
Land 2014, 3, 524-540; doi:10.3390/land3020524 
 

land 
ISSN 2073-445X 

www.mdpi.com/journal/land/ 

Article 

Mapping Woodland Cover in the Miombo Ecosystem:  
A Comparison of Machine Learning Classifiers 

Courage Kamusoko 1,*, Jonah Gamba 2 and Hitomi Murakami 3 

1 Asia Air Survey (AAS) Co., Ltd., Kanagawa 215-0004, Japan 
2 TOPS Systems Corp., Tsukuba 305-0032, Japan; E-Mail: jgamba@topscom.co.jp 
3 Department of Computer and Information Science, Faculty of Science and Technology,  

Seikei University, Tokyo 180-8633, Japan; E-Mail: hi.murakami.g@gmail.com 

* Author to whom correspondence should be addressed; E-Mail: cou.kamusoko@ajiko.co.jp;  

Tel.: +81-44-969-7510; Fax: +81-44-965-0917. 

Received: 21 April 2014; in revised form: 13 June 2014 / Accepted: 13 June 2014 /  

Published: 20 June 2014 

 

Abstract: Miombo woodlands in Southern Africa are experiencing accelerated changes 

due to natural and anthropogenic disturbances. In order to formulate sustainable woodland 

management strategies in the Miombo ecosystem, timely and up-to-date land cover 

information is required. Recent advances in remote sensing technology have improved land 

cover mapping in tropical evergreen ecosystems. However, woodland cover mapping 

remains a challenge in the Miombo ecosystem. The objective of the study was to evaluate 

the performance of decision trees (DT), random forests (RF), and support vector machines 

(SVM) in the context of improving woodland and non-woodland cover mapping in 

the Miombo ecosystem in Zimbabwe. We used Multidate Landsat 8 spectral and spatial 

dependence (Moran’s I) variables to map woodland and non-woodland cover. Results show 

that RF classifier outperformed the SVM and DT classifiers by 4% and 15%, respectively. 

The RF importance measures show that multidate Landsat 8 spectral and spatial variables 

had the greatest influence on class-separability in the study area. Therefore, the RF 

classifier has potential to improve woodland cover mapping in the Miombo ecosystem. 

Keywords: Zimbabwe; Miombo woodlands; Landsat 8; decision trees; random forests; 

support vector machines 

 
  

OPEN ACCESS



Land 2014, 3 525 

 

 

1. Introduction 

Miombo woodlands are extensive in the Democratic Republic of Congo (DRC), Angola, Tanzania, 

Mozambique, Malawi, Zambia and Zimbabwe [1,2]. These broad-leaved deciduous  

woodlands—dominated by tree species, such as Brachystegia, Julbernardia, and Isoberlinia—provide 

important ecosystem, socioeconomic and cultural services in Central and Southern Africa [3]. 

In Zimbabwe, Miombo woodlands cover approximately 42% of the country [4]. The woodlands are the 

primary source of firewood, construction poles, medicine, and food in rural areas [5]. However, rapid 

population growth and tobacco farming by newly resettled farmers have increased deforestation and 

woodland degradation in the Miombo ecosystems [4]. As a result, the livelihoods of two-thirds of the 

rural population dependent on the Miombo ecosystem is under threat unless sustainable agro-forestry 

development policies are implemented [5]. 

Timely and up-to-date land cover information is required to formulate and implement effective 

sustainable agro-forestry development policies in the Miombo ecosystem. However, such land cover 

information is sparse or lacking given the high cost of conducting conventional land cover surveys [4]. 

