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Abstract: Future forest cover changes were simulated under the business-as-usual (BAU), 

pessimistic and optimistic scenarios using the Markov-cellular automata (MCA) model in 

Pakxeng district, Lao Peopleôs Democratic Republic (PDR). The Markov chain analysis 

was used to compute transition probabilities from satellite-derived forest cover maps 

(1993, 1996, 2000 and 2004), while the ñweights of evidenceò procedure was used to 

generate transition potential (suitability) maps. Dynamic adjustments of transition 

probabilities and transition potential maps were implemented in a cellular automata (CA) 

model in order to simulate forest cover changes. The validation results revealed that 

unstocked forest and current forest classes were relatively well simulated, while the  

non-forest class was slightly underpredicted. The MCA simulations under the BAU and 

pessimistic scenarios indicated that current forest areas would decrease, whereas unstocked 

forest areas would increase in the future. In contrast, the MCA model projected that current 

forest areas would increase under the optimistic scenario if forestry laws are strictly 

enforced in the study area. The simulation scenarios observed in this study can be possibly 

used to understand implications of future forest cover changes on sustainable forest 

management in Pakxeng district. 
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1. Introduction  

The growing anthropogenic pressure on tropical ecosystems is continuously transforming 

landscapes, thereby threatening global climate change and livelihood systems [1ï3]. Of major concern 

is the clearing of tropical forests, which constitute a fundamental carbon store, as well as a source of 

food, fuel and utility products [4]. According to recent reports, deforestation accounts for 

approximately 20% of global greenhouse gas (GHG) emissions, making it the second largest source 

after the energy sector [5,6]. Recognizing the negative impacts of GHG emissions on the global 

climate system, the international community under the auspices of the United Nations Framework 

Convention on Climate Change (UNFCCC) is currently negotiating initiatives to reduce emissions 

from deforestation and forest degradation in developing countries [7].  

Lao Peopleôs Democratic Republic (PDR) is a landlocked country in the center of Indochina, rich in 

forest resources. The forestry sector contributes more than 3.2% of the gross domestic product (GDP), 

making it an important resource that generates employment, local and national budget revenues, as 

well as raw materials for the domestic timber processing industry [8,9]. In addition, forests protect the 

countryôs biodiversity that is of national and global importance [10]. Approximately 80% of the 

population living in rural areas depend primarily on agriculture, forestry and non-timber forest 

products (NTFPs) for their livelihoods. Although the country is endowed with a wide range of forest 

resources, forest areas declined from 70% of land area in 1940 to 41.5% in 2004 [9,10]. In light of the 

rapid deforestation, the Government of Lao PDR has increased its commitment to improving 

sustainable forest management since the First National Conference on Forests in 1989 [8,11]. While 

the Government has instituted important legal and regulatory framework in the forest sector, 

implementation of effective sustainable forest management remains problematic. This is due mainly to 

ineffective policy implementation, weak law enforcement and failure to address the underlying causes 

of land use changes among other factors [8,9,12ï14].  

In order to improve sustainable forest management, the Lao Ministry of Agriculture and Forestry 

(MAF) is implementing a gamut of measures that include land and forest allocation, stabilization of 

shifting cultivation and participatory forestry management systems [15ï17]. Given that a decentralized 

sustainable forest management approach, which functions at the watershed or river basin scale has 

been adopted [8,15], appropriate monitoring and modeling tools that can be used to understand 

temporal and spatial forest cover changes are needed. Yet few studies have been undertaken to 

understand temporal and spatial forest cover changes, as well as implications of future forest cover 

changes on sustainable forest management. Spatial simulation models, which provide a scientific basis 

for supporting sustainable forest management based on different simulation scenarios (that is, explore 

ñwhat ifò scenarios) [18ï24] can be used to guide policy makers to set priorities for sustainable forest 

management. For example, the Markov-cellular automata (MCA) modeling approach can be used to 
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gain insights into the current and future forest cover changes given its simplicity and flexibility, as well 

as its ability to model dynamic land use and forest cover changes.  

