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Abstract: Identifying patterns and drivers of regional land use changes is crucial for 

supporting land management and planning. Doing so for mountain ecosystems in East 

Asia, such as the So-yang River Basin in South Korea, has until now been a challenge 

because of extreme social and ecological complexities. Applying the techniques of 

geographic information systems (GIS) and statistical modeling via multinomial logistic 

regression (MNL), we attempted to examine various hypothesized drivers of land use 

changes, over the period 1980 to 2000. The hypothesized drivers included variables of 

topography, accessibility, spatial zoning policies and neighboring land use. Before the 

inferential statistic analyses, we identified the optimal neighborhood extents for each land 

use type. The two archetypical sub-periods, i.e., 1980–1990 with agricultural expansions 

and 1990–2000 with reforestation, have similar causal drivers, such as topographic factors, 

which are related to characteristics of mountainous areas, neighborhood land use, 

and spatial zoning policies, of land use changes. Since the statistical models robustly 

capture the mutual effects of biophysical heterogeneity, neighborhood characteristics and 

spatial zoning regulation on long-term land use changes, they are valuable for developing 
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coupled models of social-ecological systems to simulate land use and dependent ecosystem 

services, and to support sustainable land management. 

Keywords: land-use change; driving factors; So-yang River Basin; multinomial logistic 

regression; heterogeneity; neighborhood effect 

 

1. Introduction 

Land use and land cover change (LUCC) is regarded as one of the prime determining factors of global 

environmental change, with significant impacts on ecosystems, climate and human vulnerability [1,2]. 

Human impacts on ecosystems mainly occur via land-cover conversion, land degradation or land-use 

intensification [3]. The impacts of LUCC are probably most serious in mountain regions, which are 

centers of global biodiversity and provide essential services for at least half of the global population [4]. 

Despite the fact that mountain ecosystems are changing rapidly in response to diverse natural and 

anthropogenic drivers and are characterized by high social-ecological heterogeneity, so far LUCC 

studies have not been as focused on mountain regions when compared to other areas for LUCC process [4]. 

Many LUCC researches for mountain regions focused on the land abandonment in upland areas, 

though other phenomena are also important LUCC processes in mountainous areas [5]. 

In land-use studies, the main goals include finding the biophysical and human drivers of land-use 

and land-cover change, and understanding how they affect the structure and function of terrestrial 

systems [6]. Drivers of land use change are defined as proximate and underlying factors [7]. 

Underlying driving factors such as the systemic and structural conditions of human-environmental 

relations, reflecting accessibility to land, labor, capital, technology and information, lead to proximate 

causes (human activities and immediate actions) of land-use changes at specific levels [3]. However, 

the make-up of driving factors for land-use changes differs across specific regions [8,9]. Moreover, the 

same driving factors may generate different land-use change patterns in different locations. Studies on 

land-use changes therefore need to account for spatial characteristics at the landscape scale [10]. 

Consequently, one pertinent research question is how various driving forces and actors cumulatively 

affect land-use change in a given spatial context. 

Models of land-use change could represent various aspects of complexity of land-use systems. 

These models analyze the causes and consequences of land use changes to better understand the 

functioning of the land use system, thereby supporting land use planning and policies [11–13]. These 

models make it possible to understand land-use changes by using selected variables, while trying to 

predict both the location and magnitude of changes [14]. In particular, descriptive LUCC models, 

based on spatially explicit influential statistics using regression analysis, explain relations between 

land-use changes and driving factors to understand underlying causalities assuming existing theories 

and hypotheses [9]. Multinomial logistic regression analysis is a widely used statistical approach to 

identify significant causal factors of LUCC with various types of independent variables reflecting 

socio-economic and environmental factors [15–17]. Once validated empirical statistical models can 

predict future land-use change patterns in response to different changing scenarios of selected driving 

factors, these models are helpful for informing land use planning practice and policy [14,18,19]. 
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Given the high social-ecological heterogeneity and diverse natural-anthropogenic drivers of changes 

in mountain ecosystems [4], a comprehensive understanding of the potential drivers of LUCC is 

currently lacking in existing studies of mountainous areas. While much research focuses on specific 

land-use transitions such as urbanization, urban sprawl, or (de)forestation, analyses of multi-directional 

land-use conversions are comparably rare, despite their importance for guiding integrated regional 

planning. In a heterogeneous mountain environment, spatial interactions, such as the effects of 

neighborhood land-use patterns on LUCC at particular locations, are important drivers [20]. To our 

knowledge no LUCC studies in Asia-Pacific mountainous areas have considered these spatial 

interactive effects. So far there have been only a few LUCC studies in the European Alps that have 

considered neighborhood effects (e.g., Rutherford et al. [15]). However, these studies are still limited 

to the assumption of a fixed neighborhood extent (i.e., 5 × 5 pixels) given that the optimal extent may 

vary according to land-use types and regional conditions [20,21]. 

So far, research on LUCC in South Korea has focused on spatio-temporal patterns and causal 

factors of urban expansion, in part due to rapid urbanization since the 1960’s. Mountainous areas, 

which cover over 60% of the country, were excluded from these studies, with the exception of some 

forest cover change research. These studies were conducted with the aim of identifying the probable 

causes of land-use change using logistic regression analysis [22,23], or to predict future land-use 

change based on existing prediction models that were built on the identified causation patterns of urban 

areas [24,25]. Land-use studies in rural areas mainly focused on patterns of spatio-temporal changes to 

understand urbanization processes at rural scales [26–28]. However, land-use changes in rural 

mountainous areas are significant and relevant issues in South Korea, leading to significant effects on 

ecosystem functioning through, e.g., soil and water pollution by chemical fertilizers [29]. Rural 

mountainous areas have experienced spatially concentrated land-use change and forest transitions due 

to various driving forces such as regional policies, population migration and changes in rural industrial 

structures [30]. Moreover, mountainous areas in East Asia have experienced reforestation phenomenon 

based on governmental planning and zoning policies since the 1970’s [30,31]. Although these policies 

were helpful in maintaining forest resources, there were some environmental problems from intensive 

agricultural activities in these regions. Currently, although understanding of land-use change processes 

in agricultural mountainous areas in East Asia are necessary to solve environmental problems based on 

human-induced land-use, such issues are often poorly covered or missing in land-use studies. 