Medium resolution satellite remote sensing data are relatively inexpensive sources for mapping land 

cover at a regional scale [6]. More recently, there has been an increased use of medium resolution 

satellite data, such as Landsat Thematic Mapper (TM) and Enhanced Landsat Thematic Mapper 

(ETM+) imagery, since the datasets are available for free [7]. Although Landsat data have improved 

forest cover mapping in tropical evergreen rainforest ecosystems [8,9], woodland cover mapping 

remains a challenge in the Miombo ecosystem [10]. This is mainly attributed to a number of 

environmental and anthropogenic factors. First, the Miombo woodlands exhibit high degrees of spatial 

heterogeneity (e.g., tree density and size), which is influenced by soil type, fire, herbivores, land 

use, etc. [11]. Consequently, it is difficult to quantity biophysical properties of the Miombo woodlands 

(e.g., canopy cover, structure), especially in areas where closed and open woodlands (characterized 

by wooded grassland, and bushland) alternates [12]. Second, it is difficult to discriminate closed and 

open woodlands at the resolution of Landsat 8 imagery because the two land cover types are close in 

space [13]. Third, woodland cover is influenced by seasonal changes. Therefore, spectral reflectance 

patterns of the woodland vary according to water availability during the short rainy season (November 

to March) and long dry season (April to October) [13]. Previous studies have used satellite imagery 

(e.g., Landsat and SPOT) to map land cover in the Miombo woodlands and dry forests [14–17]. 

However, these studies used single-date satellite imagery, which fail to capture dynamic vegetation 

changes in the Miombo ecosystem [18]. 

Spectral mixture analysis classifiers (which assume that a pixel’s spectrum is a linear combination 

of spectral distinct endmembers) [19,20] have been recommended to map woodland cover in the dry 

Miombo ecosystems [10]. While spectral mixture analysis classifiers have been relatively successful 

for mapping land cover in the Brazilian Cerrado [10,21], the classifiers have some limitations [22]. 

First, spectral mixture analysis classifiers assume linear spectral mixing of land cover reflectance [23]. 

However, past studies have shown that land cover reflectance mix in non-linear trend, especially when 

multiple scattering effects from the background and canopy layers are taken into consideration [24,25]. 

Second, the number of endmembers (e.g., vegetation, high albedo, low albedo) must account for the 

number of classes in the pixel, and their spectral separability should be sufficient in order to avoid 
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confusion [26]. Nonetheless, past studies have revealed that endmembers do not generally correspond 

to physical land cover components like tree canopy [22,23]. 

Recently, researchers have shown that non-parametric machine learning classifiers such as  

decision trees (DT), support vector machines (SVM), and random forests (RF) improve land cover 

mapping [22,27–31]. For example, Rogriguez-Galiano et al. [32] and Grinand et al. [33] successfully 

applied machine learning classifiers for mapping land cover in the Mediterranean and evergreen 

tropical ecosystems. However, machine learning classifiers have not been tested for mapping land 

cover in general and woodland cover in particular in the Miombo ecosystem. The objective of this 

study is to evaluate the performance of DT, SVM, and RF classifiers in the context of improving 

woodland and non-woodland cover mapping in the Miombo ecosystem in Southern Africa. Taking 

Mazowe district in Zimbabwe as an example, we used multidate Landsat 8 spectral and spatial 

(Moran’s I) variables to map woodland and non-woodland cover. This study area was selected because 

of the complex nature of land use and management practices (e.g., a mixture of commercial and 

subsistence agriculture), which has resulted in a landscape mosaic that comprise closed and open 

woodland communities, grassland, and agriculture fields. 

2. Study Area 

Mazowe district is located in Mashonaland Central province of Zimbabwe (Figure 1). The study 

area covers an area of approximately 4662 km2. The altitude varies from 1000 m to 1740 m above  

sea level (Figure 1). The highest temperatures usually occur in the second half of October or early 

November with an average maximum temperature in the range of 26 °C–35 °C. The study area 

receives a mean annual rainfall ranging from 700 mm to 1000 mm and is distributed from mid-October 

to April. 

Figure 1. Location of Mazowe district, Zimbabwe. 
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The study area is dominated by a complex landscape of closed and open Miombo woodlands, 

bushland, grassland and agriculture. Soil varies from ferralsols, luvisols, lithosols, and nitosols. The 

major economic activity in the study area is commercial and semi-subsistence agriculture, with major 

crops such as tobacco, cotton, maize, and groundnuts, as well as vegetables, in those areas with 

irrigation. However, production of major rainfed crops is usually affected by unreliable rainfall 

patterns, particularly the late onset of the rainy season. According to the 2012 population census, 

population increased from 198,319 in 1992 to 232,885 in 2012 [34]. 

