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Abstract: The environment of the mountain-steppe-taiga of northern Mongolia is often 

characterized as marginal because of the high altitude, highly variable precipitation levels, 

low winter temperatures, and periodic droughts coupled with severe winter storms (known 

as dzuds). Despite these conditions, herders have inhabited this landscape for thousands of 

years, and hunter-gatherer-fishers before that. One way in which the risks associated with 

such a challenging and variable landscape are mitigated is through social networks and  

inter-family cooperation. We present an agent-based simulation, Ger Grouper, to examine 

how households have mitigated these risks through cooperation. The Ger Grouper simulation 

takes into account locational decisions of households, looks at fission/fusion dynamics of 

households and how those relate to environmental pressures, and assesses how degrees of 

relatedness can influence sharing of resources during harsh winters. This model, coupled 

with the traditional archaeological and ethnographic methods, helps shed light on the links 

between early Mongolian pastoralist adaptations and the environment. While preliminary 

results are promising, it is hoped that further development of this model will be able to 

characterize changing land-use patterns as social and political networks developed.  
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1. Introduction 

Sharing and cooperation between individuals and among groups can increase carrying capacity and 

survivability [1,2]. However, sharing and cooperation can take many forms [1,3–5], some more 

beneficial to the group, or individuals, than others. Here we ask “How do different sharing strategies 

impact survivability in a mobile pastoralist case?” 

This work is built on theory developed in the U.S. Southwest among sedentary farming populations, 

which we adapt and apply to mobile pastoralists of Mongolia. Specifically, we use theory developed by 

Hegmon [6] who simulated the rationale for exchange among Hopi based on three forms of logic: 

pooling of resources, independence (or hoarding of resources), and restricted sharing [6]. Her research 

showed that in general restricted sharing is the best strategy, often working better than the other two 

strategies for both low- and high-production years. By creating rules for whom to share with and 

when, the Hopi are able to take control of their own needs first before assessing the needs of the 

community [6,7]. We hypothesize that similar mechanisms were at play with Mongolian pastoralists in 

prehistory and that rules for whom to share with and when structure modern household configurations.  

Seasonal mobility is a common strategy employed primarily by hunter-gatherers and pastoralists 

living in highly variable, low productivity environments. These environments are characterized by little 

precipitation, high altitude/latitude, and/or extreme temperature (cold or hot). In these environments, people 

migrate within the landscape to take advantage of spatially dispersed, seasonally available resources. 

These patterns are not random, but rather the culmination of generations of accumulated traditional 

ecological knowledge [8,9]. Mobility can be a wise economic adaptation with many variant forms (i.e., 

degree, frequency) [10,11], allowing mobile groups to inhabit regions that are not easily occupied by 

settled groups. Since the individual household units of a group are willing and able to move easily, the 

group by default is flexible, able to adapt or react to changing environmental, political and social 

challenges on short notice. In moments of crisis (i.e., high risk), adaptive solutions can be immediately 

implemented that will carry the household units through until the previously established habitation 

pattern can be resumed or a new pattern developed.  

In central and northern Mongolia, it has been noted [12] that following years of environmental 

catastrophe (usually resulting in great losses of livestock) household units, which usually numbered from 

two to four households, clustered into larger groups of five to seven—a cluster similar in size to 

Hegmon’s ideal restricted sharing group [7]. Over time, after households had recovered from herd losses, 

the units once again dispersed. This temporary fission-fusion cycle is an adaptation to the inherent risk 

of the low-productivity, highly variable environment in which these populations live. Because these 

households move every few months anyway, this fission-fusion cycle can occur rather rapidly. However, 

cooperation was not random, though the rules about who would help whom and under what 

circumstances were not immediately apparent. While this has been observed anecdotally, ethnographic 

data continues to be compiled to more rigorously characterize these cycles [12]. 

In patchy environments (i.e., environments where productivity is spatially and/or temporally 

variable), the ability to count on kin and neighbors during years of low productivity is essential for 
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survival. Sahlins [5] demonstrated that cross-culturally there are distinct rules for the sharing of 

resources, and that small-scale societies worldwide have tactics for surviving bad years. Hegmon [6,7] 

has shown that restricted-sharing tactics are reliable for most years when both the pooling of resources 

and hoarding of resources are not optimal. Such strategies appear to be employed by mobile pastoral 

groups of modern Mongolia. The decision to aggregate with some groups as a form of risk management, 

while still excluding other groups from aggregation, exemplifies a strategy of counting on trusted kin or 

neighbors when times are difficult. 

For this research, developing agent-based models that imbue agents with decisions on where to locate 

and how to form cohesive groups will enable the examination of individual-level processes as reactions 

to environmental pressures. Costopoulos, Lake and Gupta tell us that “simulations can surprise us. 

Whether the surprises are due to our faulty understanding of the reality we are modeling or to our faulty 

modeling of the reality we are seeking to understand, they can force us to reexamine our assumptions 

and to push beyond the intuitive models of the past for which we often settle too easily” [13]. 

While decades of research have focused on cross-cultural studies of human systems, model building 

and theory testing provide a novel way to examine the world, helping to answer questions that would be 

unanswerable from traditional approaches [14]. Instead of seeing the panoply of human culture and 

searching for patterns, we create theory, build models based on theory, and then compare output to data. 

Simulation enables us to test theories developed by anthropologists and historians from years of  

cross-cultural research [14]. Lake estimates that works based on 54 different archaeological simulations 

were published between 2001 and 2010, showing the increasing value of agent-based modeling in 

archaeology [14], and the increasing ability for agent-based modeling to assess archaeological theories. 

Simulation does not more correctly address the archaeological record, but can address different questions 

than cross-cultural research can, and can easily help refine hypotheses of the archaeological record. 

Our paper explores the extent to which sharing practices would have helped the survival of mobile 

pastoralists in Mongolia and the surrounding regions of northeast Asia, and how a patchy environment 

led to the profusion of fission/fusion dynamics in Mongolia. In this model we define sharing and 

cooperation very simply: the likelihood that one household will merge with another household in need 

of assistance for one timestep, dividing resources equally between households. Seasonal movements 

characteristic of the semi-nomadic inhabitants of the region provide ample opportunity to examine such 

fusion and fission events. Groups fuse together when it is beneficial to do so, and then part ways when 

this approach becomes more advantageous. The presented model will help us to understand when fusion, 

fission, and sharing may be sought as a risk management strategy. 

Computer modeling is not a new approach for Mongolian case studies [15,16]. However, these 

models approach the question of the emergence of empires and other large political formations based on 

a number of environmental and historical parameters. The model presented here is of an entirely different 

scale and is based in ethnographic and historical data. While previous models are designed to investigate 

political processes on an inter-regional scale, the model we are presenting here approaches the economic 

sphere from the domestic (i.e., household) viewpoint with the intention of creating results that are 

compatible with available ethnographic and archaeological data from the region. 

