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Abstract: Northern Botswana is influenced by various socio-ecological drivers of landscape 

change. The African elephant (Loxodonta africana) is one of the leading sources of 

landscape shifts in this region. Developing the ability to assess elephant impacts on savanna 

vegetation is important to promote effective management strategies. The Moving Standard 

Deviation Index (MSDI) applies a standard deviation calculation to remote sensing imagery 

to assess degradation of vegetation. Used previously for assessing impacts of livestock on 

rangelands, we evaluate the ability of the MSDI to detect elephant-modified vegetation 

along the Chobe riverfront in Botswana, a heavily elephant-impacted landscape. At broad 

scales, MSDI values are positively related to elephant utilization. At finer scales, using data 

from 257 sites along the riverfront, MSDI values show a consistent negative relationship 

with intensity of elephant utilization. We suggest that these differences are due to  

varying effects of elephants across scales. Elephant utilization of vegetation may increase 

heterogeneity across the landscape, but decrease it within heavily used patches, resulting in 

the observed MSDI pattern of divergent trends at different scales. While significant, the low 

explanatory power of the relationship between the MSDI and elephant utilization suggests 

the MSDI may have limited use for regional monitoring of elephant impacts. 
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1. Introduction 

Savanna ecosystems cover approximately one-fifth of the Earth’s land surface, extending from 

tropical to semi-arid regions [1,2]. Such areas are characterized by a continuous herbaceous layer with 

intermittent trees and/or shrubs [3]. This broad definition covers everything from areas of almost 

continuous woody cover to areas that are mostly grassland with a few sparse trees [1,4]. In light of this 

variability, savannas are typically defined by the complex interactions between tree and grass layers [1]. 

These interactions play an important role in the functioning of savannas by regulating nutrient cycling 

and resource availability, influencing the biomass and diversity of organisms the savanna can  

support [5,6]. In addition to extensive plant and animal populations, savannas are home to an increasing 

proportion of the world’s human population as well as the majority of its rangeland and livestock [1]. 

They are also among the ecosystems predicted to be the most sensitive to climate change [7], raising 

concerns about compounding effects of recent increases in the prevalence of droughts, crop failure, and 

water scarcity [8]. 

Savannas are the dominant land cover type in Africa, covering over half the continent [1,2]. While the 

abiotic template of rainfall, fire, and soil nutrients sets the broad patterns for savanna dynamics and 

diversity in Africa [9–12], biotic influences of humans and wildlife may also strongly influence savanna 

patterns and processes [3,13,14]. At local scales, herbivory and fire can have as large an effect on 

savanna dynamics as climate [3,15]. Elephants (Loxodonta africana) have received some of the greatest 

attention for their ability to influence savanna dynamics due to their large size and conspicuous  

effects on vegetation [16–20]. As a keystone species, elephants exert an impact on the environment 

disproportionate to their abundance [21]. They can cause direct mortality of trees when foraging and 

may increase susceptibility of trees to fire and frost [22]. Furthermore, elephants may reduce seedling 

recruitment and promote grass production where trees are removed, as well as altering vegetation 

structure and nutrient cycling [22–24]. Many of these processes play a beneficial role in savannas, 

making elephants an important part of a healthy ecosystem. 

A recent report from a collaboration of international agencies stresses the dire threat to elephant 

populations in many parts of sub-Saharan Africa due to poaching, with populations in Central and West 

Africa facing possible elimination [25]. Poaching levels in southern Africa, however, have been lower 

than the rest of Africa and elephant populations in many areas have increased steadily since the early 

1900s [25]. Ironically, there have been concerns raised in southern and East Africa about the negative 

impacts high elephant densities may have on vegetation and other herbivores, the so-called “elephant 

problem” [26–28]. 

Southern Africa is home to the world’s largest population of African elephants [29]. These  

animals serve as the basis for a booming tourism industry, generating jobs and revenue for local 

communities [30]. However, they are also a source of human-wildlife conflict, raiding crops and killing 

people and livestock [31–33]. In addition, modification of vegetation structure by elephants may affect 

other wildlife species positively or negatively, with ramifications for ecosystem sustainability. In 

systems where elephants promote open savannas, grazers are likely to benefit from increased food 

availability. For example, buffalo (Syncerus caffer) appear to prefer grazing in areas recently utilized by 

elephants in Tanzania and Botswana [34,35]. In Kenya’s Tsavo National Park, dramatic reductions in 

elephant numbers due to poaching led to increasing tree cover and a reduction in grazers such as kongoni 
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(Acelaphus buselaphus), oryx (Oryx beisa), and zebra (Equus quagga) [36]. While opening of habitats 

by elephants may benefit grazers, some browser species are likely to be negatively impacted. Bushbuck 

(Tragelaphus scriptus) depend on thick cover and the bushbuck population in Chobe National Park, 

Botswana, declined between the 1960s and 1990s as increases in elephants led to a more open  

habitat [37]. Similarly, both lesser kudu (Tragelaphus imberbis) and bushbuck were eliminated from 

Amboseli National Park in Kenya as a result of vegetation changes caused by elephants [38]. Some 

mixed-feeders, however, like impala (Aepyceros melampus) and greater kudu (Tragelaphus strepsiceros) 

preferentially browse trees with accumulated elephant impact in Chobe National Park [39,40]. Similarly, 

impala and steinbuck (Raphicerus campestris) preferentially utilize elephant-impacted habitat in 

Hwange National Park, Zimbabwe [41]. Managers in elephant-dominated areas need information about 

the distribution of elephant impacts so that effective management decisions can be made which balance 

the needs of various wildlife species. Remote sensing indices offer the potential to provide these types  

of information. 

The Moving Standard Deviation Index (MSDI) is a moving standard deviation filter applied to 

remotely sensed images to assess degradation [42]. Processes increasing soil heterogeneity can lead to 

habitat degradation in semi-arid systems [43]. By expressing the variability in vegetation and soil,  

the MSDI is used to indicate levels of habitat degradation. Validation studies in semi-arid rangelands of 

both South Africa and Australia show that areas with higher MSDI values exhibit increased  

degradation [42,44]. This spectral-based degradation assessment technique is an ideal application of 

remotely sensed data in semi-arid landscapes as it provides continuous and repeatable measures of 

patterns across the study area and has been shown to operate well in complex regions [42,45]. 

The MSDI is traditionally applied in a 3 × 3-pixel moving window to the red band of remote sensing 

imagery [42]. The red band is used due to its inherent correlation with physiological properties of plants, 

as chlorophyll in plant leaves absorbs red wavelengths of energy along the electromagnetic spectrum. 

This absorption makes the red band sensitive to variation in both exposed soil and vegetation content, 

meaning that highly vegetated areas should have low levels of reflection in red wavelengths [46]. 

Numerous examples in the literature demonstrate the effectiveness of the red band for detecting 

vegetation patterns [46–49]. Furthermore, combining the red band with a contrasting band that exhibits 

strong reflection in highly vegetated areas, such as the near-infrared band, produces a reliable metric for 

total chlorophyll content and changes in leaf pigmentation due to senescence [50–53]. Semi-arid 

landscapes exhibit complex tree-grass-shrub relationships and highly seasonal variation in land cover 

that are influenced by shifts in rainfall, complicating traditional remote sensing assessments [54,55]. The 

principles outlined above, however, allow such complex and intermingled ecosystems to be studied to 

detect vegetation change. For example, Archibald and Scholes [56] utilized the normalized difference 

vegetation index (NDVI) to assess phenological patterns and vegetation differentiation in African 

savannas. Such spectral-based measures have been validated in semi-arid environments and show good 

correspondence with field conditions [53,57]. Previous research has shown that NDVI is positively 

related to elephant densities in African savannas [58]. This study investigates whether the MSDI allows 

identification of areas that have been heavily modified by elephants. 

Elephants generally exhibit a patchy foraging style, leading to heterogeneity in woody cover that may 

be identified by the MSDI. Indeed, Nellis et al. [59] and Robinson et al. [60] applied a similar approach 

to elephant-impacted habitat in northern Botswana using digitized Space Shuttle photography. While 
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these papers performed only a qualitative validation, they found MSDI values in elephant-modified 

areas were three to eight times higher than those with relatively undisturbed vegetation in Chobe 

National Park. Robinson et al. [60] call for a quantitative analysis of their findings but, to our 

knowledge, this has never been completed and the approach has not since been applied to elephants and 

their impacts. 