The objective of this study is to simulate future forest cover changes in Pakxeng district, Lao 

Peopleôs Democratic Republic (PDR) under the business-as-usual (BAU), pessimistic and optimistic 

scenarios. Future forest cover changes were simulated under different scenarios based on the MCA 

model, which combines the ñweights of evidenceò technique, Markov chain analysis and cellular 

automata (CA) in order to explore the implications of future forest cover changes on sustainable forest 

management. The ñweights of evidenceò technique was used to compute transition potential maps, 

while the Markov chain model was used to generate the transition probabilities. Dynamic adjustments 

of transition potential maps and transition probabilities were implemented in the CA model.  

2. Study Area 

Pakxeng district, which covers an area of approximately 1,650 km
2
, is located in the center of 

Luangprabang province, Lao PDR (Figure 1). The altitude of the study area varies approximately from 

200 m to 1,422 m above sea level. According to the Lao Department of Statistics [25], the climate is 

characterized by a mean maximum temperature in the range of 30.9 °C to 33.5 °C with the highest 

temperatures occurring from March to October. The study area receives approximately 2,104 mm of 

rainfall annually. Forest cover maps produced in 2002 by the Forestry Inventory and Planning Division 

(FIPD) in Lao PDR show that the district is dominated by unstocked forests, which are previously 

forested areas characterized by a crown density less than 20% [26]. 

Figure 1. Pakxeng district in Luangprabang province, Lao Peoplesô Democratic  

Republic (PDR). 
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The total population in Pakxeng district as of 2008 is about 22,294 inhabitants. Over the years, there 

has been a lot of pressure on the available forest and non-timber forest resources due to increasing 

population density. Pakxeng district was thus selected due to the decrease of natural forest areas and 

the dominance of shifting cultivation, which is typical in Luangprabang province [22]. 

3. Methodology 

3.1. Data 

We used biophysical (forest cover and GIS maps) and socioeconomic data for simulating forest 

cover changes (Table 1). Forest cover maps (Figure 2 and Table 2) were classified from satellite 

imagery for 1993, 1996, 2000, 2004 and 2007 using a hybrid approach that integrates supervised 

classification and decision trees [27]. Overall classification accuracy levels for the five dates range 

from 86% to 90%. Road, river and village (settlements) datasets that were obtained from the National 

Geographic Department (NGD) in Lao PDR were used to generate static driving factors, such as 

ñdistance to unpaved secondary roadsò, ñdistance to riversò and ñdistance to district centerò based on 

the Euclidean distance procedures available in ArcGIS 10. Elevation and slope were derived from 

SRTM (Shuttle Radar Topography Mission) data. Driving factors, such as ñdistance to deforested 

areasò, were defined as dynamic, because these were generated and updated during model 

iteration [18]. In addition, socioeconomic data, such as number of people and fuelwood consumption, 

was collected from a household survey that was conducted in Pakxeng district in 2010. Finally, all 

input datasets were resampled to 90 m × 90 m spatial resolution in order to match the spatial resolution 

of the SRTM digital elevation (DEM) data. 

Table 1. Input data for the Markov CA model. 

Data Driving Factor  

Biophysical 

Forest cover maps (1993, 1996, 2000 and 2004) 

Elevation (derived from DEM) 

Distance to unpaved secondary roads 

Distance to rivers 

Distance to district center 

Distance to deforested areas 

Socioeconomic 

Population density 

Labor used in the household 

Hired labor force 

Livestock ownership 

Rice produced (ton) 

Fuelwood consumed (m3) 
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Table 2. Forest cover classes. 

Forest Cover Class Description 

Current forest 
Includes natural and plantation forest areas with crown density more than 20% and an 

area equal to or greater than 0.5 ha. Trees should reach a minimum height of 5 m. 

Unstocked forest 
Previously forested areas in which crown density has been reduced to less than 20% due 

to disturbances (e.g., shifting cultivation or logging). 