This paper is structured in the following way. First, we present the necessary background for how 

sharing strategies structure populations in northern Mongolia. We discuss ethnographic and archaeological 

evidence for sharing both in our study area and in other small-scale societies worldwide. We then present 
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how agent-based modeling can help to examine sharing strategies, exploring how four different sharing 

strategies create different population levels in a variable environment. In the conclusion, we discuss the 

significance of our findings from employing a simple agent-based model and suggest ways in which this 

model may be refined for further future use.  

1.1. Background 

Mongolia is located in northeast Asia and is home to a primarily pastoralist population. In this study 

we focus on the inhabitants of the steppe and forest steppe in the central and northern portions of the 

country. These individuals primarily keep sheep and goats, with horses, cows, yaks and camels making 

up lesser percentages of their stock. Mongolian pastoralists derive much of what they consume from 

their livestock, and spend considerable time and energy ensuring the survival of their flocks. They rely 

on extensive traditional ecological knowledge that has been passed from generation to generation in 

order to minimize herd deaths during the difficult winter months. This knowledge includes ways to 

navigate both environmental landscapes and social networks. These modern day herders provide a useful 

ethnographic analogy, when applied cautiously, for the semi-nomadic nature of the early herders of 

Mongolia [12,17,18]. 

Today, Mongolian pastoralists move seasonally between summer and winter pastures. During 

summer, grazing conditions are good and herds are fattened for the long winters when grazing conditions 

are poor because of extended cold periods, little forage, and snow cover. These movements vary from a 

few kilometers to over 100 km between camps, though in central and northern Mongolia, where the 

authors have collected data, the average is usually 10–20 km [12]. Typically households move two to 

five times annually following a similar mobility pattern year after year, returning to the same location at 

roughly the same time each season [12,19–22]. However, this pattern may shift from time to time in 

order to address a number of factors, including social conventions and environmental degradation 

or disaster.  

Ethnographic observation has shown that group size is not consistent from season to season or  

year-to-year [19]. Each group of households, known as a khot ail, is made up of a number of nuclear 

families, each occupying their own dwelling called a ger (a round tent made of wood, felt and canvas or 

hides—also known by the Russian term “yurt”). The size of the khot ail may vary from a single ger to 

more than 20 [23], although most never exceed 10 households. Average camp size appears to increase 

following environmental disasters as individual khot ails band together utilizing kinship and social ties 

as a failsafe to help recover from the losses of herd animals following these events. Gers from the same 

valley may group together, but larger risk mitigating groups that extend beyond valleys are also  

normal [12]. If the individual khot ails are able to rebuild their herds, they may once again disband into 

smaller groups.  

A number of environmental conditions might present risk to the herds of Mongolia’s rural 

populations. These include drought, bad winter storms locally known as dzuds, and the outbreak of 

epizootic diseases [24,25]. Dzuds come in several varieties depending upon the particular environmental 

conditions. Types of dzuds include: deep snows, no snows, ice sheets, extended or extreme cold spells, 

and extreme overgrazing and trampling. These events occur periodically—every 5–10 years according 

to some studies [25]. Dzuds may not impact regions equally creating a “patchy” environment on the 
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large scale. While much of the discussion about mitigating the effects of dzuds has focused on aid efforts 

and observed rural to urban migration, a few sources have attempted to document the local adaptations 

and coping methods used by herders [25,26]. Shelter may be improved including: alterations to 

structures, tunneling, insulating structures with dung, and bringing animals into the family ger. Of 

interest to this project are those strategies that rely upon social and kin networks to mitigate the impact 

of dzuds. Such adaptations include movement to other, less impacted areas (known as Otor, the 

movement from adjacent valleys up to hundreds of kilometers away), or joining forces with local family 

or friends in which mutual assistance may increase the chances of survival. Though these are short-lived 

events, they can be devastating. Cooperation is needed not to survive the Dzud itself, but to recover after 

great losses following the event. While there are clear advantages to the “movers”, the “hosts” are willing 

participants in this coping method because of expected future reciprocity (much like insurance) and 

cultural expectations (e.g., an expectation to help out extended family members) [5].  

It is clear that modern day Mongolia has a culturally dictated set of rules regarding sharing and 

cooperation. But how do these sharing strategies develop? A study by Fitzhugh et al. [27] helps inform 

us of the development of sharing strategies. They suggest that hunter-gatherer populations use exchange 

to build information networks that help establish relationships among different bands. These information 

networks connect households to an expanded pool of bands and/or tribes, allowing for group survival 

during catastrophic events. Additionally, they argue that high cost and low predictability/low productivity 

landscapes exhibit higher network connectivity than highly predictable landscapes. Furthermore, as 

populations become entrenched in an area they adapt to the environment and will rely on information 

networks only for highly unpredictable and catastrophic events, not for more predictable events. The 

high climatic variability of Mongolia combined with the potential for (and reality of) catastrophic failure 

would make the region more reliant on networks, according to this model [27]. 

Fitzhugh et al. [27] also state that groups should rely on more proximal bands for regularly occurring 

crises, such as low food production and droughts, while more irregular crises, such as earthquakes, would 

require a longer temporal memory of alliances with more distant allies. Therefore, since dzuds are 

unpredictable, but frequently recurring disasters, we can infer from Fitzhugh et al.’s model that 

Mongolian households would rely more on their neighbors for economic stability than on more 

distant allies. 

1.2. The Model 

A model is an idealized microcosm of a real system and is built on theory, or, as Clarke [28] states 

“models are pieces of machinery that relate observations to theoretical ideas.” Using models built on 

simple rules can help eliminate poor hypotheses, and can help enable better understanding of a system. 

Even when a model is wrong (as “all models are wrong, but some are useful” [29] we can glean a better 

understanding of the system by slowly building the model up and studying simplified processes of 

complex systems. 

The agent-based model detailed in this paper was generated in NetLogo, although could have easily 

been written for any other modeling platform. The agents in this model represent an economic production 

unit, in this case a household (sensu [30]). There are twenty agents randomly seeded on the landscape at 

the beginning of the simulation. Each agent represents one of four distinct sharing scenarios, discussed 
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below. The landscape is 40-cells by 40-cells wide, making a total of 1600 cells for the simulation 

window; each of these cells correspond to a catchment area (the area within which most household 

activities will take place) of a typical household of two square kilometers. 

The simulation window is divided into two sections—a summer landscape and a winter landscape. 

