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Abstract: Future forest cover changes were simulated under the business-as-usual (BAU), 
pessimistic and optimistic scenarios using the Markov-cellular automata (MCA) model in 
Pakxeng district, Lao People’s Democratic Republic (PDR). The Markov chain analysis 
was used to compute transition probabilities from satellite-derived forest cover maps 
(1993, 1996, 2000 and 2004), while the “weights of evidence” procedure was used to 
generate transition potential (suitability) maps. Dynamic adjustments of transition 
probabilities and transition potential maps were implemented in a cellular automata (CA) 
model in order to simulate forest cover changes. The validation results revealed that 
unstocked forest and current forest classes were relatively well simulated, while the  
non-forest class was slightly underpredicted. The MCA simulations under the BAU and 
pessimistic scenarios indicated that current forest areas would decrease, whereas unstocked 
forest areas would increase in the future. In contrast, the MCA model projected that current 
forest areas would increase under the optimistic scenario if forestry laws are strictly 
enforced in the study area. The simulation scenarios observed in this study can be possibly 
used to understand implications of future forest cover changes on sustainable forest 
management in Pakxeng district. 
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1. Introduction 

The growing anthropogenic pressure on tropical ecosystems is continuously transforming 
landscapes, thereby threatening global climate change and livelihood systems [1–3]. Of major concern 
is the clearing of tropical forests, which constitute a fundamental carbon store, as well as a source of 
food, fuel and utility products [4]. According to recent reports, deforestation accounts for 
approximately 20% of global greenhouse gas (GHG) emissions, making it the second largest source 
after the energy sector [5,6]. Recognizing the negative impacts of GHG emissions on the global 
climate system, the international community under the auspices of the United Nations Framework 
Convention on Climate Change (UNFCCC) is currently negotiating initiatives to reduce emissions 
from deforestation and forest degradation in developing countries [7].  

Lao People’s Democratic Republic (PDR) is a landlocked country in the center of Indochina, rich in 
forest resources. The forestry sector contributes more than 3.2% of the gross domestic product (GDP), 
making it an important resource that generates employment, local and national budget revenues, as 
well as raw materials for the domestic timber processing industry [8,9]. In addition, forests protect the 
country’s biodiversity that is of national and global importance [10]. Approximately 80% of the 
population living in rural areas depend primarily on agriculture, forestry and non-timber forest 
products (NTFPs) for their livelihoods. Although the country is endowed with a wide range of forest 
resources, forest areas declined from 70% of land area in 1940 to 41.5% in 2004 [9,10]. In light of the 
rapid deforestation, the Government of Lao PDR has increased its commitment to improving 
sustainable forest management since the First National Conference on Forests in 1989 [8,11]. While 
the Government has instituted important legal and regulatory framework in the forest sector, 
implementation of effective sustainable forest management remains problematic. This is due mainly to 
ineffective policy implementation, weak law enforcement and failure to address the underlying causes 
of land use changes among other factors [8,9,12–14].  

In order to improve sustainable forest management, the Lao Ministry of Agriculture and Forestry 
(MAF) is implementing a gamut of measures that include land and forest allocation, stabilization of 
shifting cultivation and participatory forestry management systems [15–17]. Given that a decentralized 
sustainable forest management approach, which functions at the watershed or river basin scale has 
been adopted [8,15], appropriate monitoring and modeling tools that can be used to understand 
temporal and spatial forest cover changes are needed. Yet few studies have been undertaken to 
understand temporal and spatial forest cover changes, as well as implications of future forest cover 
changes on sustainable forest management. Spatial simulation models, which provide a scientific basis 
for supporting sustainable forest management based on different simulation scenarios (that is, explore 
“what if” scenarios) [18–24] can be used to guide policy makers to set priorities for sustainable forest 
management. For example, the Markov-cellular automata (MCA) modeling approach can be used to 
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The total population in Pakxeng district as of 2008 is about 22,294 inhabitants. Over the years, there 
has been a lot of pressure on the available forest and non-timber forest resources due to increasing 
population density. Pakxeng district was thus selected due to the decrease of natural forest areas and 
the dominance of shifting cultivation, which is typical in Luangprabang province [22]. 