This paper aims to quantify spatio-temporal patterns of land-use and cover changes and their 

driving factors in a mountainous watershed of South Korea during archetypical periods of land 

transition (in sensu Foley et al. [1]). The period 1980–1990 is characterized by agricultural expansion, 

deforestation and moderate urbanization. In contrast the period 1990–2000 shows an agricultural 

contraction, reforestation but severe urbanization. These two periods represent typical land transitions 

of the region along an economic development path. To fill the gaps in current understanding of such 

land and cover change in mountainous areas, we examined the effects of neighborhood land-use 

and environmental factors on land-use changes along with a wide range of other socio-ecological 

explanatory factors. The general aim is to support regional land-use planning policy and practice, 

as well as the development of integrated land-use change models in the case study region or other 

similar areas. 
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2. Method 

2.1. Study Area 

The So-yang River is located in the north-eastern part of the Kang-won province, near the border 

between South and North Korea (Figure 1). This river is a major tributary of the Han River which 

originates in North Korea and flows across from North Korea to Chun-cheon in South Korea. The river 

is regarded as an important source of drinking water for the Seoul metropolitan area and as an 

important military site near the border of North Korea. 

Figure 1. So-yang River Basin in South Korea, Study area (128°19′22″~128°12′11″ N, 

37°53′53″~37°58′50″ E). 

 

It is difficult to utilize land resources in an efficient way due to geographical characteristics of 

the region as it is also strongly regulated for environmental (water regulation) and security reasons. 

Forests, which cover 90% of the land area in the region, although mainly publicly owned, have been 

excluded from regional development plans. Due to natural (mountainous topographic) and social 

(regulation policies) constraints, land-uses activities have focused on riverside areas where there are 

more opportunities to develop agricultural and industrial facilities than forest areas with overlapping 

land regulations [32]. These limitations on regional development made people immigrate to other 

urban areas, to find income sources and jobs, and eventually have withered regional economies [32]. 

Moreover, dam construction in the So-yang River worsened agricultural conditions, with local climate 

changes and accessibilities to infrastructures adding further to the difficulties [33]. Population in the 
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region decreased following the dam’s construction and urban migration trend in South Korea since 

1960’s, this has generated fragmented land use, such as abandoned houses and farm areas [34]. While 

population and residential areas have decreased in rural upstream counties, there has been urbanization 

of residential areas and increased sprawl of tourism facilities downstream in Chun-cheon city [34]. 

Highland farming has expanded since the 1970’s to produce commercial crops in agricultural areas and 

has become a major income source for farm households [33]. One of the most serious environmental 

problems related to land-use change by human activities arose in the summer of 2006. During that 

summer, typhoons and heavy downpours of rain lead to a significant decrease in water quality by 

siltation and water pollutants from agricultural land. Highland agriculture, where soil is reconditioned 

to retain soil fertility, is considered as a major source of soil erosion, soil degradation and water 

pollution [35,36]. In recent years, regional governments have tried to foster organic management of 

fields, wary of soil and water pollution caused by highland-farming. They offered incentives to people 

that returned to organic farming [37]. By efforts to improve housing and recreational facilities in 

the area, some towns have recently experienced population growth [34]. In this situation, it is 

necessary to understand the characteristics of underlying land-use changes and to identify solutions for 

future environmental and land-use plans. 

2.2. Multinomial Logistic Regression Modeling of Land-Use Changes 

Multinomial logistic regression (MNL) is an extended form of binary logistic regression used 

widely in land-use change studies [15,16]. MNL allows multiple categories as dependent variables that 

reflect land-use types, while independent variables that reflect land-use change determinants are 

normally continuous variables [38]. The results from parameter estimation indicate probabilities of 

change for specific land-use types related to a reference category of unchanged areas, the sum of 

probabilities for each land-use change are 1 [39]. MNL models estimate the direction and intensity of 

the dependent variables used as explanatory variables by predicting a probability outcome associated 

with each category of the dependent variable. The probability that Y = h can be stated as: ( = ℎ) = ′∑ ′
 (1)

where m denotes the land cover classes used for analysis, β is a vector of estimation parameters and xl 

are the exogenous variables for all Y and at all locations l. This equation holds, if the error terms are 

independently and identically distributed as log Weibull [38,40]. Normalizing all probabilities yields a 

log-odds ratio [38,41]: ln = ′ ( − ) (2)

The dependent variable is expressed as the log of the odds of one alternative, relative to a base 

alternative. If model assumptions hold, the maximum likelihood estimators are asymptotically 

normally distributed, with a mean of zero and a variance of one for large samples. The significance of 

estimators is tested with z-statistics, which are reported in the output tables. Likelihood-ratio (LR) tests 

compare the log likelihood from the full model with that of a reduced model omitting explanatory 

variables. To test the hypothesis with (m-1) parameters, a likelihood-ratio and Wald test can be used [16]. 
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We used MNL models of multi-directional conversions of urban, forest and agricultural types 

during the periods of 1980-1990 and 1990-2000 to determine patterns and factors of LUCC 

phenomena reflecting human-environmental interactions (Figure 2). Urbanizations and agricultural 

expansions are typical examples of human-driven LUCC that have altered the landscape and 

ecosystems drastically [42]. Forest change is also regarded as a significant LUCC process because it is 

the dominant cover type in the region and central to the artificial LUCC in the marginal areas.  

Figure 2. Three types of multi-directional conversions for three corresponding multinomial 

logistic regression (MNL) models (Note: Each model will be considered in two periods: 

1980–1990 and 1990–2000. (Category with * is used as reference category reflecting 

unchanged land). 