Non-forest Cropland, ray, grassland, settlement areas, roads, barren land, rocks, rivers and reservoirs. 

Figure 2. Forest cover maps (Pakxeng district). 

 



Land 2013, 2             

 

 

6 

3.2. Model Calibration and Simulation Scenarios 

First, the ñweights of evidenceò technique, which is based on the Bayes theorem of conditional 

probability [28ï33] was used to compute transition potential (suitability) maps. Transition potential 

(suitability) maps represent the likelihood or the probability that the landscape would change from one 

forest cover class to another (e.g., forest to unstocked forest). Following the computation of transition 

potential maps, transition probabilities between the forest cover maps (e.g., 1993ï1996) were 

calculated using the Markov chain analysis. The 1993 forest cover base map, transition potential maps 

and transition probability matrices (for 1993ï1996, 1996ï2000 and 2000ï2004) were used to simulate 

forest cover map for 2007 based on the CA model available in Dinamica EGO [28]. Note that the 

ñ1993ï1996ò, ñ1996ï2000ò and ñ2000ï2004ò were used for calibrating the MCA model in order to 

capture temporal heterogeneity, since the study area experience dynamic land use and forest cover 

changes due to shifting cultivation and both legal and illegal logging [24]. The CA model employs an 

Expander transition function to expand or contract previous forest class patches, while the Patcher 

transition function is used to form new patches through a seeding mechanism [20]. The model was 

calibrated by changing the internal parameters of the Expander and Patcher transition functions [24]. 

The CA transition rules were defined from transition probabilities and transition potential maps using a 

3 × 3 neighborhood size. Finally, MCA model iterations were specified according to the differences 

between the forest cover maps (e.g., 11-year iteration for the 1993ï2004 period). For full  details of the 

MCA model used in this study, refer to Kamusoko et al. [24].  

Future forest cover changes were simulated under the business-as-usual (BAU), pessimistic and 

optimistic scenarios. The term ñBAUò has various definitions and interpretations. In this study, BAU 

scenario refers to the projected future forest cover changes based on the historical forest cover 

changes, as well as current environmental, socioeconomic and cultural conditions. The BAU scenario 

assumed that historical forest cover trends observed between 1993 and 2004 under the current 

socioeconomic conditions would continue in the future. Therefore, this scenario used annual transition 

probabilities for (I) 1993ï1996, (II) 1996ï2000 and (III) 2000ï2004, as well as biophysical and 

socioeconomic factors, such as elevation, ñdistance to unpaved secondary roadsò, ñdistance to riversò, 

ñdistance to district centerò, ñdistance to deforested areasò and population density.  

Under the pessimistic scenario, future forest cover changes were simulated under a scenario of 

increased infrastructure developments, such as paved secondary roads and reservoirs. In this scenario, 

we assumed that the current unpaved roads would have been upgraded to paved roads, while the 

proposed reservoirs would have been constructed in the study area. Therefore, additional driving 

factors, such as ñdistance to secondary paved roadsò and reservoirs, were included for computing 

transition potential maps under the pessimistic scenario. In addition, we modified the transition 

probabilities for (I) 1993ï1996, (II) 1996ï2000 and (III) 2000ï2004 to increase deforestation rates. In 

contrast, future forest cover changes were simulated under strict adherence to forestry law and forest 

management policies (that is, no deforestation in protected forest areas) in the optimistic scenario. 

Therefore, the protected forest area GIS coverage was used as a constraint to deforestation (for 

protecting current forest areas). In addition, the transition probability matrices (for 1993ï1996,  

1996ï2000 and 2000ï2004) were modified by decreasing the transition probabilities from current 
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forest to unstocked and from current forest to non-forest. Table 3 shows the input data for simulating 

the BAU, pessimistic and optimistic scenarios. 

Table 3. Input data for simulating forest cover changes under different scenarios at the 

district level. 