3. Methodology 

The methodology used in this study comprised four major components, namely data acquisition, 

pre-processing, land cover classification, and accuracy assessment (Figure 2). The following subsections 

describe data, classification scheme design, and land cover classification procedures. 

Figure 2. Land cover classification flow diagram. 

 

3.1. Data 

We acquired four multidate Landsat 8 scenes (Table 1) for image processing and classification. 

Landsat 8 (originally called Landsat Data Continuity Mission) was launched on 11 February 2013, as 

the eighth satellite in the Landsat program [35,36]. The sensor consist of the Operational Land Imager 

(OLI) and the Thermal Infrared Sensor (TIRS) sensors, which provides images at a spatial resolution 

of 15 m (panchromatic), 30 m (visible, NIR, SWIR), and 100 m (thermal) [35,36]. All Landsat 8 image 

dates were selected from cloud-free scenes acquired during the post-rainy and dry seasons (Table 1)  

in order to account for seasonality or vegetation phenology in the classification. The four multidate 

Landsat 8 scenes were georeferenced to the Universal Transverse Mercator (UTM) map projection 

(zone 36 south). We did not perform atmospheric correction because the Landsat 8 multidate composite 

was classified as if it were a single image [20,33,37]. In addition, we used Moran’s I to derive spatial 

dependence (autocorrelation) information from the Landsat 8 scene acquired on June 2013 because this 
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image captures healthy woodland canopy (leaf-on). Spatial dependence (autocorrelation) measures  

the degree to which spatial features and their data values are clustered in space (positive spatial 

autocorrelation) or dispersed (negative spatial autocorrelation) [38]. Past studies show that Moran’s I 

improves land cover mapping, particularly in open canopy woodland areas [31,32]. A total of 

27 features (that is 24 bands from Landsat 8 and three Moran’s I images) were used for classification 

(Table 1). 

Table 1. Summary of datasets used in the study. 

Sensor Path/Row Acquisition Date Remarks 

Landsat 8 170/72 19 April 2013 Post-rainy season data 
Landsat 8 170/72 6 June 2013 Post-rainy season data 
Landsat 8 170/72 25 August 2013 Dry season data 
Landsat 8 170/72 28 October 2013 Dry season data 

Moran’s I band 4  6 June 2013 Derived from band 4 
Moran’s I band 5  6 June 2013 Derived from band 5 
Moran’s I band 7  6 June 2013 Derived from band 7 

Reference datasets were developed for classifier training (Table 2) and classification accuracy 

assessment for 2013. The primary reference data was obtained from very high-resolution images  

(e.g., Quickbird image) in Google Earth™ [39]. In addition, secondary reference data for 2013 was 

obtained from Global Positioning System (GPS) points collected in September 2012. 

Table 2. Land cover classification scheme and the total number of training pixels used with 

the classifiers. 

Land Cover Description Training Pixels

Closed 
woodland: 

All wooded areas with over 20% of the deciduous trees above 5 m in height. 
It also includes riverine vegetation with sparse grass cover, mainly of 
perennial species. 

769 

Open 
woodland: 

Open deciduous or scattered trees with a canopy cover of about 5%–20% and 
height greater than 5 m. This class also includes a varying density of small 
shrubs and bush. The grass cover is well developed and continuous due to the 
low canopy cover. 

584 

Grassland: Dominant grass cover areas with sparse or no shrubs and bush or trees. 721 

Agriculture: 
This class includes areas currently under crop, orchards,  
land under irrigation, cultivated land or land being prepared for cultivation. 

423 

Others: 

Non-vegetated areas such as bare rocks, or areas with very little vegetation 
cover (excluding agricultural fields with no crop cover), where soil exposure 
is clearly apparent. This class also includes quarries, mine dumps and 
settlement areas. 

799 

Water: Rivers and reservoirs. 253 

3.2. Classification Scheme Design 

A modified land cover classification scheme was used for image classification. The modified land 

cover classification scheme is based on the Forestry Commission (Zimbabwe) woody cover classes 
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and the author’s a priori knowledge of the study area. The original land cover classes were modified 

with the aid of very high-resolution images (e.g., Quickbird image) from Google Earth™ [39] and 

fieldwork. In total, six land cover classes were considered in this study: (1) closed woodland; (2) open 

woodland; (3) grassland; (4) agriculture; (5) others; and (6) water. Detailed descriptions of these land 

cover classes are provided in Table 2. 