3. Methodology 

3.1. Data 

We used biophysical (forest cover and GIS maps) and socioeconomic data for simulating forest 
cover changes (Table 1). Forest cover maps (Figure 2 and Table 2) were classified from satellite 
imagery for 1993, 1996, 2000, 2004 and 2007 using a hybrid approach that integrates supervised 
classification and decision trees [27]. Overall classification accuracy levels for the five dates range 
from 86% to 90%. Road, river and village (settlements) datasets that were obtained from the National 
Geographic Department (NGD) in Lao PDR were used to generate static driving factors, such as 
“distance to unpaved secondary roads”, “distance to rivers” and “distance to district center” based on 
the Euclidean distance procedures available in ArcGIS 10. Elevation and slope were derived from 
SRTM (Shuttle Radar Topography Mission) data. Driving factors, such as “distance to deforested 
areas”, were defined as dynamic, because these were generated and updated during model 
iteration [18]. In addition, socioeconomic data, such as number of people and fuelwood consumption, 
was collected from a household survey that was conducted in Pakxeng district in 2010. Finally, all 
input datasets were resampled to 90 m × 90 m spatial resolution in order to match the spatial resolution 
of the SRTM digital elevation (DEM) data. 

Table 1. Input data for the Markov CA model. 

Data Driving Factor 

Biophysical 

Forest cover maps (1993, 1996, 2000 and 2004) 

Elevation (derived from DEM) 

Distance to unpaved secondary roads 

Distance to rivers 

Distance to district center 

Distance to deforested areas 

Socioeconomic 

Population density 

Labor used in the household 

Hired labor force 

Livestock ownership 

Rice produced (ton) 

Fuelwood consumed (m3) 
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Table 2. Forest cover classes. 

Forest Cover Class Description 

Current forest 
Includes natural and plantation forest areas with crown density more than 20% and an 
area equal to or greater than 0.5 ha. Trees should reach a minimum height of 5 m. 

Unstocked forest 
Previously forested areas in which crown density has been reduced to less than 20% due 
to disturbances (e.g., shifting cultivation or logging). 

Non-forest Cropland, ray, grassland, settlement areas, roads, barren land, rocks, rivers and reservoirs. 

Figure 2. Forest cover maps (Pakxeng district). 
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3.2. Model Calibration and Simulation Scenarios 

First, the “weights of evidence” technique, which is based on the Bayes theorem of conditional 
probability [28–33] was used to compute transition potential (suitability) maps. Transition potential 
(suitability) maps represent the likelihood or the probability that the landscape would change from one 
forest cover class to another (e.g., forest to unstocked forest). Following the computation of transition 
potential maps, transition probabilities between the forest cover maps (e.g., 1993–1996) were 
calculated using the Markov chain analysis. The 1993 forest cover base map, transition potential maps 
and transition probability matrices (for 1993–1996, 1996–2000 and 2000–2004) were used to simulate 
forest cover map for 2007 based on the CA model available in Dinamica EGO [28]. Note that the 
“1993–1996”, “1996–2000” and “2000–2004” were used for calibrating the MCA model in order to 
capture temporal heterogeneity, since the study area experience dynamic land use and forest cover 
changes due to shifting cultivation and both legal and illegal logging [24]. The CA model employs an 
Expander transition function to expand or contract previous forest class patches, while the Patcher 
transition function is used to form new patches through a seeding mechanism [20]. The model was 
calibrated by changing the internal parameters of the Expander and Patcher transition functions [24]. 
The CA transition rules were defined from transition probabilities and transition potential maps using a 
3 × 3 neighborhood size. Finally, MCA model iterations were specified according to the differences 
between the forest cover maps (e.g., 11-year iteration for the 1993–2004 period). For full details of the 
MCA model used in this study, refer to Kamusoko et al. [24].  