Data  Driving Factor  BAUS PS OS 

Biophysical 

Forest cover maps (1993,1996, 2000 and 2004)  *  *  

Elevation  *  *  *  

Distance to unpaved secondary roads *  *  *  

Distance to secondary paved roads *  *   

Distance to rivers  *  *  

Distance to district center *  *  *  

Distance to deforested areas *  *   

Reservoirs *  *   

Protected forest areas   *  

Socioeconomic 

Population density *  *  *  

Labor used in the household *  *  *  

Hired labor force *  *  *  

Livestock ownership *  *  *  

Rice produced (ton) *  *  *  

Fuelwood consumed (m3) *  *  *  

Note: BAUSðbusiness-as-usual scenario; PSðpessimistic scenario; OSðoptimistic scenario. 

4. Results and Discussion 

4.1. Forest Cover Changes 

Forest cover maps show that the current forest and unstocked forest areas were dominant in the 

study area (Figure 3). From 1993 to 1996, unstocked forest areas increased from 554 km
2
 to 602 km

2
, 

while current forest decreased from 989 km
2
 to 965 km

2
. Generally, non-forest areas decreased slightly 

from 86 km
2
 to 63 km

2
. However, between 1996 and 2000, unstocked forest areas increased from 

602 km
2
 to 757 km

2
, whereas current forest decreased from 965 km

2
 to 814 km

2
. In addition,  

non-forest areas decreased slightly from 63 km
2
 to 57 km

2
 during the same period (1996ï2000).  

Further analysis revealed that unstocked forest areas increased from 757 km
2
 to 805 km

2
, while 

current forest decreased from 814 km
2
 to 772 km

2
 between 2000 and 2004. On the other hand,  

non-forest areas decreased slightly from 57 km
2
 to 53 km

2
. During the 2004 to 2007 period, unstocked 

forest areas increased from 805 km
2
 to 883 km

2
, whereas current forest decreased from 772 km

2
 to 

668 km
2
. In contrast to the previous periods (1993ï1996, 1996ï2000, 2000ï2004), non-forest areas 

increased slightly from 53 km
2
 to 77 km

2
 between 2004 and 2007.  

Table 4 shows that ñcurrent forest to unstocked forestò and ñunstocked forest to current forestò were 

the major forest cover changes in Pakxeng district between 1993 and 2007. The high rate of ñcurrent 

forest to unstocked forestò changes compared to the low rate of ñunstocked forest to current forestò 

changes for the 1993ï1996 and 1996ï2000 periods indicate significant loss of current forests  

(Figure 4). However, between 2000 and 2004, the ñunstocked forest to current forestò change rate was 
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higher than the ñcurrent forest to unstocked forestò rate, which shows that more regrowth occurred in 

the study area. On the contrary, the 2004ï2007 period was characterized by a high decline in current 

forest areas given the high ñcurrent forest to unstocked forestò change on one hand and a low 

ñunstocked forest to current forestò change on the other hand. Figure 4 shows that rapid forest cover 

changes occurred during the 2004ï2007 period. 

Figure 3. Forest cover changes in km
2
. 

 

Table 4. Forest cover changes (km
2
). 

Forest Cover Class 1993ï1996 1996ï2000 2000ï2004 2004ï2007 

Current forest to unstocked forest 196 239 181 398 

Current forest to non-forest 25 28 24 40 

Unstocked forest to current forest 137 181 239 133 

Unstocked forest to non-forest 15 17 25 26 

Non-forest to current forest 34 24 28 17 

Non-forest to unstocked forest 31 25 17 32 

Spatial analysis of the forest cover changes reveals a relatively similar pattern for the 1993ï1996, 

1996ï2000 and 2000ï2004 periods, particularly for the ñcurrent forest to unstocked forestò changes 

(Figure 4). The ñcurrent forest to unstocked forest and non-forestò changes are distributed randomly 

(scattered) within Pakxeng district. This is partly attributed to shifting cultivation, which is dominant 

in the study area. However, most of the ñcurrent forest to unstocked forestò changes are mainly 

concentrated in the north-western, eastern and southern parts of the study area. In contrast to the  

1993ï1996, 1996ï2000 and 2000ï2004 periods, an intensification of the ñcurrent forest to unstocked 

forestò changes in the north-western, eastern and southern parts of the study area is observed between 

2004 and 2007 (Figure 4). These forest cover changes coincide with the construction of a bridge near 

the district center during the same period (Figure 1). 
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Figure 4. Forest cover changes for (a) 1993ï1996, (b) 1996ï2000, (c) 2000ï2004 and  

(d) 2004ï2007. 