3.3. Land Cover Classification 

We used DT, RF, and SVM classifiers available in R [40] for land cover classification (Figure 2).  

R is a free and open source statistical and computer graphic software, which offers a wide range of 

machine learning classifiers. 

Decision trees (DT) are non-parametric and hierarchical (top-down) splitting classifiers, which use 

a sequence of decisions to classify objects of interest [41,42]. Generally, DT classifiers are composed 

of a root node, a set of interior nodes and terminal nodes called “leaves” [41]. A multispectral remote 

sensing dataset is subdivided into categories based on a splitting mechanism, which chooses the best 

feature to split the dataset [43]. The CART (classification and regression trees) and C4.5 are the most 

commonly used decision trees [44,45]. The former is a binary classifier that uses the Gini impurity 

index to measures the impurity of a data partition, while the latter is a multiple classifier that uses 

information gain as a feature selection measure for node splitting [42]. The advantages of the DT 

classifiers are: (i) they can easily integrate numerical and categorical data; (ii) require less training time 

compared to artificial neural networks (ANN) and SVM while achieving similar accuracies [46]; and 

(iii) are free of normal distribution assumptions [47]. However, DT requires large training samples for 

tree classification and the stability of trees is affected by outliers or small changes in training data [47]. 

In this study, the CART algorithm available in the rpart package [48] was used to build a decision  

tree and classify the multidate Landsat 8 spectral and Moran’s I spatial dependence variables. The DT 

parameters were set as follows: the minimum split (Min Split) was specified as 20; maximum depth 

(Max Depth) was specified as 30; minimum bucket (Min Bucket) was specified as 7; and complexity 

parameter (cp) was specified as 0.01. The minimum split specifies the minimum number of observations 

that exist at a node before it is considered for splitting, while the minimum bucket size is the minimum 

number of observations in any leaf node [48]. The maximum depth is used to limit the depth of trees, 

whereas the complexity parameter is used to control the size of the decision trees and to select the 

optimal tree size (that is, for pruning the decision trees) [48]. 

Random Forests (RF) is an ensemble (collection) classifier, which uses bagging (bootstrap 

aggregated sampling) to build many individual decision trees for final classification [31]. The 

algorithm uses a random subset of predictor variables to split an observation data into homogenous 

subsets [31]. The node-splitting variable with the greatest increase in data purity (variance or Gini) is 

selected, which gives the overall model more generalization capacity before and after the split [23]. A 

majority voting procedure is used to produce the final labeling [43]. The RF classifier uses out-of-bag 

(OOB) sample data, which are derived from data that are not in the bootstrap sample to evaluate 

performance [43]. In addition, importance measures (mean decrease in accuracy or Gini index) are 

computed by comparing the proportion between misclassifications and OOB sample, which provides 

an unbiased estimation of the generalization error that is used for feature selection [32]. The 
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advantages of RF classifier are: (i) they can handle large database (e.g., thousands of input numerical 

and categorical variables); (ii) require less training time compared to other machine learning classifiers 

(e.g., ANN, SVM, boosting); (iii) are free of normal distribution assumptions; (iv) robust to outliers 

and noise; and (v) quantifies each input variable into importance measure [32,43]. We used the 

randomForest package [49] to classify all the Landsat 8 spectral and Moran’s I spatial dependence 

variables. The randomForest package is based on the original Fortran code, which was developed by 

Breiman [50]. In this study, 500 trees were used to construct the RF model. The parameter ntry, which 

represents the number of variables to be considered at every node, was specified as 5. For this RF 

model, ntry is the square root of the total number of variables used for classification. 