We address this by evaluating the ability of the MSDI as a means of detecting elephant-modified 

habitat via remote sensing in the riverfront area of Chobe National Park. We first compare MSDI values 

at coarse scales between areas with differing elephant utilization intensities and then use quantitative 

vegetation plots to assess the utility of the MSDI at a fine scale. Alternative covariates that may drive 

MSDI trends are also investigated. We furthermore assess new approaches to the MSDI by running 

calculations on vegetation indices and the near infrared band as well as the traditional red band and by 

varying the window size used in the standard deviation calculation. Chobe National Park presents an 

excellent opportunity for such a study as it contains high densities of elephants and little vegetation 

modification by humans. Finding a successful means of detecting elephant impacts via satellite remote 

sensing will provide the opportunity to monitor changes in elephant utilization of vegetation over time as 

well as across larger spatial extents than are currently possible. This offers the potential for a better 

understanding of how elephants change landscapes, informing successful management strategies that 

can better meet the needs of elephants and other wildlife populations. 

2. Methods Section 

2.1. Study Area 

This study focuses on the riverfront area in northern Chobe National Park, Botswana (Figure 1). 

Chobe National Park (hereafter, Chobe) was established in 1968 as the first national park in  

Botswana [61] and is second only to Gemsbok National Park in size, spanning 10,360 km2 [62,63]. 

Vegetation along the riverfront is primarily comprised of riparian-fringe woodland along the river’s 

edge, dominated by Croton megalobotrys, Capparis tomentosa, and Combretum mossambicense, and 

transitions to Baikiaea plurijuga-dominated woodland about 1–2 km inland from the river [64,65]. The 

phenology of vegetation in the park (the timing of leaf production and greening) follows closely with 

precipitation patterns. The area is characterized by a distinct wet (mid October–April) and dry season 

(May–mid October). In a typical year, trees and other woody vegetation green up prior to the first 

seasonal rains [56,66–68]. Though still open to debate, many think this early greening of woody species 

is due to a deep rooting system and water storage [56,66–68]. Grasses, however, are highly dependent on 

the first rains of the season. Once the onset of the wet season occurs, there is typically a lag of 

approximately three weeks before grasses turn green [69]. Rainfall is generally uniform across the 

riverfront study area, due to its relatively small spatial extent of approximately 400 km2. Variation in soil 

composition within the study area is minimal [70]. Soils are primarily composed of nutrient-poor 

Kalahari sand except for a strip of alluvial soils along the riparian fringe [35]. While fire plays an 

important role in many savannas [11,12], the Botswana Department of Wildlife and National Parks 

actively manages to prevent fires (pers. obs.) and fire is not considered to be an important factor in the 

riverfront ecosystem [35,64]. 
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Figure 1. Chobe National Park lies in the northeast corner of Botswana (A). The utility of 

the Moving Standard Deviation Index (MSDI) for identifying elephant impacts was assessed 

primarily along the Chobe riverfront, which was compared to an area of lower elephant 

utilization to the south (B). Elephant utilization of vegetation was assessed in 257 vegetation 

plots along the Chobe riverfront (C). Sampling was constrained to utilize roads and tracks 

due to the prevalence of wildlife in the park. Main tourist tracks are dirt tracks heavily 

utilized by tourists many times each day. Secondary tourist tracks experience moderate 

usage by tourists. Firebreaks and access roads are not open to the public and are rarely 

utilized. The tarred road is highly utilized by vehicles. All points were constrained to be at 

least 50 m from the tarred road to avoid negative influences of this traffic. 

 

Chobe is home to a wide variety of wildlife, including 38 species of large mammals weighing more 

than 7 kg [71]. It also is inhabited by abundant bird species and provides a refuge for many birds of  

prey [72]. Chobe is most famously known, however, for its elephant population. Currently, northern 
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Botswana has between 120,000–150,000 individuals, forming the largest population on the  

continent [29]. Chobe contains more elephants than any other protected area in Botswana with  

over 40,000 animals [29]. While elephant numbers are high within the park, densities in specific areas 

vary seasonally. Elephants concentrate along the Chobe riverfront in the dry season, resulting in local 

densities around 4 animals per km2, and then disperse southwards in the wet season as temporary pans 

fill with water, reducing riverfront densities to around 0.5 animals per km2 [73]. Concerns about  

the impacts of increasing numbers of elephants in Chobe on vegetation and wildlife have been voiced for 

the past 40 years [71] and have prompted a number of studies into the influences of elephants in this 

system [35,40,64,65,74]. Studies have shown dramatic changes in vegetation along the riverfront due to 

elephant impacts [64]. These effects are compounded by those of other large herbivores, which may 

prevent affected vegetation from regenerating [74,75]. 

Chobe National Park lies at the heart of the Kavango-Zambezi Transfrontier Conservation Area 

(KAZA TFCA). Formally established by treaty in 2011, this TFCA spans five countries (Angola, 

Botswana, Namibia, Zambia, and Zimbabwe) and will eventually cover between 250,000 to over 

500,000 km2 [76,77]. One of the driving factors behind establishment of the TFCA is the desire to 

protect the largest continuous population of elephants in Africa, with around 250,000 individuals 

residing within and around the TFCA borders [76,77]. The KAZA TFCA will ultimately contain at  

least 36 national parks, game reserves, community conservancies, and game management areas with a 

goal of allowing movement of elephants and other species across international boundaries [76,77]. This 

conforms with recent calls for a metapopulation approach to managing elephant populations through the 

use of “megaparks” [78,79]. 

2.2. Remote Sensing Data Preparation and MSDI Calculation 

Remote sensing data were obtained from the Moderate Resolution Imaging Spectroradiometer 

(MODIS). Initial assessment of multiple remote sensing products indicated that while Landsat 7 ETM+ 

offered higher spatial resolution, Scan Line Corrector issues for our study period made it unsuitable for 

our purposes. MODIS imagery at a 250 m resolution was the next best product available. The broader 

spatial scale of MODIS also fits well with management decisions made at landscape to regional scales, 

such as those spanning the Kavango-Zambezi Transfrontier Conservation Area. Level 3 images from  

the MOD09Q1 product were obtained from the USGS Land Processes Distributed Active Archive 

Center (LP DAAC) [80]. The Chobe riverfront study area, as well as a section of the park of 

approximately equal area to the south of the riverfront (see Section 2.3 below), were buffered by 500 m 

and extracted from MODIS tile H20V10. Further preprocessing, including projection and resampling, 

was conducted using the MODIS Reprojection Tool (MRT) [81]. The MOD09Q1 product is a two band 

(red: 620–670 nm; near infrared: 841–876 nm) 8-day composite. Each pixel contains the best 

observation across the 8-day period to eliminate imagery issues associated with clouds, aerosol loading, 

and shadow. Images were obtained for three dates: 14 April, 8 May, and 27 July 2012. The April image 

corresponds to the interannual stable period of greenness in the landscape, May is the start of the dry 

season when grass begins to die but woody vegetation retains greenness, July is the middle of the dry 

season and corresponds to our field sampling dates. While our field records of elephant utilization only 

match the final image, the browsing evidence we recorded is cumulative, meaning that our measures 
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captured areas highly utilized by elephants in the April and May dates as well as in July. There is a 

possibility that some elephant utilization recorded in our field data occurred after the April and  

May image dates, but due to the relatively short time span this is not likely to have a major effect on  

our findings. 

Subsequent analysis was performed on the red and near-infrared (NIR) MOD09Q1 bands, as well as 

three calculated spectral indices: the normalized difference vegetation index (NDVI), soil-adjusted 

vegetation index (SAVI), and modified soil-adjusted vegetation index (MSAVI2). Vegetation indices, 

also called spectral indices, assess savanna vegetation condition and monitor processes such as primary 

productivity [82–86]. Numerous studies have shown that satellite-derived vegetation indices are proxy 

measures of canopy greenness, cover, and structure [86]. The first index considered, NDVI, conveys 

plant “greenness” or photosynthetic activity [87]. It is one of the most commonly used vegetation indices 

and has played an influential role in wildlife ecology and management [88]. The index takes advantage 

of the fact that photosynthetically active vegetation absorbs red light and reflects NIR light [89,90]. With 

a theoretical range of −1 to +1, where +1 indicates high levels of photosynthetic activity, the index is 

calculated on a per-pixel basis according to the following formula [89,90]: 

NDVI
NIR RED
NIR RED

 (1)

The SAVI index is used for landscapes with low vegetation cover and numerous exposed soil 

surfaces, similar to those seen along the Chobe riverfront. Regions with varying levels of exposed soil 

exhibit different amounts of reflected light in the red and NIR wavelengths. The SAVI index was 

developed as a modification of NDVI to correct for soil brightness when vegetation cover is low [51]. 