 

Validations of models are evaluated using the area under relative operating characteristics (ROC). 

The area under the ROC curve (AUC) is an index of discrimination accuracy that can validate 

possibilities of land-use changes independent of any specified quantity of land-use changes. The index 

is 1 when the model has perfect assignments to probability of land-use changes. If ROC is 0.5 the model 

has random probability. If the index is higher than 0.5 the model performs better than chance [43,44]. 

2.3. Explanatory Factors, Their Causal Hypotheses and Data Sources 

Land-use maps of 1980 produced from Landsat MSS with a 60 m × 60 m resolution and 1990 and 

2000 produced from Landsat TM satellite imagery with a 30 m × 30 m resolution are obtained from 

the website of the Korean Water Management Information System [45]. To determine patterns and 

factors of land-use changes, urban, forest and agriculture land-cover types are selected in this research. 

Pixels that are classified as water are excluded prior to land use change analyses to simplify extraction 

of correct land-use types. Variables on land-use changes are diverse and often selected differently 

according to their expected effect on land-use changes [46]. Environmental variables are mapped at a 

resolution of 90 m and produced by DIGEM 2.0 software [47]. Rainfall data are interpolated from 

weather stations data using an Inverted Distance Weight (IDW) method. Distance variables are 

calculated based on digital base maps, all done by ArcGIS 9.3’s spatial analyst tool. In this research, 

the environment, distance, neighborhood and population variables reflecting various characteristics of 

the region are hypothesized as explanatory factors of land use changes.  
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Table 1. Selected explanatory variables, their hypothesized effects, and data sources. 

Variables Abbreviation 

Hypothesized Effect 

on Conversion to ... Data Source 

Urban Forest Agri 

Biophysical 

Summer rainfall (mm) S_RAIN ― + ― WAMIS 1 

Altitude (m) ALT ― + ― Aster GDEM 

Slope (°) SLO ― + ― 
Extracted from GDEM using 

DIGEM 2.0 (Conrad, 1998 [47] ) 

Upslope contributing area (m2/m) UPS ― + ― 
Extracted from GDEM using 

DIGEM 2.0 (Conrad, 1998 [47]) 

Wetness index (=in (UPS/tan(SLO)) WET ― + ― Calculated based on UPS and SLO 

Distance 

Distance to road (m) D_ROAD ― + ― ITS 2 

Distance to stream network (m) D_STR ― + ― WAMIS 

Distance to urban area (m) D_URBAN ― + ― WAMIS land-cover maps 

Neighboring Land-Use 3 

Enrichment factors of urban EF_URBANi 4 + ― ― Extracted from LUCC maps 

Enrichment factors of others EF_OTHERi + ― + Extracted from LUCC maps 

Enrichment factors of forest EF_FORESTi ― + ― Extracted from LUCC maps 

Enrichment factors of agriculture EF_AGRIi ― ― + Extracted from LUCC maps 

Land Regulation Policy 

Regulation Zone REG5 ― + ― WAMIS 

Population 

Population density (people/km2) P_DENS + ― + Statistical data 

1. WAMIS (Water Management Information System) in South Korea; 2. ITS (Intelligent Traffic System) in 

South Korea; 3. see Section 2.4 for detailed explanation; 4. where i = optimal neighborhood size of each land-use 

type (see Section 2.4 for detailed calculation procedure); 5. REG = 0 is no protection mode applied as 

a redundant variable, REG = 1 is natural conservation code applied from 1971, REG = 2 is national park code 

applied from 1970. 

Rainfall is selected as an expected climate LUCC factor, because rainfall fluctuation and amounts 

generate changes in crop yields and land-use practices [48]. In this research, we used summer rainfall, 

because rainfall is centered in the summer monsoon and typhoons, generating significant flood damage 

to agricultural and urban areas. Among independent variables, geomorphologic factors reflecting 

topographic conditions are important for determining land-use changes. Elevation is regarded as a 

significant LUCC factor, as while lower elevation areas along rivers are generally more suitable for 

human settlements and agricultural activities than higher areas [49]. Slope is important for determining 

factors of land-use changes especially in mountainous areas, because residential areas are characterized 

by lowest slope and agricultural lands are organized around the residential areas with gentle slopes [50]. 

Upslope contributing area, reflecting runoff and flow of water, is selected as a factor representing 

potential and risk of agricultural production [51]. Wetness index is also an important variable and 

represents temporary spatial flow of water bodies in the event of rain. It is selected to determine 

hydrological influences on land-use changes and interactions between hydrology, soil, climate, and 

land-use [52]. Distance to urban areas, roads, and streams as natural and artificial land-use change 
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factors are set as LUCC factors because anthropogenic land-uses largely take place near roads and 

existing urban areas [53], as well as near river systems. Interactions between neighboring land-use 

types are major LUCC factors in many land-use models which influence decision-making processes of 

land-users and land-use policies. As patterns of land-use changes have self-organizing characteristics, 

such as urbanization, neighborhood interactions are considered as major factors of LUCC [20]. 

Moreover, phenomena of LUCC such as urbanization, forestation and agricultural expansion are likely 

to occur in boundary areas. For these reasons, enrichment factors to reflect neighborhood interactions 

are selected as expected driving factors. Human population is also a significant driving factor of 

LUCC. Urbanization and agricultural expansion are driven by population growth, while population 

changes affect regional socio-political and economic conditions [54]. Land regulation policies as a 

form of land zoning are significant land-use change factors, causing land use and environmental 

changes such as mitigation of deforestation [55]. In the So-yang River Basin, there exist many 

overlapping zoning policies to protect mountain and water sources [32]. We selected two zoning 

policies, one is a national conservation area, which was set to protect water sources and mountainous 

ecosystems and the other is a national park which was established to manage mountain resources under 

strong regulation. These two zoning policies are merged into one regulation variable as a categorical 

variable in our model, where a value of 1 is natural conservation areas designated in 1975 and value of 

2 is Sol-ak National Park designated in 1970, which means stronger land regulation to protect forest 

resources. These expected driving factors are hypothesized as expected determinants of land-use 

changes (Table 1).  