Support vector machines (SVM) are machine learning classifiers based on statistical learning  

theory [51]. The classifiers perform classification by constructing hyperplanes in a multidimensional 

space [52]. The SVM classifiers were introduced by Boser et al. [53] and Vapnik [54] to solve 

supervised classification and regression problems. In general, SVMs select the decision boundary from 

an infinite number of potential ones, leaving the greatest margin between the closest data points to the 

hyperplane, which are referred to as “support vectors” [29,55]. SVM employ a kernel function to 

transform the training data into higher dimensional feature space for non-linear classification 

problems [29]. In this regard, SVM are considered to be a kernel method since kernel functions are 

used to maximize the margin between classes. Therefore, the SVM have ability to delineate  

multi-modal classes in high dimensional feature spaces [56]. Previous studies have demonstrated 

the effectiveness of SVM for mapping land cover [57], especially in areas where training data is 

limited. However, SVM require more training time, especially if the dataset has many features. 

The SVM classifier available in the e071 package [58] was used to classify the multidate Landsat 8 

spectral and Moran’s I spatial dependence variables. We calibrated and fine-tuned the SVM classifier 

by changing the kernel functions (types) and regularization (penalty) parameter. In this study, 

the radial basis function was selected for classification since it had the best accuracy. 

4. Results and Discussion 

4.1. Classification Accuracy Assessment 

We used reference pixels for accuracy assessment, which were independent from the training area 

pixels used for land cover classification. A total of 959 sample points were collected as reference data 

for each date based on a random sampling approach. Four measures of accuracy assessment namely, 

the producer’s accuracy (accounting for errors of omission), user’s accuracy (accounting for errors of 

commission), overall accuracy and overall kappa were computed to evaluate classification accuracy. 

The producer’s accuracy or omission error show how well training set pixels were classified, while 

user’s accuracy or commission error indicates the probability that a classified pixel actually represents 

that land cover class on the ground [20]. The overall accuracy gives the total number of correctly 

classified pixels divided by the total number of reference pixels, while the Kappa statistic incorporates 

the off diagonal elements of the error matrices and represents agreement obtained after removing  

the proportion of agreement that could be expected to occur by chance [59]. In addition, we used the 

accuracy assessment method proposed by Pontius and Millones [60] to assess classification accuracy. 
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This method divides the disagreements between classification and reference into quantity disagreement 

and allocation disagreement. 

Table 3 shows the summary land cover accuracy assessment results for the RF, SVM, and DT 

classifiers. The overall classification accuracy for the RF, SVM, and DT classifiers were respectively, 

80%, 76%, and 65% with Kappa statistics of 76%, 70%, and 58% (Table 3). In this study, the overall 

classification accuracy for the RF classifier is 4% and 15% higher than that of SVM and DT 

classifiers, respectively. These results are in agreement with other studies, which have noted relatively 

good accuracy from the RF classifier [31]. The individual land cover class accuracies are generally 

high for the RF classifier, with the exception of grassland that has a low user’s accuracy of 53%.  

The SVM classifier have high individual land cover class accuracies for agriculture, others and water 

classes, while closed woodland, open woodland and grassland classes have lower individual class 

accuracies than the RF classifier (Table 3). Note that, individual class accuracy trend follows those of 

RF classifier, with the least accurate class being the grassland class, which exhibited low user’s 

accuracy (Table 3). Although the DT classifier achieved the lowest overall classification accuracy, 

individual class accuracies, are relatively high for the closed woodland class. However, open 

woodland, grassland, agriculture and others classes have low class accuracies. 

Figure 3 shows the analysis of classification errors in terms of quantity and allocation disagreements. 

The majority of classification errors for all classifiers are derived from allocation disagreement, which 

ranges from 14% to 19%. However, quantity disagreement for the DT classifier is very high (18%) 

compared to 5% and 6%, respectively, for SVM and RF classifiers (Figure 3). The quantity 

disagreement for the RF classifier is slightly higher than the SVM classifier despite the higher overall 

accuracy for the former (Table 3 and Figure 3). This is because the RF classifier for the grassland class 

is not stable as shown by a producer’s accuracy of 70% versus a user’s accuracy of 53% (Table 3). 