Future forest cover changes were simulated under the business-as-usual (BAU), pessimistic and 
optimistic scenarios. The term “BAU” has various definitions and interpretations. In this study, BAU 
scenario refers to the projected future forest cover changes based on the historical forest cover 
changes, as well as current environmental, socioeconomic and cultural conditions. The BAU scenario 
assumed that historical forest cover trends observed between 1993 and 2004 under the current 
socioeconomic conditions would continue in the future. Therefore, this scenario used annual transition 
probabilities for (I) 1993–1996, (II) 1996–2000 and (III) 2000–2004, as well as biophysical and 
socioeconomic factors, such as elevation, “distance to unpaved secondary roads”, “distance to rivers”, 
“distance to district center”, “distance to deforested areas” and population density.  

Under the pessimistic scenario, future forest cover changes were simulated under a scenario of 
increased infrastructure developments, such as paved secondary roads and reservoirs. In this scenario, 
we assumed that the current unpaved roads would have been upgraded to paved roads, while the 
proposed reservoirs would have been constructed in the study area. Therefore, additional driving 
factors, such as “distance to secondary paved roads” and reservoirs, were included for computing 
transition potential maps under the pessimistic scenario. In addition, we modified the transition 
probabilities for (I) 1993–1996, (II) 1996–2000 and (III) 2000–2004 to increase deforestation rates. In 
contrast, future forest cover changes were simulated under strict adherence to forestry law and forest 
management policies (that is, no deforestation in protected forest areas) in the optimistic scenario. 
Therefore, the protected forest area GIS coverage was used as a constraint to deforestation (for 
protecting current forest areas). In addition, the transition probability matrices (for 1993–1996,  
1996–2000 and 2000–2004) were modified by decreasing the transition probabilities from current 
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forest to unstocked and from current forest to non-forest. Table 3 shows the input data for simulating 
the BAU, pessimistic and optimistic scenarios. 

Table 3. Input data for simulating forest cover changes under different scenarios at the 
district level. 

Data  Driving Factor BAUS PS OS 

Biophysical 

Forest cover maps (1993,1996, 2000 and 2004)  * * 
Elevation  * * * 
Distance to unpaved secondary roads * * * 
Distance to secondary paved roads * *  
Distance to rivers  * * 
Distance to district center * * * 
Distance to deforested areas * *  
Reservoirs * *  
Protected forest areas   * 

Socioeconomic 

Population density * * * 
Labor used in the household * * * 
Hired labor force * * * 
Livestock ownership * * * 
Rice produced (ton) * * * 
Fuelwood consumed (m3) * * * 

Note: BAUS—business-as-usual scenario; PS—pessimistic scenario; OS—optimistic scenario. 

4. Results and Discussion 

4.1. Forest Cover Changes 

Forest cover maps show that the current forest and unstocked forest areas were dominant in the 
study area (Figure 3). From 1993 to 1996, unstocked forest areas increased from 554 km2 to 602 km2, 
while current forest decreased from 989 km2 to 965 km2. Generally, non-forest areas decreased slightly 
from 86 km2 to 63 km2. However, between 1996 and 2000, unstocked forest areas increased from 
602 km2 to 757 km2, whereas current forest decreased from 965 km2 to 814 km2. In addition,  
non-forest areas decreased slightly from 63 km2 to 57 km2 during the same period (1996–2000).  

Further analysis revealed that unstocked forest areas increased from 757 km2 to 805 km2, while 
current forest decreased from 814 km2 to 772 km2 between 2000 and 2004. On the other hand,  
non-forest areas decreased slightly from 57 km2 to 53 km2. During the 2004 to 2007 period, unstocked 
forest areas increased from 805 km2 to 883 km2, whereas current forest decreased from 772 km2 to 
668 km2. In contrast to the previous periods (1993–1996, 1996–2000, 2000–2004), non-forest areas 
increased slightly from 53 km2 to 77 km2 between 2004 and 2007.  

Table 4 shows that “current forest to unstocked forest” and “unstocked forest to current forest” were 
the major forest cover changes in Pakxeng district between 1993 and 2007. The high rate of “current 
forest to unstocked forest” changes compared to the low rate of “unstocked forest to current forest” 
changes for the 1993–1996 and 1996–2000 periods indicate significant loss of current forests  
(Figure 4). However, between 2000 and 2004, the “unstocked forest to current forest” change rate was 
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Figure 4. Forest cover changes for (a) 1993–1996, (b) 1996–2000, (c) 2000–2004 and  
(d) 2004–2007. 