2.4. Neighborhood Interactions of Land-Use 

Neighborhood relationships to land-uses are regarded as important land-use change factors. 

Neighborhood relations are spatial interactions with adjacent areas who’s influence diminishes with 

distance [56,57]. To analyze and quantify neighborhood characteristics of land-use change, we used 

the concepts and methods of land-use enrichment factors, as proposed by Verburg et al. [21]. 

The enrichment factors refer to the abundance of a land-use type in the neighborhood of a specific 

raster cell, determined by the occurrence of the specific land-use type in the entire area [21,58,59]. 

The equation for enrichment factors is as follows: 

, , = , , / ,/  (3)

where Fi,k,d characterizes the enrichment of neighborhood d at location i with land-use type k. The 

shape and distance of the neighborhood from the central cell i is identified by neighborhood d (Figure 3). 

The result for each cell i means enrichments factors for the different land-use types k. This calculation 

is repeated for varying neighborhood sizes at different distances d. After this calculation, the average 

neighborhood characteristic for a specific land-use type l is calculated by extracting the average of the 

enrichment factors for all grid cells into a certain land use type l.  

, , = 1 , ,∈  (4)
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where L is the set of all locations with land-use type l and Nl, the total number of grid cells within this 

set. In this study, we used ArcGIS based calculations of enrichment factors as done by Hallin-Pihlatie [58]. 

The enrichment factors are presented on logarithmic scales to obtain equal scales for land-use types 

that occur more than average in the neighborhood (enrichment factor > 1) and less than average in 

the neighborhood (enrichment factor < 1). When the values are close to 0, there are no neighborhood 

effects for land-use and land cells are randomly distributed compositions of a random selection of grid-cells 

regardless of neighborhood effects. After calculating neighborhood enrichment factors, optimal 

neighborhood extent to give highest level of neighborhood explanation is selected for each land-use 

type [21]. As optimal neighborhood sizes are varied for each land-use type, different neighborhood 

sizes are considered in this model. 

Figure 3. Configuration of neighborhood size (advised from Verburg et al. [21] ). 

 

3. Results 

3.1. Temporal Land Cover Changes between 1980 and 2000 

In the first period from 1980 to 1990, the study area experienced growth in urban and agricultural 

areas as well as loss in forest areas. Although urban classes had low shares in the region, the rate of 

change in these classes is higher than for other land-use classes. Agricultural land-use increased in this 

period where forest remained constant as can be seen in (Table 2). Land-use change patterns between 

1990 and 2000 show differences when compared to the earlier period. While urban and forest areas 

have increased, agricultural land decreased in the later period. These land-use changes mainly occurred 

due to urban expansions in the Chun-cheon area. Forest changed to a small degree under the influence 

of zoning of national protection areas, which made it difficult to utilize forest resources. 

Table 2. Land-use changes between 1980 and 2000. 

Land-Cover 
Area (km2) Net Change 

80–90  

(% of Initial Area) 
90–00  

(% of Initial Area) 1980 1990 2000 
80–90 
(km2) 

90–00 
(km2) 

Urban 8.16 11.41 19.33 3.25 6.71 39.78 52.87 

Forest 2428.68 2411.70 2430.82 −16.97 19.10 −0.70 0.79 

Agriculture 108.01 119.81 113.03 11.80 −6.78 10.93 −5.66 

Others 18.15 20.08 16.81 1.93 −6.24 10.62 −27.12 
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3.2. Neighborhood Factors of Land-Use Changes 

To understand interactions of enrichment factors with land-use changes, we calculated 

neighborhood enrichment factors of pixels with land-cover changes in ArcGIS. Enrichment factors of 

changing areas of specific land-use types between 1980 and 1990 are presented in Figure 4. Most  

land-use types with neighborhood factors tend to become less influenced with increasing distance to 

the central cell. From this result, it was apparent that urban and agricultural land-use changes in these 

regions are related to existing urban areas, while forest expansion is mostly situated near land-use 

types such as grasslands and bare soil. All considered land-use types show negative correlations with 

forest enrichment factors, which are reflected in land-use changes. These occur less frequently in 

mountainous areas with forest, and also for forest expansions. These tendencies are also present in the 

next period between 1990 and 2000. New urban areas are located near the neighboring areas of 

existing urban lands, while forest and agricultural growths occur in the neighborhood of other land 

types and urban areas as seen in Figure 5. Land-use changes in this period also appeared in the areas 

dominated by forest, which have similar enrichment factors of distance and neighboring areas in 

comparison with the earlier period. 

Figure 4. Temporal land-use changes between 1980-1990 (a) and 1990-2000 (b) in  

the So-yang River Basin. 

 
(a) 
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Figure 4. Cont. 

 
(b) 

Compared to urban and agricultural land-use, new forest areas are more easily affected by the 

neighboring land-use as seen in Figures 5 and 6. Hence, enrichment factors of all land-use types to new 

forest areas reach threshold points with drastic decreases of neighboring enrichment factors. 

Figure 5. Enrichment factors (EF) of land-use changes between 1980 and 1990. 
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Figure 6. Enrichment factors (EF) of land-use changes between 1990 and 2000. 

 

The enrichment factors with the highest values for each land-use are used as boundaries 

determining neighborhood land-use variables in logistic regression analysis. In many cases, 

neighborhood relations are visible for the immediate neighbors. With these nearest neighbors, 

enrichment factors with neighborhood size (7 × 7 grid size) are used in logistic regression to represent 

influences of neighboring urban lands to new urban and agricultural areas, and the influence of 

neighboring forest to new agricultural areas in the first decade. In the later period, enrichment factors 

with neighborhood size (5 × 5 grid size) are added to represent influences of both neighboring forest 

and agricultural areas to new agricultural areas and neighboring urban areas to new urban areas. 