Each of these comprises 800 cells. This is admittedly reduced (modern herders may move several times 

in a single year) in order to preserve the simplicity of the model. The agents themselves migrate between 

the summer and winter landscapes each season (represented by one timestep, or tick in the model). In 

summer all land is productive. In winter, however, only half of the landscape (400 cells) has the 

possibility of being productive, with the other half of the landscape being composed of barren patches. 

These barren patches are populated in random locations at the beginning of the simulation. Additionally, 

2/3 of the remaining winter cells (264 cells) begin as “brown” and regenerate according to the parameter 

“grass regrowth time”, which was set at five timesteps for this simulation (five timesteps being the 

equivalent of five seasons, so if a patch dies during summer, it will regenerate five seasons later in winter. 

The decision for five timesteps is not based on any ethnographic fact, but was used for simplicity in this 

simulation. Future studies may test and alter this parameter.) While five timesteps may seem long, in 

northern Mongolia, at least, areas of intense utilization are still visible one or more years after a 

household has abandoned that area.  

To summarize, green patches are productive, brown patches are currently unproductive and symbolize 

those areas that can regenerate with time, while barren patches are never productive and symbolize those 

areas that will always be dead in winter. Both summer and winter patches can become brown with use, 

while only some winter patches will be barren. Barren and brown patches are not only representative of 

the absence of grass, but by logical extension, any reduction in productivity. For example, a dzud may 

not have a long term impact on grass growth, but the impact on productivity is great due to herd loss.  

When an agent lands on a cell, the agent automatically takes the resources that grow on that  

patch—in the simulation we call these resources “energy” and energy gained from patches is set by the 

parameter “ger gain from food”. In this sweep energy was set to five. Here we have the logical proxy 

that a household is dependent on its herd, and herds depend on grass, so the quantity of energy (as 

measured by converting grass to stock) equals the quantity of sheep a household could have. While there 

may be more sophisticated ways of modeling energy as it moves through trophic levels, the correlation 

of herd size and grass was maintained in order to preserve the simplicity of the model. When a patch has 

all of its grass eaten, the patch turns brown and is unproductive; it will regrow the grass when agents 

move off of it according to the parameter “grass regrowth time”. 

There is one final parameter related to patch productivity: the parameter “energy loss from dead 

patches”. If at the end of an agent’s move but before the end of the timestep an agent lands on a brown 

patch, that agent is charged energy according to that parameter. In this sweep that parameter was also 

set at 5. For clarification, while an agent will, in the end, be on a brown patch (because it eats the grass 

there) the agent is only penalized if it lands on a patch where there was no grass to begin with (if the 

patch was brown or barren upon landing there). This penalty is meant to simulate the costs that herders 

who are unable to find suitable locations in patchy environments may have to endure, which may include 

camping in less than ideal locations. 

Agents move each summer and each winter (mimicking Mongolian semi-nomadic seasonal shifts) by 

randomly choosing an unoccupied patch on the opposite side of their current simulation window (in 
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summer they move to winter, and vice versa). If the agent lands on an unproductive patch, it checks its 

Moore neighborhood radius (each adjacent cell) and moves to a green patch in the radius; if there are no 

productive cells in the Moore radius the agent stays put until the next season. Agents are charged one 

energy unit to move, but are penalized five energy units if they stay on an unproductive patch. In the 

system we are simulating here, Mongolian pastoralists choose to move seasonally as the long term 

benefits of fresh pasture outweigh the relatively low, short term costs associated with moving.  

Agents in this simulation are incredibly myopic and have limited memory. However, agents do track 

the productive patches they have visited in winter and will choose to move to a previously visited patch 

(as long as that patch is empty, as only one agent can be on a patch at a time). If a productive patch they 

have previously visited is not available, the agent will simply move to an empty winter patch. Since half 

of the winter landscape is composed of patches that cannot produce food, remembering (and moving to) 

a patch that previously was productive gives the agents the ability to avoid accidentally landing on a 

completely unproductive patch. In this sense the agents are reactive to their environmental conditions, 

and can only work to improve their quest for energy in two ways: moving, or asking a neighbor of a 

similar strategy for help. 

Each winter, agents move from the summer cells to the winter cells. This migration is costless as long 

as a ger lands on a productive patch. If they land on an unproductive patch they are charged one energy 

unit to move in their Moore radius to a productive patch. Agents get five energy units each time they eat 

grass, and if they land on an unproductive patch they are charged five energy units at the end of the 

timestep. A lucky ger, landing regularly on good winter pasture, will be able to sustain and grow its 

energy stock. 

In summer, if agents have stored more than 20 energy units they have a 5% chance of reproduction 

by fissioning. When agents reproduce, the daughter household is spawned one cell distant from the 

parent cell and the stored energy of the parent household is divided evenly between parent and 

daughter households.  

Agents are initially created with four distinct sharing strategies. These strategies are related to the 

storage of resources and are tracked based on lineage. When agents are created they track their strategy 

as their lineage, and they never change strategies (agents do not learn). They pass these strategies on to 

their daughter households. 

Strategy A—agents will always merge with another household when asked 

Strategy B—agents have a 50% likelihood of accepting an offer of merger 

Strategy C—agents have a 25% chance of accepting an offer of merger 

Strategy D—agents will never merge 

When agents have less than 10 energy units they know they are approaching death. Agents that have 

less than 10 energy units will search within a radius of five cells for others in their same lineage—that 

is, the same cooperation strategy. The agent that is close to starvation will ask one of their lineage for 

help. Those that always share (Strategy A) will always say yes; Strategy B will only say yes with a 50% 

probability, and Strategy C only will say yes with a 25% probability. Those in Strategy D never ask for 

help, because help will never be given. 
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Upon the acceptance of an offer of a merger, the merging agent donates all of its resources to the 

agent that accepted the offer of merger, and then households merge together. The combined households 

will then have more total energy, and perhaps a greater potential for fissioning the following summer. 

This method of merging has been observed ethnographically in the region. For example, during 

ethnographic interviews conducted in northern Mongolia in 2012, a recently merged household was 

encountered. Only one week before interviews a child had set their family’s ger on fire. The family took 

their belongings and joined their herds with another household. The households would remain merged 

until they were able to acquire or build another ger, and accumulate enough resources to move out on 

their own once again. 

The simulation stops when either: (a) the simulation reaches 500 ticks (timesteps or seasons); or 

(b) there are no more agents on the landscape. Those households that survive to the end of the simulation, 

via luck and compassionate neighbors, represent the propagation of a kin descent group. As illustrated 

in the figures that follow, the most dynamic results occur in the first few hundred ticks. However, the 

simulation was run to 500 ticks in order to show the stability of the strategies over the long term.  