 

4.2. Analysis of Transition Probabilities and Transition Potential (Suitability) 

Table 5(a–c) shows the forest cover transition probabilities between 1993 and 2004, calculated on 
the basis of the frequency distribution of the observations. The diagonal of the transition probability 
represents the self-replacement probabilities, that is, the probability of a forest cover class remaining 
the same (shown in bold in Table 5(a–c)), whereas the off-diagonal values indicate the probability of a 
change occurring from one forest cover class to another. The self-replacement probabilities for the 
current forest and unstocked forest classes were above 50%, while the self-replacement probability for 
non-forest class was lower than 50% during the 1993–1996 and 1996–2000 periods (Table 5(a,b)). 
However, the self-replacement probabilities for the unstocked forest class was above 50%, while the 
self-replacement probabilities for current forest and non-forest classes were lower than 50% between 
2000 and 2004, which suggests changes in the forest cover dynamics. 
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In general, the transition probabilities from current forest to unstocked forest were higher than the 
transition probabilities from unstocked forest to current forest over the three time periods  
(Table 5(a–c)). For example, the transition probability from current forest to unstocked forest was 
23%, whereas the transition probability from unstocked forest to current was 14% between 1993 and 
1996. This implies that more deforestation than regrowth would continue in the future. On the 
contrary, the transition probabilities from both current and unstocked forest to non-forest were less 
than 10% over the three time periods. However, the transition probabilities from non-forest to both the 
unstocked forest and current forest classes were high. For instance, the transition probabilities from 
non-forest to unstocked forest were over 50% over the three time periods (Table 5(a–c)), which 
suggests that under the current conditions, non-forest areas would decrease in the future. Although the 
Markov chain analysis depends on many assumptions, such as the stationarity of the transition matrix 
(that is, temporal homogeneity), they give the direction and magnitude of change that is of potential 
use for simulating forest cover changes [34]. 

Table 5. (a) Forest cover changes transition probabilities (1993–1996) under BAU 
scenario. (b) Forest cover changes transition probabilities (1996–2000) BAU scenario. 
(c) Forest cover changes transition probabilities (2000–2004) BAU scenario. 

  1996 
  Current Forest Unstocked Forest Non-Forest 

1993 
Current forest 0.75 0.23 0.02 

Unstocked forest 0.14 0.83 0.03 
Non-forest 0.16 0.52 0.32 

(a) 
   2000 
  Current Forest Unstocked Forest Non-Forest 

1996 
Current forest 0.64 0.34 0.02 

Unstocked forest 0.20 0.77 0.03 
Non-forest 0.18 0.63 0.19 

(b) 
  2004 
  Current Forest Unstocked Forest Non-Forest 

2000 
Current forest 0.49 0.49 0.02 

Unstocked forest 0.17 0.79 0.04 
Non-forest 0.09 0.68 0.23 

(c) 

Analysis of the “weights of evidence” results revealed that high deforestation propensity is 
influenced by fuelwood consumption and rice production, which had contrast values of 0.17 and 0.1, 
respectively. Contrast is the difference between the positive and negative weights (derived from the 
“weights of evidence” analysis) that is used to measure the correlation between a particular forest 
cover change and sampled training points for each driving factor variable [20]. Furthermore, the 
“weights of evidence” results revealed that the decrease in current forest areas (that is, change from 
current forest to unstocked forest and non-forest) is also influenced by “distance to deforested areas”, 
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as indicated by a contrast value of 0.23. However, other accessibility measures, such as “distance to 
unpaved secondary roads” and “distance to rivers”, as well as elevation, labor, livestock ownership and 
population density had negative contrast values indicating little influence on forest cover changes in 
the study area. 

4.3. Validation of the MCA Model 

Validation of the simulated forest cover map is critical, because it helps researchers to improve a 
model’s simulation capacity [35,36]. For model validation, we compared the simulated forest cover 
map for 2007 with the actual (observed) satellite-derived forest cover map for 2007 under the BAU 
scenario. The standard Kappa statistic, which measures overall simulation accuracy based on the 
percentage agreement between two forest cover maps, corrected for the fraction of agreement that can 
be expected by chance was used for model validation [37]. Note that the standard Kappa statistic 
values range from 1 (that indicates a perfect agreement) to −1 (that indicates no agreement at all), 
while 0 indicates that the agreement is equal to the agreement, which can be expected by chance.  