3.3. Land-Use Change Factors from Logistic Regression 

To extract land-use change factors and quantify the influence of explanatory variables, multinomial 

logistic regression models are applied. The statistical analyses are conducted for all grid cells in 

the region. The results of logistic models are illustrated for each land-use type in Tables 3–8. 

These models are applied to areas with a high probability of land-use change between two time 

periods. Odds ratio values indicate changes in odds of land-use changes upon changes on independent 

variables (explanatory variables) [20]. The values between 0 and 1 indicate that an increase in the 

values of independent variables leads to a decrease in possibility of land-use changes. On the contrary 

to this, values above 1 indicate that an increase in values of independent variables leads to an increase 

in possibility of land-use changes. [20]. In statistical results, environmental and neighborhood 

variables have higher or lower odds ratio values than distance variables with values around 1. This 

result could be interpreted as land-use changes are more likely influenced by changes on 

environmental and neighborhood variables. These logistic models have good explanatory ability with 

high degrees of AUC values with 0.751–977 (see Tables 3–8), which mean that land-use changes 

could be explained by independent variables [9,20]. These results make it possible to simulate 

locations of land-use change areas based on the independent variables used in this study.  

Results of urban change models are shown in Tables 3 and 4. Major driving factors affecting urban 

conversion are elevation and neighboring urban areas with significant probabilities. Urban areas with 

high elevation and small patches are easily converted to other land-use types. In the case of urban land-use 

changes, environmental factors like elevation and slope are less affected by urban changes when compared 

with other land cover changes. 
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Table 3. Factors of urban land-use changes using logistic regression (1980~1990). 

Variable 
Urban to Others Urban to Forest Urban to Agriculture 

Coefficient (B) Odds Ratio Coefficient (B) Odds Ratio Coefficient (B) Odds Ratio 

S_RAIN 0.013 ** 1.013 −0.002 0.998 −0.005 0.995 

ALT 0.010 ** 1.010 0.011 ** 1.011 0.005 * 1.005 

SLO 0.005 1.005 0.084 ** 1.088 0.015 1.015 

UPS −0.766 * 0.465 −0.364 0.695 −0.598 * 0.550 

D_RIV 0.001 * 1.001 0.000 * 1.000 0.0001 ** 1.001 

D_STR 0.000 1.000 0.001 1.001 −0.001 0.999 

P_DENS 0.000 1.000 0.000 1.000 0.000 ** 1.000 

EF_URBAN7 −0.019 ** 0.981 −0.024 ** 0.976 −0.012 ** 0.988 

EF_FOREST7 −4.875 ** 0.006 −0.401 669 0.416 1.515 

EF_AGRI7 −0.122 ** 0.865 −0.155 ** 0.856 −0.019 0.982 

Constant −6.647  1.162  5.492  

AUC 0.765  0.886  0.790  

*: Significant at p < 0.05; **: Significant at p < 0.01. 

Table 4. Factors of urban land-use changes using logistic regression (1990~2000). 

Variable 
Urban to Others Urban to Forest Urban to Agriculture 

Coefficient (B) Odds Ratio Coefficient (B) Odds Ratio Coefficient (B) Odds Ratio 

S_RAIN 0.016 * 1.016 0.020 ** 1.009 0.006 1.006 

ALT 0.000 1.000 0.003 ** 1.003 −0.001 * 0.999 

SLO −0.094 * 0.910 0.007 1.007 −0.058 ** 0.944 

D_STR 0.002 ** 1.002 0.000 1.000 0.001 1.001 

D_URBAN −0.009 0.991 0.016 ** 1.016 0.014 ** 1.014 

P_DENS −0.003 * 0.997 −0.004 * 0.996 −0.002 ** 0.998 

EF_URBAN5 −0.024 ** 0.977 −0.016 ** 0.983 −0.014 ** 0.986 

EF_FOREST5 −2.974 * 0.051 3.979 ** 53.458 1.313 ** 3.717 

EF_AGRI7 −0.073 0.930 0.132 ** 1.141 0.044 0.1.045 

REG = 1 −1.070 0.343 1.185 ** 3.272 0.378 1.459 

REG = 2 0.406 1.500 16.804 1.985 × 107 16.422 1.355 × 107 

REG = 0 0  0  0  

Constant −11.841  −18.684  −3.787  

AUC 0.751  0.901  0.804  

*: Significant at p < 0.05; **: Significant at p < 0.01. 

Results of land use change models in relation to forests are shown in Tables 5 and 6. Forest land-use 

changes are related to environmental factors and neighboring forest areas. In the case of forest 

changes, forest neighborhood variables show different correlation directions according to size of forest 

and neighboring urban areas. 

Agricultural land-use models are shown in Tables 7 and 8. Agricultural land-use changes have 

similar environmental driving factors as urban growth. These environmental factors reflecting 

topographical conditions are less influential to agricultural changes than forest. 
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Table 5. Factors of forest land-use changes using logistic regression (1980~1990). 

Variable 
Forest to Urban Forest to Others Forest to Agriculture 

Coefficient (B) Odds Ratio Coefficient (B) Odds Ratio Coefficient (B) Odds Ratio 

S_RAIN −0.001 0.999 0.000 1.000 −0.009 ** 0.991 

ALT −0.001 ** 0.999 0.000 1.000 −0.003 ** 0.997 

SLO −0.150 ** 0.860 −0.117 ** 0.890 −0.098 ** 0.907 

UPS −0.010 0.990 0.298 1.347 0.219 ** 1.245 

D_STR −0.001 * 0.999 0.001 1.001 −0.001 ** 0.999 

D_URBAN −0.002 ** 0.998 −0.001 ** 0.999 −0.001 ** 0.999 

P_DENS 0.000 1.000 0.000 1.000 −0.001 ** 0.999 

EF_FOREST3 1.815 * 6.143 2.005 ** 7.423 0.737 * 2.089 

EF_FOREST7 −6.513 ** 0.001 −6.137 ** 0.002 −3.583 ** 0.028 

EF_AGRI7 0.036 1.037 0.042 1.043 0.103 ** 1.108 

REG = 1 −1.125 0.325 0.988 * 2.685 −0.410 ** 0.664 

REG = 2 1.936 * 6.934 −18.356 1.067 × 10−8 −0.856 * 0.425 

REG = 0 0  0    

Constant 3.091  0.130  7.996  

AUC 0.977  0.953  0.950  

*: Significant at p < 0.05; **: Significant at p < 0.01. 