2. Results and Discussion 

For this study we examined how the variable “patch variability” affects the population of agents 

following the four different strategies. Patch variability reflects the likelihood at any timestep that a 

portion of the productive winter landscape will be unproductive. The different portions of unproductive 

landscape modeled can be related to both winter severity and differences in landscape in two or more 

compared regions. Seven values for patch variability were examined, displayed in Table 1. 

Table 1. Description of key parameter “patch variability” and what each of the values 

corresponds to. When patches are set to 0% all patches during winter can be productive, 

while each increment decreases the productivity by that percentage. 

Variability Description 

0 During the winter all patches can be productive 
5 During the winter, 5% of all patches can be unproductive 
10 During the winter, 10% of all patches can be unproductive 
15 During the winter, 15% of all patches can be unproductive 
20 During the winter, 20% of all patches can be unproductive 
25 During the winter, 25% of all patches can be unproductive 
30 During the winter, 30% of all patches can be unproductive 

In addition to testing each of these values for patch variability we examined how each of the strategies 

fared when just one strategy was present per patch variability (for example, only strategy A was 

practiced), versus when all strategies were present simultaneously. In this way we can examine the direct 

effects of patch variability on one strategy, as well as the effects of different competing strategies and 

patch variability. 

While multiple parameters were written in to the simulation (such as how much energy can be gained 

from grass, how much lost when grass is dead, what percentage to reproduce) the main question in this 

research is: “How well do the different sharing practices cope with impact of variable weather (such as 
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localized temperature and precipitation)?” The parameter patch variability takes the simulation window 

and every year makes patches unproductive according to the values in Table 1. This creates unpredictable 

patchiness of the environment. The list of other parameters in this simulation and their values is reported 

in Table 2. 

Table 2. List of key parameters and values that were swept across in this simulation. To note 

the parameter “winter patch variability” was the key parameter varied, with most other 

variables set to 5 for consistency. 

Parameter Name Value 

Ger reproduction likelihood 5% 
Random Number seed 197, 312, 414, 599, 822 

Number of initial agents 0, 5 
Winter Patch Variability 0, 5, 10, 15, 20, 25, 30 

Ger gain from food 5 
Grass regrowth time 5 

Energy loss from dead patches 5 

In total, 1750 runs of the simulation were completed for this study. For each of the seven values for 

the key parameter of patch variability, 10 runs were done with each of the five random number seeds so 

that outliers could be accounted for. Two separate experiments were done: looking at how each of these 

strategies fares when it is the only strategy represented on the landscape, and examining how these 

strategies fare when each strategy is represented on the landscape at the same time. 

2.1. Single Strategies 

As displayed in Figure 1, when only one strategy is present, regardless of which strategy is 

represented, population reaches carrying capacity and the mean population curve follows a regular 

logistic growth curve [31]. The most striking difference in this graphic is the difference between Column 

A (100% sharing) and the rest of the columns (50%, 25% and 0% sharing). While the mean population 

curve for column A is similar to the mean population curves for each of columns B, C, and D, the 

variance around the mean is much more pronounced. This is true even in row 1, which represents 0% 

patch variability. 

The means for each value of patch variability are reported in Supplementary Figures S1–S7 so that 

means could be compared. With the means graphed in the same graphs the similarities among strategies 

are even more apparent. While there is some difference, those differences are small. The differences 

become larger as patch variability becomes higher—by the time patch variability is 30% the detriment 

of the all-sharing strategy becomes apparent. If agents always share, overall populations are lower, while 

restricted sharing strategies have higher populations. But even the difference between all share and the 

other strategies is minimal. As we will see below, this is in contrast to when each strategy is represented 

at the same time on the landscape. 
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Figure 1. Figure showing how each individual strategy responds to environmental pressures 

when no other lineage is present. Each tile is as follows: Columns marked A correspond to 

the 100% sharing strategy. Columns marked B correspond to the 50% sharing strategy. 

Columns marked C correspond to the 25% sharing strategy. Columns marked D correspond 

to 0% sharing strategy. Row 1 is 0% winter patch variability. Row 2 is 5% winter patch 

variability. Row 3 is 10% winter patch variability. Row 4 is 15% winter patch variability. 

Row 5 is 20% winter patch variability. Row 6 is 25% winter patch variability. Row 7 is 30% 

winter patch variability. Thus, tile c3 is the 25% sharing strategy under 10% patch variability. 

Y-axis goes from 0 to 150 households, X axis goes from 0 to 500 ticks. Red-dotted line 

corresponds to the standard deviation from the mean, while the gray lines show each strategy. 

Black central line corresponds to the mean of each strategy. 
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Hegmon [6] found in her simulation of Hopi food sharing strategies that 100% cooperation was rarely 

the optimal strategy, but rather restricted sharing seemed to benefit the overall population the most. The 

results presented here compare positively with Hegmon’s findings. While the mean of each of the sharing 

strategies reported here is similar, the variance in the 100% sharing strategy suggests that sharing with 

no restrictions could be detrimental, even in favorable conditions. While the mean of the all-share 

strategy is similar to all the other strategies (Figures S1–S7), the variance (Figure 1) belies the fact that 

an all-share strategy could have highly unpredictable outcomes. The tighter variance around the mean in 

the other strategies suggests that those strategies would have more predictable outcomes. 

Hegmon also suggests that hoarding (here represented at 0% sharing) is only a good option in the years 

of the worst productivity. When looking at Figures S1–S7 there appears to be no functional difference 

between any of the strategies, so this finding is not necessarily echoed in our results at this stage. 

2.2. Multiple Strategies 

Here we examine how populations respond to environmental stressors when each of the different 

strategies coexist in the same landscape. At the beginning of the simulation five agents of each strategy 

are seeded on the landscape. Experiments followed the same trajectory as above: with seven variables 

for patch variability and five random number seeds. 

First of note is the scale: when only one strategy is represented the sum of that strategy is higher than 

the sum of that individual strategy when there are multiple strategies present. In Figure 1 the scale is set 

to 150 agents, while in Figure 2 the scale is set to 60 agents. Because of this, in Figure 2 the variability 

might seem higher than it is when compared to Figure 1, but variance around the mean is only ever 

approximately 40 agents in both Figures 1 and 2 (Figure 1 strategy A excluded). 

Comparing the means of each strategy against one another on one graphic provides more helpful 

information. In Figures 3–9 each of the mean strategies are graphed on top of one another without the 

variance surrounding the mean as in Figures 1 and 2. This allows us to directly compare the mean 

strategies without surrounding noise. 