 

4.2. Analysis of Transition Probabilities and Transition Potential (Suitability) 

Table 5(aïc) shows the forest cover transition probabilities between 1993 and 2004, calculated on 

the basis of the frequency distribution of the observations. The diagonal of the transition probability 

represents the self-replacement probabilities, that is, the probability of a forest cover class remaining 

the same (shown in bold in Table 5(aïc)), whereas the off-diagonal values indicate the probability of a 

change occurring from one forest cover class to another. The self-replacement probabilities for the 

current forest and unstocked forest classes were above 50%, while the self-replacement probability for 

non-forest class was lower than 50% during the 1993ï1996 and 1996ï2000 periods (Table 5(a,b)). 

However, the self-replacement probabilities for the unstocked forest class was above 50%, while the 

self-replacement probabilities for current forest and non-forest classes were lower than 50% between 

2000 and 2004, which suggests changes in the forest cover dynamics. 
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In general, the transition probabilities from current forest to unstocked forest were higher than the 

transition probabilities from unstocked forest to current forest over the three time periods  

(Table 5(aïc)). For example, the transition probability from current forest to unstocked forest was 

23%, whereas the transition probability from unstocked forest to current was 14% between 1993 and 

1996. This implies that more deforestation than regrowth would continue in the future. On the 

contrary, the transition probabilities from both current and unstocked forest to non-forest were less 

than 10% over the three time periods. However, the transition probabilities from non-forest to both the 

unstocked forest and current forest classes were high. For instance, the transition probabilities from 

non-forest to unstocked forest were over 50% over the three time periods (Table 5(aïc)), which 

suggests that under the current conditions, non-forest areas would decrease in the future. Although the 

Markov chain analysis depends on many assumptions, such as the stationarity of the transition matrix 

(that is, temporal homogeneity), they give the direction and magnitude of change that is of potential 

use for simulating forest cover changes [34]. 

Table 5. (a) Forest cover changes transition probabilities (1993ï1996) under BAU 

scenario. (b) Forest cover changes transition probabilities (1996ï2000) BAU scenario. 

(c) Forest cover changes transition probabilities (2000ï2004) BAU scenario. 

  1996 

  Current Forest Unstocked Forest Non-Forest 

1993 

Current forest 0.75 0.23 0.02 

Unstocked forest 0.14 0.83 0.03 

Non-forest 0.16 0.52 0.32 

(a) 

   2000 

  Current Forest Unstocked Forest Non-Forest 

1996 

Current forest 0.64 0.34 0.02 

Unstocked forest 0.20 0.77 0.03 

Non-forest 0.18 0.63 0.19 

(b) 

  2004 

  Current Forest Unstocked Forest Non-Forest 

2000 

Current forest 0.49 0.49 0.02 

Unstocked forest 0.17 0.79 0.04 

Non-forest 0.09 0.68 0.23 

(c) 

Analysis of the ñweights of evidenceò results revealed that high deforestation propensity is 

influenced by fuelwood consumption and rice production, which had contrast values of 0.17 and 0.1, 

respectively. Contrast is the difference between the positive and negative weights (derived from the 

ñweights of evidenceò analysis) that is used to measure the correlation between a particular forest 

cover change and sampled training points for each driving factor variable [20]. Furthermore, the 

ñweights of evidenceò results revealed that the decrease in current forest areas (that is, change from 

current forest to unstocked forest and non-forest) is also influenced by ñdistance to deforested areasò, 
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as indicated by a contrast value of 0.23. However, other accessibility measures, such as ñdistance to 

unpaved secondary roadsò and ñdistance to riversò, as well as elevation, labor, livestock ownership and 

population density had negative contrast values indicating little influence on forest cover changes in 

the study area. 