Table 6. Factors of forest land-use changes using logistic regression (1990~2000). 

Variable 
Forest to Urban Forest to Others Forest to Agriculture 

Coefficient (B) Odds Ratio Coefficient (B) Odds Ratio Coefficient (B) Odds Ratio 

ALT −0.002 0.998 −0.003 ** 0.997 −0.005 ** 0.995 

SLO −0.093 ** 0.911 −0.076 ** 0.927 −0.066 ** 0.936 

UPS 0.061 1.063 0.103 1.109 0.369 ** 1.446 

D_STR −0.003 * 0.997 0.000 1.000 −0.001 ** 0.999 

D_ROAD −0.001 0.999 0.000 1.000 0.000 ** 1.000 

D_URBAN −0.003 * 0.999 0.000 * 1.000 −0.001 ** 0.999 

EF_FOREST3 2.981 19.704 4.794 ** 120.751 −0.528 0.590 

EF_FOREST5 −4.849 * 0.008 −8.733 ** 0.000 −0.457 0.633 

EF_AGRI7 0.086 1.089 −0.068 * 0.934 0.162 ** 1.175 

Constant −0.429  1.504  −0.330  

AUC 0.951  0.939  0.942  

*: Significant at p < 0.05; **: Significant at p < 0.01. 

Table 7. Factors of agricultural land-use changes using logistic regression (1980~1990). 

Variable 
Agriculture to Urban Agriculture to Others Agriculture to Forest 

Coefficient (B) Odds Ratio Coefficient (B) Odds Ratio Coefficient (B) Odds Ratio 

S_RAIN 0.001 1.001 0.010 ** 1.009 −0.002 ** 0.998 

ALT 0.001 * 1.001 0.002 ** 1.002 0.003 ** 1.003 

SLO −0.050 ** 0.951 0.013 1.013 0.096 ** 1.100 

UPS 0.043 1.044 0.386 ** 1.471 0.096 * 1.101 

D_STR 0.001 ** 1.001 0.001 ** 1.001 0.000 1.000 

P_DENS 0.001 ** 1.001 0.001 ** 1.001 0.000 1.000 
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Table 7. Cont. 

Variable 
Agriculture to Urban Agriculture to Others Agriculture to Forest 

Coefficient (B) Odds Ratio Coefficient (B) Odds Ratio Coefficient (B) Odds Ratio 

EF_URBAN7 0.014 ** 1.014 −0.006 * 0.994 −0.013 ** 0.987 

EF_FOREST3 0.156 1.169 −0.759 ** 0.468 −0.610 ** 0.544 

EF_FOREST7 −1.013 0.363 −2.091 ** 0.124 0.958 ** 2.606 

EF_AGRI7 −0.016 0.985 −0.030 0.970 −0.085 ** 0.919 

REG = 1 0.793 * 2.209 1.535 ** 4.642 0.018 1.018 

REG = 2 −0.713 0.490 0.300 1.350 0.274 1.315 

REG = 0 0  0  0  

Constant −2.996  −9.419  −0.365  

AUC 0.821  0.778  0.785  

*: Significant at p < 0.05; **: Significant at p < 0.01. 

Table 8. Factors of agricultural land-use changes using logistic regression (1990~2000). 

Variable 
Agriculture to Urban Agriculture to Others Agriculture to Forest 

Coefficient (B) Odds Ratio Coefficient (B) Odds Ratio Coefficient (B) Odds Ratio 

S_RAIN −0.001 0.999 0.017 ** 1.017 0.015 ** 1.015 

ALT 0.000 1.000 −0.003 ** 0.997 0.002 ** 1.002 

SLO −0.020 ** 0.980 0.022 ** 1.022 0.052 ** 1.054 

D_STR 0.000 1.000 0.001 ** 1.001 0.000 ** 1.000 

D_URBAN −0.003 ** 0.997 0.000 1.000 0.001 ** 1.001 

P_DENS 0.000 ** 1.000 0.000 1.000 −0.001 ** 0.999 

EF_URBAN5 0.021 ** 1.022 −0.013 ** 0.987 −0.002 0.998 

EF_OTHER5 0.014 ** 1.014 −0.002 0.998 0.008 ** 1.008 

EF_FOREST5 −0.363 0.695 −2.386 ** 0.092 1.851 ** 6.368 

EF_AGRI3 0.019 1.019 −0.039 * 0.962 0.061 ** 1.063 

EF_AGRI7 −0.027 0.974 −.131 ** 0.877 −0.071 ** 0.932 

REG = 1 −0.062 0.940 0.382 ** 1.465 0.478 ** 1.612 

REG = 2 −247 1.280 0.904 2.469 0.380 1.463 

REG = 0 0      

Constant −1.126  −13.526  −14.193  

AUC 0.798  0.785  0.781  

*: Significant at p < 0.05; **: Significant at p < 0.01. 

4. Discussion 

4.1. Driving Factors of Land-Use Changes 

In this study, we identified land-use change patterns in the region, which could be compared with 

archetypical periods of land transition. After that, we extracted variables, which were used as 

independent variables in multinomial logistic models to analyze land-use changes in the So-yang River 

Basin. Our statistical analysis suggests that land-use change factors and enrichment factors show 

different patterns for the two different time decades, where the degree of some results of the relations 



Land 2014, 3 972 

 

 

of correlation coefficients and directions of effects vary. Although most results correspond with the 

research hypothesis of factors of land-use changes, some results were unexpected.  