Figure 3 shows how each strategy fared against one another when the environment did not have any 

variability. To note, the 100% sharing strategy is never the best performing strategy. In these runs of the 

simulation, hoarding (0% sharing) is the highest performing strategy early in the simulation, while 

through time those gers that subscribe to a hoarding strategy decrease in number. The strategy of sharing 

50% of the time, however, is very stable, and eventually becomes the most populous strategy. 

In a situation of stable population we may expect to see a convergence upon the mean as agents 

coalesce upon stable landscapes. A population under stress, however, will see a wide range of variation 

around the mean as agents attempt to maximize their resource acquisition while dealing with a volatile 

landscape (as seen above when only one strategy is represented). While the landscape in these runs of 

the simulation does not have year-to-year variability, the use of the land will create barren patches for 

five timesteps. Thus, early on gers that do not share do well on the landscape because there is little 

environmental impetus for sharing. With a predictable environment from year-to-year, independence 

can be a viable strategy. However, as the simulation progresses and gers create barren patches on the 

landscape from over-use, sharing can help gers avoid the variable productivity in the landscape they 

themselves have created. 
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Figure 2. Figure showing how each individual strategy responds to environmental pressures 

when all other lineages are present. Each tile is as follows: Columns marked A correspond 

to the 100% sharing strategy. Columns marked B correspond to the 50% sharing strategy. 

Columns marked C correspond to the 25% sharing strategy. Columns marked D correspond 

to 0% sharing strategy. Row 1 is 0% winter patch variability. Row 2 is 5% winter patch 

variability. Row 3 is 10% winter patch variability. Row 4 is 15% winter patch variability. 

Row 5 is 20% winter patch variability. Row 6 is 25% winter patch variability. Row 7 is 30% 

winter patch variability. Thus, tile c3 is the 25% sharing strategy under 10% patch variability. 

Y-axis goes from 0 to 150 households, X-axis goes from 0 to 500 ticks. Red-dotted line 

corresponds to the standard deviation from the mean, while the gray lines show each strategy. 

Black central line corresponds to the mean of each strategy. 
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Figure 3. Means of each of the strategies for 0% patch variability. Means correspond to 

Row 1 of Figure 2. This figure reflects those runs when all strategies were present in 

the simulation.  

 

Figure 4. Means of each of the strategies for 5% patch variability. Means correspond to 

Row 2 of Figure 2. This figure reflects those runs when all strategies were present in 

the simulation.  

Figure 4 follows a similar trajectory to Figure 3, with 100% sharing never being the best performing 

strategy of the four strategies, no sharing performing the best early on, and restricted sharing performing 

the best toward the end of the simulation. Figure 5, however, begins to diverge from Figures 3 and 4. In 

this figure the winter landscape had 10% variability. The sharing strategies are each fairly stable, 

reaching their own respective carrying capacities of 20 to 25 households on the landscape. In these runs 
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of the simulation hoarding (0% sharing) is early on the highest performing strategy. However, this 

strategy has high variability, likely due to the unpredictability of the landscape, and the similar effect of 

overuse. However, as only 10% of the landscape is variable (due to the environment), independent gers 

can make a living on the landscape with the simple rules created for this simulation. 

 

Figure 5. Means of each of the strategies for 10% patch variability. Means correspond to 

Row 3 of Figure 2. This figure reflects those runs when all strategies were present in  

the simulation. 

 

Figure 6. Means of each of the strategies for 15% patch variability. Means correspond to 

Row 4 of Figure 2. This figure reflects those runs when all strategies were present in 

the simulation. 
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Figure 7. Means of each of the strategies for 20% patch variability. Means correspond to 

Row 5 of Figure 2. This figure reflects those runs when all strategies were present in 

the simulation. 

Once the environmental unpredictability of the landscape reaches 15%, hoarding is no longer the 

strategy with the highest population, and will only become optimal again when the landscape’s carrying 

capacity becomes very low (unpredictability of 25%). In Figure 6 we can see that the means of the 

restricted sharing strategies (50% and 25% sharing) perform the best. Early in the simulation the 25% 

sharing strategy has the highest mean, while later in the simulation the 50% sharing strategy has the 

highest mean. This holds true for Figure 7 as well. When the environmental landscape exhibits 20% 

unpredictability in winter patches, restricted sharing strategies perform well. Note, however, that in the 

final years of these simulations, the mean of the 100% sharing strategy performs well, while the other 

strategies remain relatively stable. 

In Figure 8 hoarding once again is the highest performing strategy. While above we suggest that 

hoarding is a good strategy when the landscape is productive enough that sharing is not necessary, 

Figure 8 echoes Hegmon’s [6] finding that hoarding is a viable strategy when the landscape is so poor 

that sharing will be detrimental for the overall population. Please note, however, that the difference in 

this graph between the restricted sharing strategies and the hoarding strategy is one household. In fact, 

many of the differences are rather small. Over the long term, however, even small differences in 

survivability (small adaptive advantages) may impact decision making. 

In Figure 9, when the landscape exhibits 30% unpredictability in winter patches, the averages of all 

of the four strategies are within one household. However, the 25% sharing strategy seems to have the 

highest mean on average. These results, when compared with Figure 2(c7) show that this strategy also 

has the least variance (and thus might have the most predictable outcome). 

Hegmon [6] found in her simulations that the all-share strategy was never the optimal strategy, and 

that hoarding is an optimal strategy for a population when the environment is highly unpredictable. These 

findings are comparable to our study results, although we show that there is little necessity for sharing 



Land 2015, 4 172 

 

 

in a highly predictable landscape. Only when the landscape becomes changed due to use, or the 

environmental predictability becomes great, do sharing strategies become necessary. 

 

Figure 8. Means of each of the strategies for 25% patch variability. Means correspond to 

Row 6 of Figure 2. This figure reflects those runs when all strategies were present in 

the simulation. 

 

Figure 9. Means of each of the strategies for 30% patch variability. Means correspond to 

Row 7 of Figure 2. This figure reflects those runs when all strategies were present in 

the simulation. 
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Comparing Figures 1 and 2 we can see that some similar patterns are apparent—an “all share” strategy 

never outperforms the other strategies, but there appears to be little functional difference among the other 

strategies. Each strategy reaches the logistic population curve (the carrying capacity) in Figure 1, but in 

Figure 2 there is greater variability. When comparing the means in Figures 3–9 we see that restricted 

sharing seems to be the most beneficial strategy when environmental conditions are unpredictable. 

For a final means of comparison, we examined the statistical difference among the strategies with 

a Kolomgorov-Smirnov analysis. Kolomgorov-Smirnov analyses allow for direct comparability of each 

of the simulated means to see if there are statistical differences between each of the strategies. We 

simplified these data into five time slices: 100 ticks (50 years), 200 ticks (100 years), 300 ticks 

(150 years), 400 ticks (200 years), and 500 ticks (250 years). Further, we compared the pair-wise 

difference between the following means: Strategy A to Strategy B, Strategy B to Strategy C, Strategy C 

to Strategy D, and Strategy A to Strategy D.  