SAVI is calculated similarly to NDVI but includes a soil brightness correction factor (L) which is 

determined based on the amount of green vegetation in the study area [51]. Calculated on a per-pixel 

basis, SAVI uses the following formula [51]: 

SAVI
NIR RED

NIR RED L
1 L  (2)

As with NDVI, the theoretical range of SAVI spans from −1 to +1 with +1 indicating higher levels of 

photosynthetic vegetation [51]. The last index included in this study, MSAVI2, is a revision of the 

modified soil-adjusted vegetation index (MSAVI). Like the SAVI index, MSAVI2 corrects for areas 

with a high degree of exposed soil. This index is a refinement of SAVI that minimizes user error  

in setting the correction factor by more reliably and simply calculating a soil brightness correction  

factor [91]. The index also ranges from −1 to +1 and is calculated per-pixel according to the following 

formula [91]: 

MSAVI2 	
2 NIR 1 2 NIR 1 8 NIR RED

2
 (3)

The MSDI for each band and date was calculated using a moving standard deviation window with the 

“raster” package [92] in the statistical program R [93]. Results were similar across bands so only the red 

band (Figure 2) and NDVI (Figure 3) are shown here for illustrative purposes. For NIR, SAVI, and 

MSAVI2, see Supplementary Materials Figures S1−S3. We varied the window size used in this analysis, 

assessing 3 × 3-, 5 × 5-, and 7 × 7-pixel moving windows. The calculation used to derive the MSDI 
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results in an index that takes the units of the input data and has a minimum value of zero and a maximum 

value determined by the values of the pixels evaluated. Because of this variable maximum, MSDI values 

cannot be directly compared between bands, though general trends across bands can be assessed. 

Figure 2. Red band MODIS data used to assess elephant utilization of vegetation along the 

Chobe riverfront, Chobe National Park, Botswana. The top row shows the base reflectance 

images for the three dates assessed in this project. Subsequent rows show the Moving 

Standard Deviation Index (MSDI) values calculated using 3 × 3-, 5 × 5-, and 7 × 7-pixel 

moving windows, respectively. 

 

2.3. Coarse Assessment of MSDI 

The ability of the MSDI to discriminate between areas of higher and lower elephant utilization at a 

coarse scale was assessed by comparing the riverfront study area (high elephant utilization) with an area 

of approximately equal size to the south of the riverfront (low elephant utilization; Figure 1B). Dung 

counts conducted in the riverfront and southern areas during a previous study investigating elephant 

impacts on trees in Chobe National Park [65,94] were used to compare relative elephant density in areas 

north and south of the main tarred road. Previous research has indicated a positive relationship between 

elephant density and utilization levels in similar systems [95]. Dung counts were collected during a 

similar time of year as the imagery used in this study [94] and should reflect utilization patterns during 

the study period. Dung plots counted all elephant dung within a 10 × 100 m transect to give an estimate 

of relative animal use of sites [94,96]. While issues have been raised about the use of dung counts to 

measure mammal densities [97], Barnes [98] showed that they are as effective as other methods of 

estimation for elephants. MSDI values were extracted from 200 random points in each section. Equality 
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of variances for the two samples was assessed using Fisher’s F-test [99]. Based on F-test results, mean 

MSDI values for the two areas were compared using an unequal variance t-test [100]. This procedure 

was repeated 100 times for each MSDI band and date to assess stability of observed patterns.  

Figure 3. Normalized difference vegetation index (NDVI) data used to assess elephant 

utilization of vegetation along the Chobe riverfront, Chobe National Park, Botswana. The 

top row shows the base images for the three dates assessed in this project. Subsequent rows 

show the Moving Standard Deviation Index (MSDI) values calculated using 3 × 3-, 5 × 5-, 

and 7 × 7-pixel moving windows, respectively. These indices are unitless. NDVI ranges 

from −1 to +1 while the MSDI has a minimum value of zero and a maximum determined by 

the data. 

 

2.4. Fine Assessment of MSDI 

MSDI maps for the riverfront area of Chobe National Park were assessed against quantitative 

vegetation plots to investigate the ability of the MSDI to identify elephant utilization at finer scales. 

2.4.1. Field Data Collection 

Field data assessing utilization of vegetation by elephants were collected from mid-July to early 

August 2012. A total of 257 vegetation plots were assessed in the Chobe riverfront area (Figure 1C). 

Vegetation plots covered a 60 × 60 m area with records made of the percentage of woody vegetation 

highly utilized by elephants. Elephant browsing is distinctive, easily differentiating plants utilized by 

elephants from those browsed by other species (pers. obs.). Trees were considered highly utilized if 
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elephants had removed major branches or if the main meristem was broken (Figure 4). In addition, 

percent coverage of woody vegetation was visually estimated by two observers, with any discrepancies 

averaged to produce final values. 

Figure 4. (A) Elephant browsing on woody vegetation. Note the obvious evidence of past 

utilization on the tree to the right. (B) High elephant utilization in Chobe National Park. 

Elephants often break large branches and knock over trees while foraging. Photo credit:  

T. Fullman. 

 

(A) 

(B) 
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Vegetation plot locations were randomly generated using the randomPoints function of the “dismo” 

package in R [101]. Plots were constrained to be at least 100 m apart. In addition, the prevalence of 

wildlife in the park necessitated that plots be assessed within 100 m of roads. The “roads” in Chobe, 

however, varied greatly from a main tarred road to dirt tracks regularly used by tourists, to firebreaks and 

access roads infrequently traveled (Figure 1C). Plots were constrained to be at least 50 m away from the 

tarred road to minimize road-based effects [64,102]. Dirt tracks and firebreaks were allowed to be closer 

to plots, as elephants regularly utilize these areas. Seventy vegetation plots (27.24%) included tracks and 

firebreaks. Mann-Whitney U-tests for variance of means and Analysis of Covariance (ANCOVA) tests 

of subset regression equations showed no difference between samples with and without tracks, so all 

samples were combined in subsequent analyses. 

2.4.2. Statistical Analysis 

To better account for interactions between woody cover and elephant utilization, a weighted measure 

of utilization was calculated. The level of elephant utilization for a plot was assessed independently of 

the percentage of woody vegetation in the plot (i.e., A plot containing 25% trees, all of which were 

highly utilized, and a plot with 50% trees, all highly utilized, would each have received an elephant 

utilization score of 100%). To make these more directly comparable, we calculated a weighted measure 

of elephant utilization according to the following formula: 

%	 	 % 	  
max %	 %

100 (4)

This weighted measure penalizes the utilization values of plots with few trees and emphasizes  

those with higher woody cover (Figure 5), following the idea that plots with high utilization but low 

woody cover are likely to have different MSDI signatures than those with high utilization and high 

woody cover. 

Local and global Moran’s I tests [103,104] were used to check for spatial autocorrelation in the 

vegetation plot data. Failing to incorporate spatial autocorrelation in regression models can lead to 

incorrect statistical inference from inefficient or biased parameter estimates [105]. To avoid this, spatial 

simultaneous autoregressive (SAR) models were fit between weighted elephant utilization and MSDI 

values in Chobe [106]. For an overview of SAR models as well as their implementation in R, see 

Kissling and Carl [107]. Spatial SAR models can be fit in a spatial lag or spatial error form. Spatial error 

models include autocorrelation in the error term, as 

 

 
(5)

where, as in Ordinary Least Squares (OLS) regression, β is the vector of slopes associated with the 

explanatory variables X. Unlike in OLS regression, however, the error term, u, is spatially weighted 

using the weights matrix, W, and the spatial error coefficient, λ. Remaining uncorrelated error is 

indicated by ε. Spatial error models tend to be used in situations where spatial autocorrelation is not fully 

explained by the explanatory variables [107]. Spatial lag models, on the other hand, assume that spatial 

structure comes from factors that are an inherent property of the response variable itself and so include a 

spatially lagged dependent variable as an additional predictor. Such models follow the form 
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 (6) 

where ρ is the spatial coefficient and the other terms are the same as in Equation (5). Spatial weights 

matrices used to develop models were determined using neighborhood distances of 4000 m based on 

analysis of autocorrelation using variograms. Row standardization was used in developing weights 

matrices since points had unequal numbers of neighbors [108]. Lagrange Multiplier tests [109] were 

used to determine which type of spatial model (i.e., spatial error or spatial lag) was best suited to each 

predictor variable. Moran’s I tests, Lagrange Multiplier tests and SAR models were run using the 

“spdep” package in R [110]. 