Visual analysis of the simulated forest cover map in 2007 revealed that the MCA model simulated 
unstocked forest areas relatively well (Figure 5(a,b)). Figure 5(c) shows that unstocked forest and 
current forest classes have the best agreement in terms of quantity. For example, the actual (observed) 
unstocked forest class was 883 km2, while the corresponding simulated class was 884 km2. On the 
other hand, the current forest class was 668 km2, while the corresponding simulated class was 679 km2. 
The observed non-forest class was 77 km2 compared to the corresponding simulated forest class, which 
was 63 km2.  

The simulated forest cover map revealed that location was relatively underpredicted, particularly for 
the non-forest class (Figure 5(a)). This is attributed to a number of factors. First, the MCA model 
applied in Pakxeng district assumed that land use and forest cover transitions are linear and spatially 
dependent (that is, new forest/non-forest patches are predicted near locations where those patches 
already exist). However, forest cover change analysis in the study area (Figure 4) show that forest 
cover changes are non-linear and do not generally grow from existing forest/non-forest patches, 
particularly between 2004 and 2007. Consequently, the MCA model underpredicts the location of new 
patches that are not connected to existing patches [38]. Second, the “weights of evidence” algorithm 
used the same “distance to unpaved secondary roads” parameter for calibrating the transition potential 
maps (for 1993–1996, 1996–2000 and 2000–2004) given the lack of updated road data. As a result, the 
effect of new constructed unpaved roads was not included during the calibration phase under the BAU 
scenario, which also increases locational inaccuracy. Finally, lack of GIS data, such as soil maps and 
other less quantifiable factors, such as government policy on logging concession, were not included, 
thus reducing the model’s predictive power. Despite these limitations, the MCA’s overall simulation 
success was 0.73 with a Kappa index of 0.67, which is relatively good for simulating future forest 
cover changes at the district level.  
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4.5. Implications for Sustainable Forest Management 

More recently, the Government of Lao PDR, in collaboration with other international donor 
agencies, such as the Japan International Cooperation Agency (JICA) and Swedish International 
Development Cooperation Agency (SIDA), have intensified sustainable forest management 
activities [39]. However, a multitude of challenges that include lack of clear scientific basis for 
evaluating different policy scenarios impede the effective implementation of sustainable forest 
management. In this regard, MCA spatial simulation models under the BAU, pessimistic and 
optimistic scenarios can be used to explore the implications of future forest cover changes for 
sustainable forest management [40]. More importantly, the MCA model can be used to establish 
linkage between land use monitoring and forestry use policy formulation [8]. 

The simulated future forest cover changes under the BAU and pessimistic scenarios indicate “hot 
spot” areas, where rapid decline in current forest areas would likely occur in the future. Thus, these 
scenarios implies increased forest loss and degradation in the future, which may lead to the scarcity of 
NTFP, as well as the intensification of natural disasters, such as floods or droughts, if no immediate 
mitigation measures are undertaken. It should be noted that the simulated scenarios considered in this 
study are conservative, because they are based only on the analysis of available data. For example, the 
impact of both legal and illegal forest logging was not directly included in the model. However, our 
approach has potential for sustainable forest management and planning purposes, especially in areas, 
such as Pakxeng district, where extensive data is not available or is difficult to collect. Therefore, the 
implementation of the land and forest allocation, stabilization of shifting cultivation and participatory 
forestry management systems could use the simulated future forest cover maps to target “hot spot” 
areas that need immediate interventions. 

Under the optimistic scenario, current forest areas increased mainly due to forest regrowth. This 
suggests that sustainable forest management efforts should encompass strategies, such as strict 
enforcement of forestry laws, which would enhance forest regrowth. The implications of the simulated 
future forest cover changes under the optimistic scenario for sustainable forest management are critical, 
since the Government of Lao PDR aims to regenerate forest cover in the country to 70% by 2020 [41]. 
The MCA model provide ‘what if’ scenarios, which can assist researchers, policy makers and other 
stakeholders in assessing the implications of land use and development policy alternatives on forest 
cover change patterns and trajectories. Within this context, the MCA model provides a cost-effective tool 
that addresses a number of possible factors hypothesized to affect forest cover path dependencies [23]. 