4.3. Validation of the MCA Model 

Validation of the simulated forest cover map is critical, because it helps researchers to improve a 

modelôs simulation capacity [35,36]. For model validation, we compared the simulated forest cover 

map for 2007 with the actual (observed) satellite-derived forest cover map for 2007 under the BAU 

scenario. The standard Kappa statistic, which measures overall simulation accuracy based on the 

percentage agreement between two forest cover maps, corrected for the fraction of agreement that can 

be expected by chance was used for model validation [37]. Note that the standard Kappa statistic 

values range from 1 (that indicates a perfect agreement) to ī1 (that indicates no agreement at all), 

while 0 indicates that the agreement is equal to the agreement, which can be expected by chance.  

Visual analysis of the simulated forest cover map in 2007 revealed that the MCA model simulated 

unstocked forest areas relatively well (Figure 5(a,b)). Figure 5(c) shows that unstocked forest and 

current forest classes have the best agreement in terms of quantity. For example, the actual (observed) 

unstocked forest class was 883 km
2
, while the corresponding simulated class was 884 km

2
. On the 

other hand, the current forest class was 668 km
2
, while the corresponding simulated class was 679 km

2
. 

The observed non-forest class was 77 km
2
 compared to the corresponding simulated forest class, which 

was 63 km
2
.  

The simulated forest cover map revealed that location was relatively underpredicted, particularly for 

the non-forest class (Figure 5(a)). This is attributed to a number of factors. First, the MCA model 

applied in Pakxeng district assumed that land use and forest cover transitions are linear and spatially 

dependent (that is, new forest/non-forest patches are predicted near locations where those patches 

already exist). However, forest cover change analysis in the study area (Figure 4) show that forest 

cover changes are non-linear and do not generally grow from existing forest/non-forest patches, 

particularly between 2004 and 2007. Consequently, the MCA model underpredicts the location of new 

patches that are not connected to existing patches [38]. Second, the ñweights of evidenceò algorithm 

used the same ñdistance to unpaved secondary roadsò parameter for calibrating the transition potential 

maps (for 1993ï1996, 1996ï2000 and 2000ï2004) given the lack of updated road data. As a result, the 

effect of new constructed unpaved roads was not included during the calibration phase under the BAU 

scenario, which also increases locational inaccuracy. Finally, lack of GIS data, such as soil maps and 

other less quantifiable factors, such as government policy on logging concession, were not included, 

thus reducing the modelôs predictive power. Despite these limitations, the MCAôs overall simulation 

success was 0.73 with a Kappa index of 0.67, which is relatively good for simulating future forest 

cover changes at the district level.  
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Figure 5. Actual (a) versus simulated forest, (b) cover maps (2007), (c) actual versus 

simulated forest cover maps (2007). 

 

(a) (b) 

 

(c) 

4.4. Simulated Future Forest Cover Changes 

Figure 6 shows the simulated future forest cover changes under the BAU scenario. The MCA model 

projected that current forest areas would decrease from 668 km
2
 in 2007 to 474 km

2
 in 2013, while 

unstocked forest areas would increase substantially from 883 km
2
 to 1,101 km

2
 over the same period 

(Figure 6). In addition, non-forest areas would decrease from 77 km
2
 in 2007 to 42 km

2
 in 2013. The 

spatial distribution of the simulated forest cover changes indicate that in the future, deforestation 

would be concentrated mainly to the north-western, eastern and southern parts of the study area. This 

pattern of simulated forest cover changes is consistent with the observed forest cover changes  

(Figure 4), which reflects the dominance of the ñcurrent forest to unstocked forestò change. 