Figure 5. Relationship between unweighted and weighted measures of elephant utilization 

along the Chobe riverfront, Botswana. The 1:1 line is indicated in black for comparison. The 

weighted utilization measure penalizes the values of plots with few trees (blue and green), 

shifting them below the 1:1 line, and emphasizes those with higher woody cover (red), 

shifting them above the line. See text for details. 

 

Kriging was used to enable assessment of elephant utilization at scales finer than the 250 m resolution 

of a MODIS pixel. Originally developed to assist in mining operations, kriging enables interpolated 

mapping of a physical process, based on analysis of spatially explicit data [111,112]. Here the process of 

interest is elephant utilization of vegetation, with the vegetation plots serving as observations of a 

continuous underlying process of utilization. Ordinary kriging uses only information about the spatial 

relationship between observations and does not include any explanatory covariates [106,113], allowing 

assessment that is independent of the 250 m MODIS pixel size. In addition, universal kriging was 

conducted using MSDI as the explanatory covariate. This approach allows the mean of the modeled 

process to vary according to explanatory covariates in a regression-like framework [106,113]. 

Comparing ordinary and universal kriging approaches allowed assessment of whether observed trends 

changed with inclusion of MODIS-scale MSDI values. Kriging was carried out in the “gstat” package  

in R [114]. Kriging models were assessed via leave-one-out cross validation [115,116]. 
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2.4.3. Assessment of Alternative Covariates 

To assess the degree to which other environmental covariates might be driving observed MSDI 

patterns we assessed the correlation of each MSDI date and band with nine covariates. The covariates 

assessed were elevation, slope, distance to the Chobe River, distance to roads/tracks, vegetation class, 

latitude and longitude, and two hydrology measures—flow direction, reflecting the path water is 

expected to take across a landscape, and flow accumulation, reflecting where water on a landscape is 

expected to aggregate. Elevation was obtained from the ASTER Global Digital Elevation Model 

(ASTER GDEM is a product of METI and NASA), which presents elevation at a 30 × 30 m spatial 

resolution. Slope and hydrology layers were derived from the elevation layer in ArcGIS (version 9.3, 

ESRI Inc., Redlands, CA, USA). Distance to roads was determined from shapefiles combined with 

self-generated GPS tracks. Vegetation classes were derived from White’s vegetation map [117]. A 

systematic grid of approximately 500 points, spaced at least 250 m apart, was used to sample covariates 

in each of the riverfront and southern sections of the park (Figure 1B). The correlation was assessed 

between these covariates and MSDI values sampled at the same locations. 

To assess the effect that the Chobe River and main tourist tracks might have on our regression 

findings we subset the field data from the riverfront and ran additional spatial regression analyses on  

the subset data. Points lying within 250 m of the main tourist tracks lining the Chobe River (Figure 1C) 

were extracted as the river subset. They were compared against the inland subset—all points greater  

than 250 m from main tourist tracks. Spatial regression analyses as described above were conducted on 

each subset to evaluate the relationship between the MSDI and elephant utilization. 

3. Results 

3.1. Coarse Assessment of MSDI 

Dung density levels were significantly higher for elephants in the riverfront study area compared to 

the southern section (Mann-Whitney U test p < 0.05). Fisher’s F-test results for each of the 100 iterations 

of every band and date combination showed strongly significant results (p < 0.0001), indicating unequal 

variance in MSDI values between riverfront and southern sections. In light of this, unequal variance 

t-tests were run for each band, date, and iteration. Results were strongly significant for each of these tests 

(t range = 2.97–13.18, df range = 201–272, all p < 0.005), with MSDI values higher in the riverfront 

section compared to the southern section. Thus, MSDI values were significantly higher in areas of higher 

elephant dung density, revealing increased heterogeneity at a landscape scale in areas used heavily  

by elephants. 

3.2. Fine Assessment of MSDI 

3.2.1. Regression Assessment of Elephant Utilization 

Local and global Moran’s I tests indicated significant spatial structure in the weighted elephant 

utilization data, necessitating use of spatial regression models. Lagrange Multiplier tests showed spatial 

structure in the Chobe National Park elephant utilization dataset was best accounted for using spatial 

error models for all bands, indices, and window sizes except the 3 × 3 SAVI and MSAVI2 models  
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for 27 July, which had a slightly more significant spatial lag rather than spatial error model. However, 

Kissling and Carl [107] found that spatial lag models showed less consistent results than spatial error 

models, leading to higher likelihood of bias. In light of this, and to maintain consistency, we used a 

spatial error model for these data as well. Doing so did not greatly alter any of the regression parameters. 

The relationship between elephant utilization and MSDI values was consistent across all bands, 

image dates, and window sizes (Table 1). Weighted elephant utilization was negatively related to MSDI 

values in all models and showed highly significant relationships (all p < 0.005). Model comparison via 

Akaike Information Criterion (AIC) [118,119] indicated better model fit for all spatial models compared 

to non-spatial Ordinary Least Squares (OLS) models (Table 1). While all regression coefficients were 

highly significant, the explanatory power of these relationships, as described by the coefficient of 

determination (R2) was generally low, with values ranging between 0.11 and 0.24 (Table 1). 

Table 1. Spatial regression results for weighted elephant utilization in the riverfront region 

of Chobe National Park, Botswana. See Equation (5) in the text for spatial error 

simultaneous autoregressive model formulation. Values in parentheses indicate standard 

error estimates for regression parameters. All estimates have p < 0.005 (n = 257 for all 

models). All dates are in 2012. 

Image Window Date Intercept MSDI Lambda RMSE R2 ΔAIC 

Red 

3 × 3 

14/4 50.120 (3.857) −824.476 (124.373) 0.631 (0.101) 20.69 0.22 23.1 

8/5 49.039 (3.934) −601.929 (88.871) 0.648 (0.098) 20.61 0.23 24.9 

27/7 46.934 (3.549) −674.380 (148.144) 0.575 (0.112) 21.59 0.16 16.7 

5 × 5 

14/4 52.748 (4.388) −850.280 (122.238) 0.673 (0.093) 20.51 0.24 27.6 

8/5 50.096 (4.170) −531.774 (87.233) 0.653 (0.097) 20.91 0.21 24.9 

27/7 49.925 (3.889) −742.468 (130.328) 0.615 (0.104) 21.11 0.19 20.4 

7 × 7 

14/4 53.283 (4.546) −811.058 (130.336) 0.669 (0.093) 20.85 0.21 25.7 

8/5 50.040 (4.202) −473.364 (90.751) 0.637 (0.100) 21.29 0.18 22.3 

27/7 50.046 (4.034) −674.057 (128.717) 0.619 (0.103) 21.30 0.18 20.3 

NIR 

3 × 3 

14/4 47.391 (3.531) −326.513 (46.806) 0.616 (0.104) 20.55 0.24 20.6 

8/5 47.356 (3.724) −282.070 (40.693) 0.638 (0.100) 20.55 0.24 23.0 

27/7 45.927 (3.338) −365.119 (92.122) 0.541 (0.118) 21.83 0.14 13.5 

5 × 5 

14/4 48.374 (3.919) −298.169 (43.662) 0.651 (0.097) 20.59 0.23 23.6 

8/5 47.707 (3.903) −233.403 (38.227) 0.642 (0.099) 20.92 0.21 22.8 

27/7 48.385 (3.586) −418.671 (82.998) 0.575 (0.112) 21.41 0.17 16.2 

7 × 7 

14/4 48.565 (4.010) −269.858 (43.968) 0.648 (0.098) 20.90 0.21 22.7 

8/5 47.750 (3.934) −205.667 (38.498) 0.632 (0.101) 21.24 0.18 21.2 

27/7 48.468 (3.747) −386.700 (83.097) 0.584 (0.110) 21.55 0.16 16.8 

NDVI 

3 × 3 

14/4 48.601 (3.580) −213.858 (44.825) 0.561 (0.114) 21.53 0.16 16.0 

8/5 47.277 (3.482) −192.491 (34.795) 0.586 (0.110) 21.21 0.19 18.0 

27/7 46.938 (3.479) −429.337 (94.926) 0.564 (0.114) 21.61 0.15 16.4 

5 × 5 

14/4 50.779 (4.328) −206.896 (40.974) 0.638 (0.100) 21.35 0.17 22.9 

8/5 49.110 (3.752) −175.571 (33.094) 0.597 (0.108) 21.29 0.18 18.7 

27/7 49.559 (3.816) −427.776 (76.246) 0.608 (0.106) 21.16 0.19 21.0 

7 × 7 

14/4 50.412 (4.504) −175.691 (40.219) 0.637 (0.100) 21.60 0.15 21.9 

8/5 49.905 (4.026) −164.583 (31.986) 0.617 (0.104) 21.33 0.18 19.8 

27/7 50.220 (3.941) −404.006 (73.008) 0.614 (0.104) 21.18 0.19 21.3 
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Table 1. Cont. 