5. Summary and Conclusions 

Understanding future forest cover changes under different simulation scenarios has significant 
implications for sustainable forest management. Using Pakxeng district as a case study and a  
GIS-based MCA model, we simulated future forest cover changes under the BAU, pessimistic and 
optimistic scenarios in Pakxeng district. The 1993 forest cover map, transition probabilities and the 
transition potential maps were used to simulate forest cover map for 2007. In order to validate the 
accuracy of the MCA model, we compared the simulated forest cover map for 2007 and the actual 
(observed) forest cover map for 2007. The validation results revealed that unstocked forest and current 
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forest classes were well simulated, while the non-forest class was slightly underpredicted. However, 
the model’s overall simulation success was 0.73, which is relatively good for simulating future forest 
cover changes at the district level.  

After the successful calibration and validation of the MCA model, future forest cover changes were 
simulated (up to 2013) under the BAU, pessimistic and optimistic scenarios. Simulation results under 
BAU scenario indicated that current forest cover change trends, such as decrease in current forest areas 
and increase in unstocked forest areas, would continue to persist in the study area. In addition, the 
MCA simulations under pessimistic scenario revealed a rapid decrease in current forest areas and 
substantial increases in unstocked forest areas, which implies severe deforestation and forest 
degradation in the future. In contrast, an alternative optimistic scenario indicated that current forest 
areas would increase if forestry laws and policies respecting conservation are strictly enforced in 
protected forest areas.  

This study has important implications for sustainable forest management in Pakxeng district, in 
particular, and Lao PDR, in general. First, the MCA model revealed that future forest cover losses 
under the BAU and pessimistic scenarios are concentrated mainly to the north-western, eastern and 
southern parts of the study area. Consequently, the one-size-fits-all approach, which is typically 
prescribed by policy makers, should be avoided. Rather, site specific sustainable forest management 
approaches tailored-made to suit different conditions of each village or area within Pakxeng district 
should be implemented. Second, our results have identified that high deforestation propensity is 
influenced by fuelwood consumption and rice production, as well as “distance to deforested areas” 
under the BAU scenario. Therefore, more sustainable forest management resources should be targeted 
to these “hot spot” areas, taking into account the effect of the driving factor variables, such as 
fuelwood consumption, rice production and accessibility measures. While this study has identified 
important driving factor variables, a more comprehensive analysis of the influence of the agents of 
land use/cover changes is needed for an integrated multiscale approach to sustainable forest 
management in Pakxeng district. 

The MCA model applied in Pakxeng district has several strengths, which are of potential use for 
sustainable forest management. First, the model’s transition potential maps were calibrated with 
biophysical variables, as well as socioeconomic driving variables derived from a household survey. 
Therefore, it is one of the few studies in Lao PDR that has attempted to incorporate both biophysical 
and socioeconomic variables in the simulation of forest cover changes. Second, forestry laws and 
policies (particularly, the use of the protected areas as a constraint to deforestation) was incorporated 
in the MCA model under the optimistic scenario. By incorporating policy in the model, this study has 
thus provided useful insights of future sustainable forest development, which can be applied to the 
study area, as well as other areas experiencing similar forest cover changes in Lao PDR. Third, the 
MCA model’s calibration and validation functions permit the comparison of the simulated and actual 
(observed) forest cover changes, thus allowing for the improvement of the model. In this study, we 
separated the data used for MCA model calibration and validation. Lastly, four epoch forest cover 
maps were used for calibrating the MCA model in order to capture the temporal heterogeneity. This is 
important particularly in areas that experience dynamic land use and forest cover changes due to 
shifting cultivation and both legal and illegal logging. Despite the uncertainty involved, modeling 
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studies that employ the MCA model [42–44] are useful for simulating future forest cover changes under 
different scenarios, particularly in areas depicting complexity in forest cover changes in Lao PDR.  
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