Although the quantity disagreement for SVM classifier is low (only 5%), the allocation disagreement 

is relatively high (19%) (Figure 3). This is attributed to low individual accuracies in open woodlands 

and grassland, which exhibits high commission error. For the DT classifier, both the quantity and 

allocation disagreements are high (Figure 3) because of low individual class accuracies, particularly 

for open woodland and grassland classes. While the single DT classifier performed poorly compared  

to RF and SVM classifiers, bagging DT algorithm which is used to improve DT was not tested 

in this study. 

Figure 4 shows that RF, SVM and DT classifiers identified relatively small closed woodland areas. 

However, conspicuous differences are observed in the open woodland and non-woodland areas. 

Generally, RF classifier produced a relatively modest classification of the open woodland areas, while 

the SVM classifier overestimated the open woodland areas. The DT classifier on the other hand 

underestimated the open woodland areas. To visualize the differences in the classified areas more 

clearly, we extracted six subset images that show Landsat 8 images acquired on 6 June 25 August and 

28 October 2013, as well as RF, SVM, and DT classified land cover maps at location A (Figures 4a 

and 5). Location A is a typically open woodland, subsistence agriculture and settlement area. As can be 

observed in the subset images of location A, the RF classifier extracted the open woodland, agriculture 

and other areas correctly, whereas SVM classifier overestimated the open woodland areas. Although 

the DT classifier managed to extract the closed woodland area, it however extremely underestimated 

the open woodland areas. Moreover, the DT classifier mislabeled open woodland and agriculture areas 
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as “others” class (Figure 5). The lower classification accuracy for the DT classifier, particularly for the 

open woodland and grassland areas is due to the small training pixel sample size used to construct the 

trees [47]. The DT and SVM classifiers results in lower classification accuracy for the open woodland 

and grassland areas because these classifiers fail to deal with inter-class variability differences caused 

by phenological changes (Figure 5). Furthermore, it should be noted that grassland areas had low 

accuracy compared to agriculture areas despite the fact that the two land cover classes are spectrally 

similar. This is because grassland areas are composed of small and fragmented patches that are 

difficult to discriminate, while agriculture areas are composed of large and homogenous patches that 

are relatively easy to classify. 

Table 3. Summary of land cover classification accuracies (%): random forests (RF), 

support vector machines (SVM), and decision trees (DT). 

Class 

RF SVM DT 

Producer’s 
Accuracy 

User’s 
Accuracy 

Producer’s 
Accuracy 

User’s 
Accuracy 

Producer’s 
Accuracy 

User’s 
Accuracy 

Closed 
woodland 

81 83 64 77 74 93 

Open 
woodland 

70 78 63 67 65 43 

Grassland 70 53 62 50 45 59 
Agriculture 88 78 94 82 75 38 

Others 85 97 91 93 54 86 
Water 100 100 100 100 100 100 

Overall 
Accuracy 

80 
 

76 
 

65 
 

Overall 
Kappa 

76 
 

70 
 

58 
 

Figure 3. Quantity and allocation disagreements for RF, SVM, and DT classifiers. 
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Figure 4. (a) Landsat 8 image in bands 6, 5, 4 (R,G,B) acquired on 6 June 2013 (note the 

square inset shows location A, while the red and black points shows validation and training 

areas, respectively); and land cover maps produced using (b) RF; (c) SVM; and 

(d) DT classifiers. 

 

(b)
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Figure 5. Subsets of Landsat 8 imagery in bands 6, 5, 4 (R,G,B) for location A acquired on 

(a) 6 June; (b) 25 August; and (c) 28 October; and subsets of land cover maps produced 

from (d) RF; (e) SVM; and (f) DT classifiers. 

 

4.2. Performance of RF Classifier for Woodland Cover Classification 

In order to gain deeper insights into closed and open woodland classification, we analyzed the 

relative importance of the contribution of the ten most important variables (Figures 6 and 7). The 

greatest contributions (with a mean decrease accuracy above 20) for the closed woodland class are 

derived from bands 4 (acquired on 6 June), 5 (acquired on 25 August), 4 (acquired on 19 April), and 5 