Image Window Date Intercept MSDI Lambda RMSE R2 ΔAIC 

SAVI 

3 × 3 

14/4 48.743 (3.436) −318.769 (52.687) 0.576 (0.112) 21.00 0.20 17.1 

8/5 47.949 (3.537) −321.785 (51.739) 0.601 (0.107) 20.90 0.21 19.2 

27/7 44.719 (3.341) −415.079 (145.690) 0.522 (0.122) 22.16 0.11 12.2 

5 × 5 

14/4 49.486 (3.887) −275.062 (48.632) 0.619 (0.103) 21.13 0.19 20.7 

8/5 48.114 (3.789) −255.448 (48.091) 0.612 (0.105) 21.27 0.18 19.8 

27/7 47.986 (3.618) −554.728 (126.871) 0.562 (0.114) 21.67 0.15 16.1 

7 × 7 

14/4 49.351 (4.045) −238.349 (47.728) 0.621 (0.103) 21.39 0.17 20.4 

8/5 47.926 (3.884) −217.275 (46.835) 0.608 (0.105) 21.53 0.16 19.1 

27/7 48.700 (3.799) −550.661 (127.308) 0.574 (0.112) 21.67 0.15 17.1 

MSAVI2 

3 × 3 

14/4 48.834 (3.410) −338.572 (56.729) 0.569 (0.113) 21.04 0.20 16.4 

8/5 48.073 (3.526) −350.666 (56.679) 0.598 (0.107) 20.92 0.21 18.9 

27/7 44.804 (3.333) −428.316 (149.076) 0.519 (0.122) 22.15 0.11 11.9 

5 × 5 

14/4 49.652 (3.851) −295.497 (52.541) 0.612 (0.105) 21.15 0.19 20.0 

8/5 48.106 (3.776) −275.033 (52.561) 0.609 (0.105) 21.31 0.18 19.5 

27/7 48.144 (3.609) −581.133 (132.513) 0.558 (0.115) 21.67 0.15 15.7 

7 × 7 

14/4 49.419 (4.006) −253.828 (51.741) 0.613 (0.105) 21.43 0.17 19.6 

8/5 47.857 (3.854) −233.194 (51.171) 0.603 (0.106) 21.56 0.16 18.6 

27/7 48.764 (3.776) −573.581 (132.332) 0.570 (0.113) 21.67 0.15 16.6 

Note: NIR = Near Infrared; NDVI = Normalized Difference Vegetation Index; SAVI = Soil-Adjusted Vegetation Index; 

MSAVI2 = Modified Soil-Adjusted Vegetation Index; RMSE = Root mean square error; ΔAIC indicates the difference  

in the Akaike Information Criterion between the spatial and non-spatial forms of the regression model 

(AICnon-spatial—AICspatial), thus positive ΔAIC indicates model improvement over the non-spatial form. 

While model fits were similar across dates and bands, the 7 × 7-pixel window size consistently 

showed the worst performance in terms of root mean square error (RMSE) and R2 values when looking 

across the three image dates. Beyond this, the various bands and indices differed in whether better 

performance was obtained with a 3 × 3- or 5 × 5-pixel window size. The MSDI values calculated using 

NIR, SAVI, and MSAVI2 showed highest performance for a 3 × 3-pixel window size while the red band 

and NDVI showed highest performance at a 5 × 5-pixel window size. Averaging across the three 

window sizes, model results generally showed highest performance in April and May, with the exception 

of NDVI, which occasionally displayed comparable July values. Model results for the 3 × 3-pixel 

window sizes were consistently best in May while model results for the 5 × 5 and 7 × 7 window sizes 

were generally best in April, with the exception of NDVI where they exhibited their highest R2 and 

lowest RMSE values in July. 

3.2.2. Kriging Assessment of Elephant Utilization 

Fitted variogram models for both ordinary and universal kriging are given in Table 2. All models 

indicated the highest levels of elephant utilization of woody vegetation were patchily distributed and 

found at intermediate distances from the river’s edge. Ordinary kriging of elephant utilization was best 

modeled using a spherical variogram while universal kriging models all utilized exponential variograms. 

Ordinary kriging suggested a higher range than universal kriging models but otherwise had similar 

results (Table 2). As with the regression results, model parameters (range, sill, and nugget) from models 
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considering MSDI were similar across dates, bands and indices (Table 2). Cross-validation showed 

similar results between ordinary kriging and universal kriging in terms of RMSE and R2 values. While 

moderate overall, explanatory power for the kriging models was higher than that for the regression 

models (R2 range = 0.34–0.41 for kriging and 0.11–0.24 for regression). Values for RMSE were  

slightly lower for kriging compared to regression models (RMSE range = 18.05–19.06 for kriging and 

20.51–22.16 for regression). Predictions of weighted elephant utilization were highly similar across all 

dates, images, and window sizes under universal kriging (Figure 6, Supplementary Materials Figure S4). 

Table 2. Kriging variogram parameters and cross-validation results for weighted elephant 

utilization in the Chobe riverfront, Chobe National Park, Botswana. n = 257 for all models. 

Method Covariate Window Date Variogram Range Sill Nugget RMSE R2 

Ordinary Constant Spherical 3,653 592 251 18.85 0.36 

Universal 

Red 

3 × 3 

4/14/2012 Exponential 1,314 512 185 18.50 0.38 

5/8/2012 Exponential 1,342 517 158 18.21 0.40 

7/27/2012 Exponential 1,291 552 181 18.88 0.35 

5 × 5 

4/14/2012 Exponential 1,400 515 185 18.27 0.40 

5/8/2012 Exponential 1,392 531 185 18.37 0.39 

7/27/2012 Exponential 1,429 537 189 18.45 0.38 

7 × 7 

4/14/2012 Exponential 1,365 527 189 18.50 0.38 

5/8/2012 Exponential 1,322 541 187 18.65 0.37 

7/27/2012 Exponential 1,369 545 185 18.54 0.38 

NIR 

3 × 3 

4/14/2012 Exponential 1,350 506 183 18.32 0.39 

5/8/2012 Exponential 1,390 516 160 18.05 0.41 

7/27/2012 Exponential 1,219 557 183 18.96 0.35 

5 × 5 

4/14/2012 Exponential 1,497 517 203 18.34 0.39 

5/8/2012 Exponential 1,495 533 201 18.41 0.39 

7/27/2012 Exponential 1,341 540 194 18.59 0.37 

7 × 7 

4/14/2012 Exponential 1,443 527 206 18.54 0.38 

5/8/2012 Exponential 1,399 541 202 18.66 0.37 

7/27/2012 Exponential 1,264 546 178 18.68 0.37 

NDVI 

3 × 3 

4/14/2012 Exponential 1,243 541 164 18.73 0.36 

5/8/2012 Exponential 1,227 532 134 18.26 0.40 

7/27/2012 Exponential 1,194 548 149 18.77 0.36 

5 × 5 

4/14/2012 Exponential 1,305 550 167 18.64 0.37 

5/8/2012 Exponential 1,321 538 181 18.64 0.37 

7/27/2012 Exponential 1,286 532 159 18.40 0.39 

7 × 7 

4/14/2012 Exponential 1,276 560 171 18.82 0.36 

5/8/2012 Exponential 1,327 542 185 18.75 0.36 

7/27/2012 Exponential 1,313 534 174 18.44 0.38 

SAVI 

3 × 3 

4/14/2012 Exponential 1,234 517 170 18.52 0.38 

5/8/2012 Exponential 1,286 522 152 18.20 0.40 

7/27/2012 Exponential 1,128 567 166 19.05 0.34 

5 × 5 

4/14/2012 Exponential 1,357 533 191 18.59 0.37 

5/8/2012 Exponential 1,347 539 190 18.62 0.37 

7/27/2012 Exponential 1,199 546 169 18.81 0.36 

7 × 7 

4/14/2012 Exponential 1,319 543 190 18.74 0.36 

5/8/2012 Exponential 1,304 547 193 18.81 0.36 

7/27/2012 Exponential 1,181 547 162 18.81 0.36 
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Table 2. Cont. 