4.1.1. Driving Factors of Land-Use Changes in 1980–1990 

Biophysical drivers: The first decade was characterized by agricultural expansions, deforestation 

and urbanization. During the period after a highway to Seoul was constructed in 1975, commercial 

highland agriculture increased in the Kangwon province, because it was regarded as a new economic 

income source in rural mountainous areas [60]. During this period, the impacts of environmental 

factors like summer rainfall, elevation and slope are in accordance with our hypotheses. We 

hypothesized that summer rainfall has negative explanatory power in relation to urban and agricultural 

land-use. This is due to the environmental characteristics of the research site, as people in this region 

have experienced flood damage frequently due to monsoon periods and typhoons. From the analysis, 

we could find that agricultural areas are easily changed into other land type areas with lower summer 

rainfall. Topographic factors, specifically elevation and slope have negative correlations to human 

induced land-use changes, as expected. Areas with low elevations and gentle slopes are easily 

converted to agricultural and urban areas, while forest expansions occurred in areas with low 

accessibility due to topographic limitations. This result is in concurrence with other studies on 

agricultural abandonment of mountainous areas in Europe [61] and Asia [62]. As for upslope 

contributing areas and wetness index reflecting hydrological and geomorphologic aspects, areas with 

low upslope contributing area index were converted to agricultural land in the first time period, which 

does not coincide with our research hypothesis. This result could be explained with rainfall 

characteristics in the region. Areas with less rainfall intensity during monsoon periods are preferred for 

new agricultural areas, reflecting the importance of water inflows at upper slopes. 

Distance factors and population density: Distance factors and population density have low 

explanatory powers compared to other variables. This result can be attributed to the fact that land-use 

changes occur in the narrow basin area of the river, which make it difficult to clarify distance effects. 

Previous research on forest transition in South Korea concluded that the population factor is one of the 

major land-use change factors in mountainous areas [30]. However, population density shows 

insignificant explanatory power to explain land use changes from our statistical analysis. 

Neighboring land use: Forest areas highly were correlated with neighboring forest factors, 

especially neighborhood factors of 7 × 7 grid cells. This suggests that land-use changes in the region 

resulted from spatial policies to restrain urban and agricultural changes near forest areas for security 

and environmental reasons. Agricultural land in areas dominated by forest is easily converted to 

forests, which might in addition reflect natural conversions of abandoned fields. However, areas 

nearest to forest also experienced land-use changes to both urban and agricultural lands. These land-use 

changes led to highland agriculture occurring in the marginal forest areas. These results show that 

factors that affect land-use changes differ for each land-use class due to their spatial relations. 

However, differences between the causal patterns of land use changes in the two periods (1980–1990 

and 1990–2000) are relatively low, with the exception of changes of agricultural land-use, meaning 

that similar driving factors and mechanisms affect land-use changes constantly. 
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Land regulation policies: Land regulation policies during this phase did not affect urban land-use 

changes because there already were a few urban areas located in regulation areas. Sol-ak National Park 

was designated within the Tae-baek mountain range and had been managed strictly since then because 

it is one of the most famous national parks and sightseeing areas in South Korea. The national park did 

not affect land-use changes directly after 1980’s. However, forest changes next to urban areas in the 

1980’s could be interpreted by the way that tourism facilities in the park areas were increased more 

than other urban land use types in this period. Comparing national parks and national conservation 

areas, the latter are more influential with respect to agricultural land-use changes. Since national 

conservation areas are designated to protect water quality in So-yang Lake, farmlands and farmers 

were directly affected by this policy and this led to agricultural contraction. 

4.1.2. Driving Factors of Land-Use Changes in 1990–2000 

Most land-use change factors hypothesized in this research have consistent explanatory powers 

between the two different time periods. Although similar factors affect to land use changes steadily, 

there are some differences of land-use change patterns between earlier and later stemming from the 

decrease of agricultural areas in the second phase. During this period, agriculture decreased all over the 

catchment except centralized highland agriculture areas such as Hae-an Myeon and Ja-won Ri. This 

change also generated different results in statistical analysis of land-use change factors. 

Biophysical drivers: The explanatory power of rainfall is opposite for forest and agricultural land 

use changes. Agricultural areas with higher summer rainfall are easily converted to forest areas 

because of problems derived from an increase of summer rainfall [63], which could generate planned 

forestation in the agricultural areas to prevent flood damages in the region. In the earlier period, 

topographic variables of elevation and slope explain urban and agricultural expansions. However, 

these tendencies have changed in the subsequent period from 1990 to 2000 indicated by influences of 

slope factors on agricultural lands. In the later period, areas with gentle slope were more easily 

converted to agricultural lands. This result reflects expansions of highland farming into smooth 

mountainous areas. In contrast to urban and agricultural expansions, forest expansion occurs at higher 

elevations and with increased slope, typically abandoned lands with limited use, especially those 

within national conservation areas. Due to the land regulations at these sites, forest growth occurred in 

the processes of natural conversion. This difference stems from geomorphologic characteristics of 

mountainous areas.  

Distance factors, population density, and neighborhood land-use: These factors are similar to their 

results of MNL analysis when compared with the earlier period of 1980-1990. Distance and population 

factors are still less affected land-use changes. Neighborhood factors in the later period affect land-use 

change similarly to those of the earlier period. 

Land regulation policies: Land-use in urban areas affected by land regulation in the later period, 

barely changes for the entire period. 

4.2. Underlying Factors of Land-Use Changes in the So-Yang River Basin 

We tried to find driving factors of land-use changes. However, land-use changes are affected by 

various factors because of the complex characteristics of human-environmental systems, which are 
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difficult to derive from statistical results. In this chapter, we described underlying factors from 

literature reviews and briefly compare them with the statistical results which are suggested as major 

land-use change factors in the local communities. 

