature of cultivated land
(12.14 ◦C), forest (10.65 ◦C), and constructed land (15.41 ◦C) exceeded 10 ◦C, while unuti-
lized land recorded the lowest temperature (4.78 ◦C). Solely the average annual precipi-
tation of forests surpassed 1000 mm (1093 mm), followed by constructed land (981 mm),
with unutilized land exhibiting the least annual precipitation (225 mm). Regarding the
trend in meteorological parameter changes, except for grassland and unutilized land, the
temperature of other LUTs exhibited an upward trajectory. Precipitation levels increased
across all LUTs, albeit with obvious differences. The disparities in average values and
trends of meteorological parameters are conspicuous at the regional level, with further
details available in Figure 14.
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In the absence of LUTs, all ecological parameters exhibit a positive relationship with
temperature and precipitation in China, as illustrated in Figure 15. However, the correlation
of various ecological parameters with temperature and precipitation varies significantly
across regions. For instance, in the NWC region, all ecological parameters display a nega-
tive correlation with temperature and a positive correlation with precipitation. Conversely,
in the NC and NEC regions, with the exception of NPP, other ecological parameters exhibit
a positive correlation with both temperature and precipitation. In contrast, the NEC, SC,
and SWC regions show a negative correlation with LAI, GPP, NPP, and precipitation. Fur-
thermore, all ecological parameters demonstrate a negative correlation with precipitation
in the QT region. It is evident that the relationship between ecological parameters and
precipitation is more intricate compared to temperature when LUTs are not considered.

In the analysis involving LUTs, it was observed that the relationship between ecological
parameters and climate variables exhibited a higher level of complexity (refer to Figure 15).
In the context of China, the distribution of ecological parameters across various LUTs
indicated a ratio of 23:7 for positive and negative correlations with temperature, and a ratio
of 5:1 for correlations with precipitation. Specifically, all ecological parameters of grassland,
as well as the NDVI and EVI of unutilized land, displayed a negative correlation with
temperature. Furthermore, a negative correlation was identified between the GPP and NPP
of forests and precipitation. The diversity in correlation patterns was more pronounced at
the regional level. At this scale, the ratios of ecological parameters of cultivated land, forest,
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and grassland exhibiting positive and negative correlations with temperature were 23:7,
37:3, and 5:3, respectively. Correspondingly, the ratios for precipitation were 31:9, 11:29, and
1:1 for the same land types. Upon focusing solely on vegetation cover area, it was observed
that all ecological parameters of cultivated land, forest, and grassland were positively
correlated with temperature in the CC and QT regions. Conversely, for cultivated land, all
ecological parameters exhibited negative correlations with temperature in the SC region,
and with precipitation in the NC region. With the exception of the NPP, all ecological
parameters of forests displayed positive correlations with temperature across all regions,
while negative correlations with precipitation were evident in the EC, SC, SWC, and QT
regions. Similarly, all ecological parameters of grassland in the NC and SWC regions were
negatively correlated with temperature, and negatively correlated with precipitation in the
QT region. The negative correlation between ecological parameters and precipitation was
found to be more pronounced than that with temperature.
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In conclusion, on the basis of the existing data sources and methods, we must explore
the correlations between various ecological indicators of all LUTs and climatic factors in
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different regions and explore their patterns. It is essential to recognize the response of
diverse ecological parameters of all LUTs in the context of global warming.

4.3. The Limitations and Future Directions of the Study

Drawing on previous research, this study firstly considered LUTs, and then systemati-
cally analyzed ecological parameters and their trends. Subsequently, the study explored
the correlation between ecological parameters of different LUTs and climate variables.
However, upon scrutinizing the data, the researchers identified several pertinent issues and
algorithms that necessitated resolutions and optimizations. These include: (1) A focus on
the influence of LULC on ecological parameters in the context of climate change. Compared
with previous studies, the impact of LULC was considered, but zoning planning was still
based on administrative boundaries, and human intervention was not circumvented, and
the zoning planning was carried out in a purely natural environment. (2) The climatic
indicators used in this research to explore correlations were too homogeneous. We did not
consider the influence of factors such as the terrain, elevation, and carbon emissions on
ecological parameters. (3) Future research endeavors should aim to quantify the impact of
human activities to facilitate a more in-depth analysis of correlation relationships.

5. Conclusions

This study utilized various ecological parameter datasets, including NDVI, EVI, LAI,
GPP, and NPP, in conjunction with LULC and climate data, employing methods such as
linear regression, coupling analysis, and correlation testing. The research focused on China
and its sub-regions as the geographical scope. The analysis revealed the changes in LUTs
and ecological parameters over the past two decades in response to climate variations,
and examined the impact of LULC on ecological parameters. The study delved into the
characteristics of LULC; the average values, trends, and distribution intervals of ecological
parameters across various LUTs; and the influence of LULC on ecological parameters.
Furthermore, the Discussion Section explored the monthly-scale variations in ecological
parameters and the interrelation between climate fluctuations and ecological parameters
within distinct LUTs. The study concluded by outlining its limitations and proposing
future research directions to enhance our comprehension of the interplay between land use
change, climate dynamics, and ecological parameters. The study aims to offer valuable
data and recommendations to inform the development of ecological restoration policies.
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