Method Covariate Window Date Variogram Range Sill Nugget RMSE R2 

Universal MSAVI2 

3 × 3 

4/14/2012 Exponential 1,215 518 170 18.55 0.38 

5/8/2012 Exponential 1,276 522 152 18.22 0.40 

7/27/2012 Exponential 1,123 566 169 19.06 0.34 

5 × 5 

4/14/2012 Exponential 1,347 532 191 18.60 0.37 

5/8/2012 Exponential 1,344 540 190 18.63 0.37 

7/27/2012 Exponential 1,201 545 174 18.81 0.36 

7 × 7 

4/14/2012 Exponential 1,309 543 190 18.75 0.36 

5/8/2012 Exponential 1,296 548 193 18.81 0.36 

7/27/2012 Exponential 1,160 545 161 18.82 0.36 

Note: NIR = Near Infrared; NDVI = Normalized Difference Vegetation Index; SAVI = Soil-Adjusted Vegetation Index; 

MSAVI2 = Modified Soil-Adjusted Vegetation Index; RMSE = Root mean square error; Units for range, sill and nugget 

are meters. 

Figure 6. Percent elephant utilization interpolated across the Chobe riverfront using 

universal kriging with the Moving Standard Deviation Index (MSDI) as the explanatory 

variable and ordinary kriging considering only vegetation plot data. The white, grey, and 

black sections indicate the three window sizes used for MSDI calculations while rows within 

sections indicate the imagery dates. The ordinary kriging prediction is only based on field 

data and does not conform to any particular date. Results for the near-infrared band and the 

SAVI and MSAVI2 indices were highly similar and are presented in the Supplementary 

Materials, Figure S4. 
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As with the regression models, model performance in terms of RMSE and R2 was worst for universal 

kriging using the 7 × 7-pixel window MSDI images. Additionally, results for July images displayed 

lower R2 and higher RMSE values than those for April or May, with the exception of NDVI. Once again, 

SAVI and MSAVI2 showed higher performance using a 3 × 3-pixel window size, when averaging 

across dates, while the red band and NDVI showed better performance with a 5 × 5-pixel window size. 

The validation data for MSDI calculated on the NIR band showed equal performance for 3 × 3- and  

5 × 5-pixel window sizes. May images generally provided the best performance, once again with the 

exception of NDVI. 

3.3. Assessment of Alternative Covariates 

Pearson’s correlation coefficients between alternative environmental covariates and MSDI values are 

given for the Chobe riverfront and southern comparison area (Figure 1B) in Tables 3 and 4, respectively. 

The relationship between covariates and MSDI values was generally weak across all dates and bands. 

One exception to this occurred in the riverfront study area. In this area, distance to the Chobe River and 

elevation (themselves strongly correlated, r = 0.868), had moderately negative relationships (range: 

−0.773 to −0.425) with all MSDI bands (Table 3). There were no strong correlations in the southern 

comparison area (Table 4). 

To further investigate the effect of the Chobe River, field data were subset into river and inland 

groups (see Methods for details) and spatial regression models were evaluated. The relationship between 

elephant utilization and MSDI was generally maintained for the river subset (Supplementary Materials 

Table S1), but broke down for the inland subset (Supplementary Materials Table S2). For the river 

subset, the negative relationship between MSDI and elephant utilization remained significant for all 

dates and window sizes for NDVI, and most dates and window sizes for the red and NIR bands 

(Supplementary Materials Table S1). The SAVI and MSAVI2 indices were less consistent, exhibiting a 

number of non-significant relationships (Supplementary Materials Table S1). In the inland subset, only 

the red band displayed significant relationships between MSDI and elephant utilization, all other bands 

and indices were insignificant (Supplementary Materials Table S2). Interestingly, the relationship 

between MSDI and elephant utilization changed to be positive in the inland subset for the red band. 

4. Discussion 

The ability of the Moving Standard Deviation Index (MSDI) to identify elephant-modification of 

vegetation was assessed in Chobe National Park, Botswana. At a coarse scale, MSDI values were 

significantly higher in a region with higher elephant utilization, compared to a less utilized region. At a 

finer scale, focusing on just the highly utilized Chobe riverfront, weighted elephant utilization showed a 

negative relationship with MSDI values (Table 1), reversing the coarse-scale trend. Assessment of 

alternative covariates that could influence the observed patterns suggested that proximity to the Chobe 

River might be correlated with higher MSDI values (Table 3). Subset models built on river and inland 

vegetation plots affirmed that while the negative relationship between MSDI and elephant utilization 

was generally maintained for the river subset (Supplementary Materials Table S1), it was mostly 

non-significant for the inland subset (Supplementary Materials Table S2). 



Land 2014, 3 92 

 

Table 3. Pearson’s correlation coefficients between environmental covariates and Moving 

Standard Deviation Index (MSDI) values along the Chobe riverfront, Botswana. All dates 

are in 2012. 

Image Window Date Long. Lat. Elev. 
Dist. 

Road 

Dist. 

River 

Flow 

Acc. 

Flow 

Dir. 
Slope 

Veg. 