Frequency differences as well as p-values to the 0.05 level are reported in Tables 3 and 4. Table 3 

corresponds to Figure 1 (single strategies modeled) while Table 4 corresponds to Figure 2 (all 

strategies present). 

As can be seen in Table 3, when only one lineage is represented, 31 of the 140 K-S statistic values 

show clear statistical significance in their difference. In Table 4 we can see that 21 of the 140 values 

show clear statistical significance in their difference. Thus we can say that in 22% of the cases when 

only one lineage is represented there are real differences in the number of surviving households on the 

landscape, while when all lineages are represented 15% of the cases show real differences in the number 

of surviving households on the landscape. It is worth noting, the strongest difference is between strategy 

A (all share) and strategy D (no share) in both solo lineages and all lineages, with 17 and 11 cases 

showing statistical significance respectively. Little difference is seen in the restricted sharing strategies 

(50% and 25%) potentially showing that both of these are viable in most years and may be functionally 

the same. 

In Table 3, the highest and most significant variation seems to be related to reaching the 

environmental carrying capacity, which generally is reached between 100 and 200 ticks. Most other 

times variation is not significant except between extreme strategies in less variable landscapes. In 

Table 4, however, variation is related to the end of the simulation, potentially showing that as sharing 

strategies stabilize the differences among them become more pronounced. 

From Figures 1 through 8 and Tables 3 and 4 we may be able to interpret that during years of middling 

unpredictably, those households that do not freely share their resources with everyone (but do share with 

a select few) are likely to have their caloric needs met, are likely to reproduce, and are likely to survive 

into the next year. The significance in variation among the strategies suggests that there are real 

differences in all sharing, restricted sharing, and hoarding and, potentially, that individuals using those 

strategies would be able to see how well their strategy compared to other strategies. These findings are 

also echoed in Crabtree [1]. Only during exceptional years would households want to horde their 

resources, potentially insuring their own survival at the detriment of others. 
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Table 3. Results from Kolomgorov-Smirnov analysis on single lineage values. Data is simplified into five time slices: 100, 200, 300, 400 and 

500 ticks. K-S values that show significance above a p-value of 0.05 are highlighted blue and show “Sig” in the significance column. This means 

that there is a large difference in the mean values for the lines during that tick for those variability values. Of note are the 17 K-S values that 

show as significant between Strategy A (all share) and Strategy D (no share). 

Tick Variability A to B Diff p0.05 Sig? B to C Diff p0.05 Sig? C to D Diff p0.05 Sig? A to D Diff p0.05 Sig? 

100 0 −0.0039 0.4643 Not 0.9322 0.4541 Sig 0.9450 0.4450 Sig 1.8733 0.4554 Sig 

200 0 0.5399 0.2277 Sig 0.6984 0.2139 Sig 0.0349 0.2068 Not 1.2732 0.2210 Sig 

300 0 −0.0134 0.1683 Not −0.0834 0.1670 Not 0.0234 0.1673 Not −0.0735 0.1685 Not 

400 0 −0.0727 0.1686 Not −0.1445 0.1687 Not 0.0008 0.1698 Not −0.2164 0.1697 Sig 

500 0 −0.0786 0.1698 Not −0.0581 0.1690 Not −0.0617 0.1699 Not −0.1984 0.1707 Sig 

100 5 −0.3384 0.4049 Not 0.7353 0.4006 Sig 2.4859 0.3830 Sig 2.8827 0.3875 Sig 

200 5 0.1088 0.1994 Not 0.1921 0.1951 Not 0.2645 0.1898 Sig 0.5654 0.1942 Sig 

300 5 −0.0642 0.1797 Not −0.0695 0.1801 Not −0.0898 0.1813 Not −0.2236 0.1809 Sig 

400 5 −0.0031 0.1819 Not −0.0457 0.1814 Not −0.1501 0.1830 Not −0.1989 0.1835 Sig 

500 5 0.0090 0.1821 Not −0.0575 0.1815 Not −0.1158 0.1829 Not −0.1644 0.1834 Not 

100 10 −0.3478 0.3802 Not 0.3518 0.3787 Not 1.4646 0.3684 Sig 1.4686 0.3699 Sig 

200 10 0.1627 0.2015 Not 0.0639 0.1981 Not −0.0319 0.1982 Not 0.1947 0.2017 Not 

300 10 −0.0182 0.1975 Not −0.0199 0.1972 Not −0.0402 0.1984 Not −0.0783 0.1987 Not 

400 10 −0.0318 0.1990 Not −0.0070 0.1987 Not −0.0108 0.1994 Not −0.0496 0.1997 Not 

500 10 −0.0758 0.1975 Not −0.0634 0.1984 Not −0.0421 0.2001 Not −0.1813 0.1992 Not 

100 15 0.9795 0.3766 Sig 0.6125 0.3629 Sig 0.4403 0.3560 Sig 2.0323 0.3699 Sig 

200 15 0.1259 0.2215 Not 0.1127 0.2175 Not 0.0984 0.2154 Not 0.3369 0.2195 Sig 

300 15 −0.0415 0.2173 Not −0.0891 0.2179 Not −0.0830 0.2208 Not −0.2136 0.2201 Not 

400 15 −0.0941 0.2185 Not −0.0195 0.2189 Not −0.0988 0.2211 Not −0.2124 0.2207 Not 

500 15 −0.0948 0.2189 Not −0.0888 0.2202 Not 0.0077 0.2219 Not −0.1758 0.2206 Not 

100 20 1.1205 0.4076 Sig 0.3596 0.3919 Not 0.0860 0.3871 Not 1.5661 0.4030 Sig 

200 20 0.2353 0.2575 Not 0.0125 0.2525 Not 0.1005 0.2504 Not 0.3484 0.2554 Sig 

300 20 −0.0510 0.2490 Not −0.1482 0.2504 Not −0.0548 0.2529 Not −0.2540 0.2515 Sig 
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Table 3. Cont. 

Tick Variability A to B Diff p0.05 Sig? B to C Diff p0.05 Sig? C to D Diff p0.05 Sig? A to D Diff p0.05 Sig? 