(acquired on 28 October). This shows that multi-seasonal bands used in this study improved woodland 

cover classification given the complex seasonal behavior of vegetation in the study area. Note that 

when only post-rainy season imagery is used, closed and open woodland classes as well as the 

grassland class have the same spectral reflectance (Figure 5a). This is because the increase in 

greenness during the rainy and post-rainy season is associated with woodland canopy and grassland 

cover, which are at the peak of their phenological cycle [61]. In contrast, grassland areas appear as 

bare ground during the dry season peak in August (Figure 5b). However, the increase in greenness is 

attributed to woodland cover canopy leaf-on during the early growing season in late October (Figure 5c), 

while grassland cover is still in senesced state [61]. Therefore, the use of late dry season imagery, 

especially band 5 (acquired on 28 October) improved closed woodland cover mapping. This is 

supported by Yang and Prince [14] who stated that vegetation classification (e.g., scrubland and 

Miombo woodlands) is more effective if Landsat data is acquired when trees are in leaf and the grass 

layer is senescing. Furthermore, band 5 (acquired on 19 April), band 7 (acquired on 6 June), Moran’s I 
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band 4 (6 June), band 5 (acquired on 6 June), band 4 (acquired on 28 October), and band 7 (acquired 

on 28 October) improved classification accuracy given that it had a relative importance contribution 

with a mean decrease accuracy between 15 and 20. The red (4), near infrared (5), and shortwave 

infrared (7) bands were the most important variables. In addition, Moran’s I band 4 also provided 

significant differentiation of the closed woodland and other land cover classes. 

Figure 6. RF variable importance measures for the closed woodland class based on mean 

decrease accuracy. 

 
Figure 7. RF variable importance measures for the open woodland class based on mean 

decrease accuracy. 
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For the open woodland class (Figure 7), the greatest contributions (with a mean decrease accuracy 

above 20) are derived from bands 4 (6 June), 6 (28 October), 5 (28 October), 7 (19 April), 4 (19 April), 

4 (28 October), Moran’s I band 4 (6 June), and Moran’s I band 5 (6 June). However, band 5 (19 April), 

band 2 (6 June) have a relative importance contribution with a mean decrease accuracy between 19  

and 20. The red (4), near infrared (5) and shortwave infrared (6 and 7) bands were the most important 

variables. As observed in the classification of the closed woodland, multi-seasonal bands also 

significantly improved the open woodland classification. For example, the combination of  

multi-seasonal bands and the post-rainy season Moran’s I bands 4 and 5 also provided significant 

contribution for the classification of the open woodland class. The results show the effectiveness of the 

RF classifier since one can evaluate the contribution of different spectral and spatial variables during 

the classification. 

5. Conclusions 

The objective of this study was to evaluate the performance of RF, SVM and DT classifiers for the 

classification of woodland and non-woodland cover in the Miombo ecosystem in Zimbabwe. We used 

multidate Landsat 8 spectral and spatial dependence variables for classification. The results show that 

the RF classifier had a classification accuracy of 80% (with a Kappa statistic of 76%), while SVM and 

DT classifiers had 76% and 65% (with Kappa statistics of 70% and 58%). The RF classifier significantly 

increased the classification accuracy of both the SVM and DT classifiers by 4% and 15%, respectively. 

The RF importance measures showed that multidate spectral and spatial variables provide the 

greatest influence on class-separability in the study area. In addition, the red (4), near infrared (5) and 

shortwave infrared (7) bands were important for the classification of closed and open woodland 

classes. The RF classifier discriminated closed woodland, open woodland, and non-woodland classes 

better than other classifiers. While the results show great promise of machine learning classifiers for 

classifying woodland cover in the study area, more studies are needed in other Miombo ecosystem in 

order to improve classification accuracy. For example, other spatial variables, such as digital elevation 

model (DEM), precipitation, and fire occurrence, can be included to improve woodland cover mapping 

in the Miombo ecosystem. 

In this study, freely available Landsat 8 images acquired in 2013 were used to map woodland cover 

in the Miombo ecosystem. This is important given the lack of woodland cover information in the 

region. Furthermore, this study has shown that multidate Landsat 8 images can be used to improve 

woodland cover mapping in the Miombo ecosystem. Last but not least, Landsat 8 sensor and other 

upcoming satellite sensors such as Sentinel 2 are opening a new era for mapping and monitoring 

woodland cover changes at the landscape scale. 
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