Class 

Red 

3 × 3 

14/4 −0.150 0.357 −0.590 −0.254 −0.492 0.061 0.024 0.218 0.337 

8/5 −0.149 0.304 −0.543 −0.286 −0.471 0.047 0.032 0.226 0.314 

27/7 0.003 0.419 −0.594 −0.238 −0.456 0.026 −0.025 0.165 0.310 

5 × 5 

14/4 −0.135 0.469 −0.709 −0.302 −0.600 0.037 0.032 0.162 0.401 

8/5 −0.122 0.427 −0.679 −0.346 −0.590 0.018 0.036 0.176 0.382 

27/7 −0.013 0.513 −0.700 −0.299 −0.568 0.000 −0.001 0.170 0.376 

7 × 7 

14/4 −0.118 0.523 −0.769 −0.329 −0.664 0.036 0.027 0.141 0.438 

8/5 −0.114 0.471 −0.739 −0.364 −0.653 0.013 0.037 0.153 0.414 

27/7 −0.016 0.540 −0.738 −0.324 −0.619 −0.021 0.012 0.161 0.414 

NIR 

3 × 3 

14/4 −0.046 0.388 −0.602 −0.215 −0.460 0.011 −0.016 0.197 0.278 

8/5 −0.059 0.363 −0.573 −0.237 −0.459 0.004 −0.001 0.200 0.275 

27/7 0.104 0.465 −0.618 −0.187 −0.468 −0.009 −0.039 0.142 0.304 

5 × 5 

14/4 −0.034 0.499 −0.714 −0.269 −0.566 −0.013 0.000 0.147 0.341 

8/5 −0.050 0.461 −0.684 −0.301 −0.562 −0.013 0.012 0.167 0.340 

27/7 0.107 0.538 −0.688 −0.254 −0.554 −0.012 −0.008 0.168 0.356 

7 × 7 

14/4 −0.044 0.528 −0.751 −0.284 −0.616 −0.019 0.007 0.130 0.369 

8/5 −0.060 0.497 −0.731 −0.316 −0.620 −0.017 0.020 0.148 0.376 

27/7 0.096 0.558 −0.713 −0.278 −0.600 −0.023 0.017 0.170 0.386 

NDVI 

3 × 3 

14/4 −0.105 0.412 −0.642 −0.187 −0.505 0.053 −0.020 0.129 0.332 

8/5 −0.023 0.487 −0.680 −0.146 −0.515 0.022 −0.056 0.049 0.316 

27/7 −0.058 0.364 −0.595 −0.169 −0.434 −0.010 −0.071 0.124 0.263 

5 × 5 

14/4 −0.121 0.484 −0.707 −0.252 −0.590 0.034 0.015 0.116 0.377 

8/5 −0.017 0.551 −0.746 −0.224 −0.597 0.004 −0.025 0.090 0.358 

27/7 −0.099 0.431 −0.681 −0.231 −0.520 0.010 −0.053 0.125 0.316 

7 × 7 

14/4 −0.137 0.509 −0.729 −0.294 −0.631 0.033 0.024 0.114 0.399 

8/5 −0.025 0.575 −0.773 −0.265 −0.643 0.009 −0.010 0.084 0.380 

27/7 −0.116 0.455 −0.710 −0.270 −0.559 0.002 −0.043 0.117 0.345 

SAVI 

3 × 3 

14/4 −0.054 0.402 −0.631 −0.260 −0.502 0.030 0.008 0.206 0.313 

8/5 −0.029 0.430 −0.649 −0.261 −0.529 0.023 0.011 0.180 0.316 

27/7 0.032 0.378 −0.579 −0.145 −0.425 −0.025 −0.069 0.129 0.252 

5 × 5 

14/4 −0.058 0.488 −0.720 −0.323 −0.600 0.010 0.030 0.155 0.362 

8/5 −0.023 0.497 −0.718 −0.331 −0.606 −0.003 0.027 0.165 0.356 

27/7 0.010 0.447 −0.663 −0.225 −0.511 0.001 −0.038 0.138 0.299 

7 × 7 

14/4 −0.076 0.505 −0.743 −0.346 −0.642 0.008 0.036 0.139 0.383 

8/5 −0.043 0.510 −0.744 −0.347 −0.649 −0.001 0.036 0.144 0.376 

27/7 0.001 0.470 −0.687 −0.254 −0.543 −0.002 −0.023 0.139 0.323 

MSAVI2 

3 × 3 

14/4 −0.040 0.390 −0.611 −0.270 −0.489 0.027 0.015 0.216 0.301 

8/5 −0.022 0.414 −0.625 −0.274 −0.517 0.022 0.025 0.195 0.306 

27/7 0.043 0.387 −0.584 −0.144 −0.430 −0.026 −0.067 0.129 0.253 

5 × 5 

14/4 −0.039 0.483 −0.708 −0.334 −0.592 0.006 0.037 0.159 0.353 

8/5 −0.016 0.485 −0.703 −0.340 −0.598 −0.003 0.033 0.171 0.348 

27/7 0.025 0.458 −0.667 −0.226 −0.514 0.001 −0.036 0.142 0.301 

7 × 7 

14/4 −0.057 0.499 −0.732 −0.356 −0.635 0.006 0.041 0.142 0.374 

8/5 −0.034 0.500 −0.731 −0.354 −0.642 −0.001 0.041 0.147 0.367 

27/7 0.016 0.476 −0.688 −0.253 −0.544 −0.002 −0.019 0.141 0.322 
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Table 4. Pearson’s correlation coefficients between environmental covariates and Moving 

Standard Deviation Index (MSDI) values in the southern comparison area of Chobe National 

Park, Botswana. All dates are in 2012. 

Image Window Date Long. Lat. Elev. 
Dist. 

Road 

Dist. 

River 

Flow 

Acc. 

Flow 

Dir. 
Slope 

Veg. 

Class 

Red 

3 × 3 

14/4 −0.346 −0.010 −0.366 −0.185 −0.342 0.062 −0.028 0.031 0.018 

8/5 −0.384 −0.059 −0.314 −0.110 −0.383 −0.026 −0.034 0.019 −0.014 

27/7 −0.300 0.042 −0.218 −0.136 −0.321 −0.022 −0.035 0.037 −0.006 

5 × 5 

14/4 −0.450 −0.005 −0.416 −0.182 −0.449 0.013 −0.054 0.007 0.010 

8/5 −0.477 −0.040 −0.377 −0.152 −0.479 −0.033 −0.058 0.010 −0.018 

27/7 −0.395 0.096 −0.310 −0.202 −0.427 −0.036 −0.027 −0.021 0.010 

7 × 7 

14/4 −0.491 −0.017 −0.444 −0.172 −0.485 −0.011 −0.072 0.005 0.011 

8/5 −0.526 −0.039 −0.401 −0.140 −0.525 −0.054 −0.088 0.005 −0.031 

27/7 −0.485 0.078 −0.366 −0.230 −0.517 −0.062 −0.056 −0.027 −0.004 

NIR 

3 × 3 

14/4 −0.285 −0.093 −0.210 −0.055 −0.270 −0.031 −0.028 −0.038 0.027 

8/5 −0.296 −0.100 −0.233 −0.071 −0.291 −0.065 −0.033 −0.006 0.017 

27/7 0.135 0.248 −0.120 −0.214 0.108 −0.035 0.070 0.092 0.121 

5 × 5 

14/4 −0.422 −0.082 −0.296 −0.093 −0.413 −0.067 −0.071 −0.023 0.029 

8/5 −0.430 −0.113 −0.307 −0.122 −0.428 −0.062 −0.083 0.001 0.036 

27/7 0.116 0.382 −0.167 −0.268 0.068 −0.016 0.060 0.072 0.165 

7 × 7 

14/4 −0.489 −0.082 −0.345 −0.121 −0.478 −0.062 −0.100 −0.007 0.015 

8/5 −0.506 −0.120 −0.342 −0.122 −0.501 −0.084 −0.086 0.002 0.035 

27/7 0.095 0.432 −0.181 −0.278 0.040 −0.017 0.033 0.030 0.144 

NDVI 

3 × 3 

14/4 −0.101 0.292 −0.357 −0.259 −0.129 0.119 0.000 0.076 0.063 

8/5 −0.203 0.215 −0.307 −0.238 −0.235 0.060 0.022 0.064 −0.002 

27/7 −0.186 0.101 −0.218 −0.190 −0.212 0.019 −0.020 0.048 0.010 

5 × 5 

14/4 −0.141 0.344 −0.396 −0.266 −0.172 0.073 −0.002 0.035 0.079 

8/5 −0.229 0.264 −0.341 −0.255 −0.264 0.036 −0.003 0.018 −0.021 

27/7 −0.272 0.104 −0.290 −0.232 −0.303 −0.008 −0.028 0.010 0.019 

7 × 7 

14/4 −0.115 0.357 −0.388 −0.240 −0.138 0.050 −0.005 0.022 0.084 

8/5 −0.217 0.293 −0.338 −0.251 −0.254 0.027 −0.021 0.014 −0.034 

27/7 −0.340 0.118 −0.353 −0.277 −0.370 −0.017 −0.033 −0.009 0.008 

SAVI 

3 × 3 

14/4 0.043 0.306 −0.239 −0.177 0.015 0.160 −0.019 0.072 0.074 

8/5 −0.092 0.249 −0.253 −0.245 −0.121 0.135 0.012 0.070 0.029 

27/7 −0.102 0.089 −0.204 −0.169 −0.116 0.012 −0.009 0.058 0.044 

5 × 5 

14/4 0.027 0.391 −0.299 −0.211 0.001 0.101 −0.019 0.042 0.097 

8/5 −0.083 0.318 −0.290 −0.283 −0.115 0.087 0.015 0.007 0.022 

27/7 −0.133 0.116 −0.247 −0.211 −0.153 −0.016 −0.008 0.034 0.068 

7 × 7 

14/4 0.051 0.406 −0.295 −0.170 0.035 0.068 −0.011 0.031 0.099 

8/5 −0.051 0.354 −0.277 −0.268 −0.084 0.071 −0.010 0.005 0.005 

27/7 −0.158 0.151 −0.293 −0.252 −0.176 −0.023 −0.014 0.014 0.059 

MSAVI2 

3 × 3 

14/4 0.068 0.326 −0.246 −0.174 0.041 0.135 −0.010 0.079 0.075 

8/5 −0.044 0.262 −0.237 −0.240 −0.073 0.140 0.021 0.051 0.037 

27/7 −0.055 0.112 −0.206 −0.171 −0.068 0.017 0.013 0.075 0.064 

5 × 5 

14/4 0.066 0.405 −0.275 −0.202 0.042 0.084 −0.030 0.046 0.102 

8/5 −0.019 0.337 −0.255 −0.285 −0.051 0.082 0.011 0.006 0.050 

27/7 −0.080 0.140 −0.239 −0.221 −0.097 −0.005 0.007 0.050 0.092 

7 × 7 

14/4 0.074 0.428 −0.296 −0.173 0.058 0.055 −0.012 0.041 0.119 

8/5 0.014 0.374 −0.246 −0.272 −0.016 0.083 −0.004 0.004 0.031 

27/7 −0.100 0.175 −0.280 −0.240 −0.116 −0.028 −0.005 0.024 0.085 
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These varying results may reflect the ways in which elephants influence landscapes across multiple 

scales. Kriging results affirm that elephant utilization of vegetation is patchy (Figure 6, Supplementary 

Materials Figure S4), but patches of utilization can be relatively large, coving 130–360 ha [120]. Thus, at 

a coarse scale elephant impacts increase the overall heterogeneity of land cover, resulting in our 

observation of higher MSDI values in regions with greater utilization by elephants. This is likely why 

previous studies suggested that higher levels of MSDI correspond to increasing modification of vegetation 

by elephants [59,60]. These studies used a coarser assessment than we did, with 667 m pixels [60] as 

compared with our 250 m MODIS pixels. At finer scales, however, our spatial regression analyses reveal 

a negative relationship between MSDI values and elephant utilization. This indicates that areas showing 

high elephant utilization tend to show greater homogeneity (lower standard deviation) than those with 

less utilization. While this is not apparent across an entire landscape, it is likely to be valid within a patch 

heavily utilized by elephants. Studies in southern Africa have shown increases in shrubs under growing 

elephant numbers, often leading to dense, fairly homogenous, shrub layers [64,120–122]. Thus, elephant 

utilization may lead to increased homogeneity within patches through removal of large trees and 

promotion of more uniform shrub forms, resulting in lower MSDI values. 