400 20 −0.2497 0.2539 Not 0.0424 0.2554 Not 0.0390 0.2538 Not −0.1684 0.2523 Not 

500 20 −0.0855 0.2531 Not 0.0381 0.2523 Not −0.1037 0.2528 Not −0.1511 0.2536 Not 

100 25 0.1657 0.4510 Not 0.0865 0.4458 Not 0.9166 0.4370 Sig 1.1688 0.4422 Sig 

200 25 −0.0232 0.3144 Not 0.1499 0.3108 Not 0.0877 0.3089 Not 0.2144 0.3125 Not 

300 25 0.0601 0.2992 Not 0.0379 0.2960 Not −0.2026 0.3007 Not −0.1046 0.3039 Not 

400 25 −0.1161 0.2979 Not −0.0560 0.2994 Not 0.0682 0.3011 Not −0.1039 0.2996 Not 

500 25 0.0443 0.2981 Not −0.1278 0.2980 Not −0.1582 0.3048 Not −0.2418 0.3048 Not 

100 30 0.4897 0.5757 Not 0.1157 0.5568 Not 0.6519 0.5490 Sig 1.2573 0.5681 Sig 

200 30 0.3456 0.4389 Not 0.0173 0.4243 Not 0.1977 0.4234 Not 0.5606 0.4380 Sig 

300 30 −0.1855 0.4030 Not 0.1829 0.3969 Not −0.2921 0.4030 Not −0.2946 0.4089 Not 

400 30 −0.2528 0.3964 Not −0.0964 0.3984 Not 0.1441 0.4008 Not −0.2051 0.3988 Not 

500 30 0.0848 0.3964 Not −0.1236 0.3911 Not −0.2040 0.4021 Not −0.2429 0.4073 Not 

Table 4. Results from Kolomgorov-Smirnov analysis on multiple present lineage values. Data is simplified into five time slices: 100, 200, 300, 

400 and 500 ticks. K-S values that show significance above a p-value of 0.05 are highlighted blue and show “Sig” in the significance column. 

This means that there is a large difference in the mean values for the lines during that tick for those variability values. Of note are the 11 K-S 

values that show as significant between Strategy A (all share) and Strategy D (no share). 

Tick Variability A to B Diff p0.05 Sig? B to C Diff p0.05 Sig? C to D Diff p0.05 Sig? A to D Diff p0.05 Sig? 

100 0 0.2004 0.4380 Not 0.3571 0.4245 Not −0.2796 0.4234 Not 0.2779 0.4369 Not 

200 0 0.2692 0.3461 Not 0.0617 0.3356 Not 0.3047 0.3290 Not 0.6357 0.3397 Sig 

300 0 0.0921 0.3421 Not −0.0769 0.3376 Not 0.0921 0.3374 Not 0.1073 0.3418 Not 

400 0 0.0600 0.3396 Not −0.1675 0.3375 Not −0.0582 0.3414 Not −0.1657 0.3435 Not 

500 0 −0.4464 0.3346 Sig 0.0393 0.3384 Not −0.2786 0.3426 Not −0.6857 0.3388 Sig 

100 5 0.3933 0.4242 Not 0.2278 0.4091 Not 0.0064 0.4060 Not 0.6275 0.4212 Sig 

200 5 −0.0263 0.3664 Not 0.1897 0.3594 Not 0.2578 0.3515 Not 0.4212 0.3587 Sig 

300 5 −0.0153 0.3687 Not 0.1085 0.3630 Not −0.1126 0.3637 Not −0.0193 0.3694 Not 
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Table 4. Cont. 

Tick Variability A to B Diff p0.05 Sig? B to C Diff p0.05 Sig? C to D Diff p0.05 Sig? A to D Diff p0.05 Sig? 

400 5 0.0124 0.3617 Not −0.0632 0.3588 Not −0.2068 0.3645 Not −0.2577 0.3673 Not 

500 5 −0.1759 0.3586 Not −0.3916 0.3658 Sig 0.0195 0.3732 Not −0.5480 0.3662 Sig 

100 10 0.2237 0.4490 Not 0.2567 0.4320 Not 0.0896 0.4148 Not 0.5700 0.4324 Sig 

200 10 0.0212 0.4163 Not 0.2597 0.4034 Not 0.2083 0.3841 Not 0.4891 0.3976 Sig 

300 10 0.0690 0.4135 Not 0.1053 0.4029 Not −0.1896 0.3943 Not −0.0153 0.4051 Not 

400 10 −0.1458 0.4068 Not −0.1439 0.4062 Not 0.0799 0.3974 Not −0.2098 0.3979 Not 

500 10 −0.0832 0.3995 Not −0.4201 0.4036 Sig −0.2177 0.4058 Not −0.7211 0.4017 Sig 

100 15 −0.0535 0.4671 Not 0.2600 0.4522 Not −0.2272 0.4570 Not −0.0206 0.4718 Not 

200 15 −0.1695 0.4438 Not 0.1588 0.4341 Not 0.0890 0.4338 Not 0.0783 0.4435 Not 

300 15 0.2532 0.4448 Not −0.1974 0.4332 Not 0.3611 0.4346 Not 0.4169 0.4462 Not 

400 15 0.1459 0.4397 Not −0.3176 0.4334 Not 0.2244 0.4405 Not 0.0528 0.4468 Not 

500 15 −0.1826 0.4389 Not 0.1344 0.4302 Not −0.5178 0.4441 Sig −0.5659 0.4525 Sig 

100 20 0.5377 0.5536 Not 0.3391 0.5278 Not 0.3074 0.5129 Not 1.1842 0.5394 Sig 

200 20 0.6620 0.5029 Sig −0.2177 0.4868 Not 0.0377 0.4922 Not 0.4821 0.5082 Not 

300 20 −0.0424 0.4934 Not −0.4549 0.5017 Not 0.1634 0.5097 Not −0.3339 0.5016 Not 

400 20 −0.1135 0.5049 Not 0.3205 0.4952 Not −0.2821 0.4951 Not −0.0752 0.5048 Not 

500 20 −0.7894 0.4904 Sig 0.0886 0.5042 Not −0.1860 0.5075 Not −0.8868 0.4937 Sig 

100 25 −0.9495 0.6491 Sig 0.5460 0.6308 Not −0.0947 0.6066 Not −0.4983 0.6257 Not 

200 25 0.2414 0.6260 Not −0.3957 0.5986 Not 0.5060 0.5851 Not 0.3517 0.6131 Not 

300 25 0.1750 0.6084 Not −0.3469 0.5827 Not 0.1769 0.5774 Not 0.0051 0.6033 Not 

400 25 −0.2866 0.6258 Not 0.4883 0.5893 Not −0.3176 0.5732 Not −0.1159 0.6107 Not 