With respect to urban areas, deregulation in green belt areas to ease local development and improve 

accessibility by constructing roads and bridges are important land-use change factors [64]. In 

particular, policy changes in 1994 to utilize lands surrounding water sources generated expansions of 

urban areas in the marginal forest [65]. However, results of statistical analysis with distance and 

neighboring factors could not support these findings. 

Land abandonment with population migration after zoning policies and dam constructions since 

1970’s generated growth of natural forest. So-yang Lake generates local climates changes, such as 

increased days with fog and frost, which worsen agricultural conditions and productivity as well as 

residential health status [33,60]. Moreover, dam constructions brought about a raise of agricultural and 

living costs by worsening accessibility, and while zoning policies made it more difficult to utilize lands 

efficiently and get higher income [32,33]. These underlying factors could be linked with the results for 

topographic variables. 

Although overall agricultural areas decreased during the period, agricultural expansions occurred in 

highland farming areas influenced by socio-economic factors such as income improvement in highland 

crops and support policies for agriculture, which expand cultivation areas of household and 

reclamation of forest areas [65]. Apart from this reason, political factors affected agricultural land-use 

changes. Korean agricultural households and societies faced economic crisis after the launch of WTO 

systems in 1995. To solve this problem, the central government tried to introduce various policies to 

maintain agricultural sectors, such as farm subsidies and deregulations in agricultural land uses. The 

Korean government introduced a direct payment system for aged farmers’ early retirement and 

environmentally friendly farming practice since the late 1990’s to preserve the income of rural 

households and promote environmentally friendly farming as a new income source [66]. Regulation 

policies, such as maximum holdings of farmland and lands to the tillers principle regulating 

landholdings of no-till farmers, were regarded as troublesome factors for agricultural activities in 

agricultural areas. After the government eased these regulations, land owners could easily increase 

their land extent with advanced technologies. Aside from these political factors, recent climate changes 

brought about agro-environmental changes such as temperature rise, intensive rainfall in summer 

monsoon periods, reduced sunshine hours and fruit cultivation areas advancing north, in the Tae-back 

mountain range as well as other high elevation areas [63]. 
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4.3. Limitations and the Way Forward 

The challenge of this study is related to acquisition of spatial data for land-use changes, population 

data for driving factors and land use regulation maps for the research site. Land use maps used in the 

research were produced by an institution of the Korean government as explained in the earlier chapter. 

Although they had higher reliability compared to other maps, these also had problems with accuracy of 

classification because they were produced based on different Landsat satellite images. Maps of 1980 

were built on Landsat MSS with 60 m resolution, however other maps of 1990 and 2000 were based on 

Landsat TM with 30 m resolution. This resolution differences may reduce accuracies of “trace” LUCC 

(i.e., the LUCC areas with only a few 30 m × 30 m pixels. As these differences could affect data 

accuracy, we used these data by merging pixel resolution, thereby reducing this problem. 

Data acquisition significantly affects the accuracy of the land use model [11]. In our study, it was 

especially problematic to get socio-economic data for detailed administrative areas and to convert 

these data into spatial data. Although some policy factors like zoning area have spatial dimensions for 

policy implementations, such low spatial differences of this variable within the study area weakened 

the measurement of its effect on LUCC when using the spatial statistical models. Moreover, many 

underlying land-use change factors, such as expansions of highland farming, are difficult to find from 

this quantitative approach due to data limitations. The same limitation might extend to population 

density as the population data obtained was based on administrative areas, which means all areas or 

cells in an administration unit have the same numbers. The weak or null effects of these less spatially 

distributed variables do not necessarily mean lower importance of these variables in reality [30]. 

The problems of these socio-economic drivers could be moderated through some actor-based 

follow-up studies reflecting land use decisions. To do so, we could use household surveys to acquire 

socio-economic data and develop decision models for land use actors. Otherwise, it is necessary to 

develop methods for spatial disaggregation of statistical data in mountainous regions. 

5. Conclusions 

In this study, we aimed to find land-use change patterns and factors using logistic regression 

methods to develop statistical models of land-use changes. We extracted neighborhood variables as an 

index of enrichment factors and various environmental data used as independent variables in 

multinomial logistic models. After calculating these factors, we quantified relationships between land-use 

changes and their driving factors to urban, forest, and agricultural lands in the So-yang River Basin 

using three types of multinomial logistic regression. From this statistical analysis, it was concluded 

that driving factors and enrichment factors showed similar patterns for two different time periods, 

meaning that similar processes affect land-use changes constantly in Asian mountainous watershed 

areas. Statistical results indicate that topographic and neighborhood factors are major driving factors in 

urban, forest and agricultural land-use changes, corresponding with most hypothesized effects on land-use 

change. Although major land-use change factors consistently affect all land-use changes, these specific 

models could help to understand spatial determinants of land-use change processes. It turned out that 

land-use change models should be subdivided into specific land-use types to utilize driving factors of 

different land-use types. Driving factors reflecting spatial relations could define transition rules in the 
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land-use change models. In particular, simulation models for future land-use changes could be 

developed based on the results of our research. When we compared two models for different time 

periods, there were some similarities among LUCC factors. On the other side they represent two 

archetypical situations. In the earlier period, agricultural expansion, deforestation and moderate 

urbanization were dominating, while the later was characterized by agricultural contraction, 

reforestation and severe urbanization. These factors can be used in simulation models (e.g. cellular 

automata models) for LUCC changes by quantifying transitional rules and land conversion 

probabilities of land-use changes for specific pixels (e.g. cellular automata models), and by setting 

neighborhood thresholds for neighborhood interactions. Moreover, we described various underlying 

factors which are difficult to be found in statistical results, but are relevant for constructing  

socio-economic and policy scenarios. These land-use simulation models potentially could contribute to 

enhance policy making with land-use plans and regional environmental management. 
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