A homogenizing influence of elephants is likely to be especially strong near the Chobe River, which 

is known to influence elephant utilization of vegetation in the park [65], and was emphasized in our 

findings. The river provides the primary source of water in the dry season and is used heavily by 

elephants due to their high water requirements. This area has scare vegetation and large amounts of bare 

soil, due in part to extensive trampling by large herbivores (Figure 7). Such an area will contrast strongly 

with nearby vegetation and water, resulting in very high MSDI values along the river’s edge (Figures 2 

and 3, Supplementary Materials Figures S1–S3). While large amounts of bare soil have been considered 

synonymous with high levels of elephant impact [59], we feel this oversimplifies the situation. Our study 

attempts to detect modification of vegetation structure by elephants, not just areas where all plants have 

been removed. By definition, this imposes some limitations on our assessment.  

The thin riparian fringe along the river’s edge has a long history of high utilization, reducing the 

prevalence of large trees [64]. The way our data were collected, this absence of trees results in low 

records of utilization, helping explain why the highly utilized river’s edge predicts relatively low levels 

of utilization. This is demonstrated by the kriged maps generated from our field data, which show lower 

utilization right along the river’s edge and increased utilization beyond this where woody vegetation is 

plentiful but distances to water are still moderate (Figure 6, Supplementary Materials Figure S4). 

Previous studies using the MSDI assessed only the standard deviation of the red band [42,44,123,124]. 

Because our interest was in assessing modification of vegetation, we expanded this to consider MSDI 

values calculated on the near infrared (NIR) band, as well as on three vegetation indices used to assess 

savanna vegetation. Interestingly, all of our models showed similar trends regardless of the band or 

index used to calculate the MSDI (Table 1). Also, predictions across the riverfront using universal 

kriging offered similar results for all bands and indices (Figure 6, Supplementary Materials Figure S4). 

These similarities likely result from the MSDI’s emphasis of variability across the landscape rather than 

direction of pattern. Soil and vegetation show contrasting patterns of reflection in red and NIR bands, 

which are picked up by the MSDI. The three indices considered are derived from various combinations 

and transformations of the red and NIR bands (see Equations (1)–(3)), thus areas with patches of soil and 

vegetation should show higher standard deviations whether one is considering the bands or indices. 
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Figure 7. The river’s edge in Chobe National Park, Botswana, is highly utilized by elephants 

and other species in the dry season. Extensive trampling results in scare vegetation and large 

amounts of bare soil, influencing Moving Standard Deviation Index (MSDI) values for this 

area. Photo credit: T. Fullman. 

 

Our work also departed from previous studies by investigating the effect of changing the window size 

used in the standard deviation calculation. Previous studies used a 3 × 3-pixel window [42,44,123,124], 

and we added 5 × 5- and 7 × 7-pixel window sizes. Our analyses showed that while results were 

generally similar to smaller window sizes, a 7 × 7-pixel window resulted in lower model accuracy. 

Whether the 3 × 3- or 5 × 5-pixel window size offered better error reduction and explanatory power 

depended on the band or index used in the calculation. Interestingly, our evaluation showed that for the 

red band, a 5 × 5-pixel window size offered slightly better performance than the 3 × 3-pixel window 

used in previous studies. While it is unlikely that the general relationships highlighted in previous 

studies using a 3 × 3-pixel window on the red band would change if assessed with a 5 × 5-pixel window, 

our findings nonetheless suggest that future MSDI studies on the MODIS red band include a 5 × 5-pixel 

window along with the traditional 3 × 3. 

While there is a statistically significant relationship between the MSDI and elephant utilization, the 

explanatory power of this relationship is relatively low, as indicated by the low R2 values (Table 1). 

Comparison between the ordinary and universal kriging models agree with this, showing similar R2 and 

RMSE values between models with and without the effects of the MSDI considered (Table 2). This 

suggests that while a relationship exists between MSDI values and elephant utilization, there may be 
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other factors also influencing the MSDI. The presence of herbaceous vegetation may be one such factor. 

Vegetation indices, such as those used here in calculation of the MSDI, provide information about 

primary productivity but do not directly distinguish between reflectance from woody and herbaceous 

vegetation without additional information considering phenological shifts [46,86]. In light of this, the 

presence of herbaceous vegetation underneath a tree canopy may mask the changes in woody vegetation 

structure in which we are interested. This is likely another reason why the edge of the Chobe River, 

where both woody and herbaceous cover has typically been removed (Figure 7), showed such high 

MSDI values. The moderate spatial resolution of MODIS pixels at 250 m may also have influenced our 

results. The MSDI appears most suited to demonstrate coarse-scale trends reflecting increased heterogeneity 

due to patchy foraging across a landscape. Identifying finer-scale patches of high elephant use, however, 

may require imagery at finer spatial scales. Previous attempts to detect elephant impacts with remotely 

sensed methods have often used finer-scale imagery [125,126] or aerial photography [64,120]. While 

Scan Line Corrector issues with the Landsat 7 ETM+ satellite prevented evaluation of the MSDI using 

Landsat imagery, there is hope that with the newly launched Landsat 8 satellite, such analyses may be 

possible in the future. The cost of such finer-scale analyses will likely be in the extent that they can be 

generalized to inform regional management. Because of the importance of managing elephants not just 

in Chobe but across the entire Kavango-Zambezi Transfrontier Conservation Area, methods should 

ideally be developed that link findings from finer resolution images with coarser images like MODIS to 

provide information on regional patterns. In the meantime, while the MSDI provides information about 

elephant utilization, it does not seem to have a strong enough pattern to be effective for monitoring 

elephant impacts. 

5. Conclusions  

The United Nations Environment Programme (UNEP) recently released a policy brief on ecosystem 

management in Africa, which emphasizes the importance of maintaining healthy ecosystems for human 

well-being [127]. The brief points out that gaps in knowledge are one of the greatest impediments to 

developing an ecosystems approach to development and stresses the need for research and monitoring of 

ecological systems to enhance management decision making. Techniques to monitor agents of land 

cover change, such as elephants, using remote sensing can provide this much-needed information.  

A remotely-sensed measure of vegetation change due to elephants will allow a direct evaluation of  

how growing elephant densities over time result in altered levels of impact, a key concern for 

management [20]. It will also allow assessment of elephant impacts in places that have limited access for 

studies on the ground (such as Angola in the recent past). 

We undertook the quantitative assessment of the Moving Standard Deviation Index (MSDI) called for 

by Robinson et al. [60]. Our findings confirm that at coarse scales there is a positive relationship 

between the MSDI and elephant utilization. At finer scales, however, we found that MSDI values are 

negatively related to elephant utilization of vegetation. This appears to be due to differences in 

within-patch and between-patch effects of elephants. While the patchiness of elephant utilization 

increases overall landscape heterogeneity, there may be a homogenizing effect of elephant herbivory at 

finer spatial scales. Although the relationship between the MSDI and elephant utilization is significant, 

the low explanatory power of our models suggests the MSDI may not be an effective means for 
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distinguishing elephant-modified vegetation in Chobe National Park. It is unclear whether similar trends 

will hold for other systems with different types of vegetation. It would be interesting to see whether the 

MSDI is more effective at distinguishing elephant impacts in areas of higher soil nutrients, such as East 

Africa, as well as in succulent thicket ecosystems of South Africa, where elephant impacts are likely to 

result in vegetation removal, rather than coppice regrowth [24]. While the MSDI does not fully capture 

elephant utilization patterns, the potential value of remote assessment for informing management 

decisions of elephants and their impacts across Africa argues for its continued development. 
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