500 25 0.6869 0.6352 Sig −0.1668 0.5859 Not −0.2757 0.5880 Not 0.2444 0.6372 Not 

100 30 1.0337 0.8347 Sig −0.8822 0.8270 Sig 0.5212 0.8451 Not 0.6727 0.8526 Not 

200 30 0.1821 0.8129 Not 0.1558 0.7978 Not −0.0795 0.7978 Not 0.2585 0.8129 Not 

300 30 0.1819 0.8001 Not −0.1592 0.7975 Not 0.0087 0.8072 Not 0.0313 0.8098 Not 

400 30 −0.6953 0.8201 Not 0.7294 0.8172 Not −0.4789 0.8101 Not −0.4448 0.8131 Not 

500 30 −0.6060 0.8066 Not 0.1113 0.8242 Not 0.1235 0.8177 Not −0.3712 0.8000 Not 
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2.3. Discussion 

Winterhalder and Leslie [32] have shown that long-term stochastic processes may affect how 

individuals react to environmental conditions and how they approach risk. In their model, demographic 

response to an unpredictable environment will, by nature, be nonlinear. For example, people cannot 

predict exactly how many children to have so that four children will grow into adulthood. The results of 

our above analysis echo those of Winterhalder and Leslie and show that individuals may indeed seek 

risk when environments are highly unstable in order to have the chance of surviving, and may be  

risk-averse when environments are stable. The high levels of variance observed in the model presented 

in this paper are at least partially reflective of the unpredictable, highly unstable environments in which 

this simulation occurs. While Hegmon [6] found that restricted sharing will be the most beneficial 

strategy for overall populations (restricted sharing should decrease variance), Winterhalder and Leslie’s 

findings may highlight why highly variance will be beneficial in unpredictable environments. People 

may need to try multiple strategies to survive.  

Powers and Lehman [2] found that sharing increases the carrying capacity of a system. Such a result 

is potentially visible in our results as well. When environmental pressures become great, and households 

group together, the environmental pressures can become mitigated by the social sharing strategy. 

However, despite sharing strategies lessening environmental pressures, households are never outside of 

those environmental pressures, and the use of the landscape creates environmental pressures as well due 

to patch degradation. 

Pastoralists have long been blamed for environmental degradation from overgrazing [33]. The 

“tragedy of the commons” theory states that unmonitored common-pool resources, as is the case in 

Mongolia with individual ownership of herds, but not land, leads to irresponsible usage of resources. 

However, critics of this theory point to various formal and informal social adaptations that oversee and 

regulate resource use [34]. The same cooperation and sharing networks modeled here may parallel the 

social networks ensuring sustainable resource utilization through traditional ecological knowledge. 

The problem of common-pool resources is evident in the model. When agents land on patches they 

extract the resources from those patches, and must wait multiple timesteps until those patches regenerate. 

It is possible that all winter patches in one area could become used during one timestep, causing future 

households to have no opportunities for productive patches. If agents land on dead patches they are 

charged energy. Once agents have fewer than 10 energy stored, those agents with a sharing strategy must 

rely on other agents in their network for survival. In this way we can see how agents react to a simulated 

tragedy of the commons. Once resources are over-exploited in an area, households must call upon their 

networks for help. As we see in this simulation, agents are doubly burdened by both simulated dzuds 

and by simulated resource over-use. Those agents that are able to rely on their greater social network 

fare better overall than those agents with no social network when both climatic and overuse pressures 

affect the environment. 

One final issue addressed by this model is the poor resolution of the archaeological record. While 

research is ongoing in household studies in Mongolia (e.g., [12]) most studies in Mongolia have focused 

on monumental archaeology. This is coupled with poor resolution of household archaeology 

(centimeters of deposition equating to centuries of occupation). Consequently, our understanding of the 

past can be blurred. Simulations, therefore, help us to address these gaps in our knowledge. 
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Notably missing from our study is a goodness-of-fit exercise between the model and the real 

settlement patterns [1,35]. This is due in part to there not being many complete archaeological datasets 

in the region to do goodness-of-fit tests against yet. Consequently, we must make do and use models as 

a way to inform our understanding of the limited archaeological information available at this time. 

This model, while not meant as a reproduction of reality, presents a plausible scenario based on 

developed theory and hopes to address key questions of how semi-nomadic Mongolians address local 

weather events, such as drought and heavy winters. While this model is highly simplified, it presents a 

plausible suite of directions that people in this highly unpredictable environment could face. Therefore 

the outcome of our study can be used to make some conclusions of a much more complicated system.  

3. Conclusions 

The mobility of Mongolia’s pastoralists presents a unique case rather different than the settled, 

Ancestral Pueblos investigated by Hegmon [6,7]. Household units, which are moving frequently 

anyway, can fission and fusion without large disruptions to the social, economic or political order. Rather 

than reaching a breaking point, temporary solutions can mitigate risk and catastrophe, followed by a 

return to the normal order. 

So which of the above cooperation strategies works best for Mongolia? This is a tricky question to 

answer with a single straightforward answer. All of Mongolia is hit by dzuds, but they do not impact 

different regions of the country equally; one area will be more susceptible to them than others for various 

natural and socio-cultural reasons. For instance, the weather in southern Mongolia’s Gobi Desert is quite 

different than that of northern Mongolia’s Taiga-Mountain-Steppe ecotones. Therefore, which strategy 

is most beneficial may vary geographically as well as temporally. Additionally, the availability of other 

risk-mitigating adaptations is different by region. There may be many more types of wild resources 

available in the northern ecotones than in the more homogenous steppe or desert zones in central and 

southern Mongolia. In regions where it is more difficult to fall back on wild resources, this may place 

much more importance on social or kin networks to mitigate risk. This might be seen archaeologically 

in Mongolia by looking at facets of the ritual landscape as a reflection of the strength of social and kin 

networks [12].  

Ger Grouper is a very simplified model. However, this “wrong” model (sensu [29]) is useful in that 

it helps us to understand how individuals might react to catastrophic events. We began with a highly 

simplified model to examine how variables interact with one another, so that in future we can truly 

examine the effects of variables in a realistic setting. Future development of this model will include 

bringing real world variables into the model. The rates of environmental catastrophes (e.g., dzuds and 

droughts) can be reconstructed using historical weather data which can then be added to create a more 

realistic “patchy” element to the model. In addition, realistic GIS landscapes can be created based on 

real locations within Mongolia and the surrounding regions. As more detailed archaeological and 

paleoenvironmental data become available, the parameters of the model will improve. The results from 

multiple regions can then be compared, illuminating any differences in socially adaptive risk 

management responses due to environmental variation. The Ger Grouper model was designed to work 

at a landscape-scale compatible with the annual seasonal rounds of mobile pastoralists in Mongolia. 
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Agent-based-modeling, when implemented at this scale, will allow for explicit connections between 

computer-aided models and archaeological project design. 
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