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In this Special Issue on “Agent-Based Modelling and Landscape Change” we aimed to bring
together articles that showcase innovative uses of agent-based models (ABMs) for investigating
and explaining landscape change and dynamics. The resulting 10 articles demonstrate the diverse
range of processes and landscapes that ABMs are currently used to examine, including: land-use
decision making in agricultural landscapes; soil erosion in semi-arid environments; forest change in
mountainous landscapes; trade in 1st Century BC southern France; social adaptations of herders in
northern Mongolia; and malaria epidemiology in Kenya. The articles (Ding et al. 2015 [1], Olabasi et al.
2015 [2], Morgan et al. 2015 [3], Badmos et al. 2015 [4], Barton et al. 2015 [5], Johnson 2015 [6], Brändle et al.
2015 [7], Crabtree 2015 [8], Clark and Crabtree 2015 [9] and Arifan 2015 [10]) draw on a range of
modelling approaches, but one common theme among several of the papers is the use of comparative
approaches. Here, we discuss how comparative approaches offer opportunities for future innovation
in modelling landscape change, particularly for addressing the challenge of understanding the role of
human activity in the Anthropocene.

The issue of comparison in ABMs is not new to the studies in this Special Issue and has been
advocated and pursued over many years. Axtell et al. (1996) [11] were among the earliest to investigate
the alignment of computational models, or ‘docking’ as they suggested it might be abbreviated.
Docking entailed comparing an ABM to another model (whether ABM or otherwise) of the same
system to see if the models could reproduce similar results, thereby enabling critical experimentation
and the determination of whether one model was better than another, or if one was a special case of the
other (i.e., could be subsumed). Since then, model-to-model analysis has continued (e.g., Hales et al.
2003 [12], Rouchier et al. 2008 [13]), although the rate of comparison has not kept pace with number
of ABMs being developed. Robust comparison of models, to the point of trying to ‘break’ them
(i.e., identifying at what point modelled mechanisms are no longer useful for explaining observations),
is needed to ensure credible and efficient scientific progress in computational modelling (Thiele
and Grimm 2015 [14]). Beyond examining how well different models fit the same set of empirical
data, model comparison can aim to reproduce others’ models from scratch in new computer code
(e.g., Janssen 2009 [15]) or extend analysis including by exploring the sensitivity of model parameters
in greater detail (e.g., Miodownik et al. 2010 [16], Seagren 2015 [17]). In contrast, articles in this Special
Issue examine variations in agent-based representation, from an entire absence of agent representation,
through comparing heterogeneous vs. aggregated representation of human activity, to alternative
means of parameterizing individual agent behaviour.

For example, to investigate the effect of agricultural practices on the formation of deeply incised
valley formations in semi-arid Mediterranean landscapes, Barton et al. (2015) [5] ‘turned off’ the
human land-use component of their hybrid ABM-cellular model. By using the same model with
humans represented versus not, this approach aims to understand the influence of human activity
on landscape change (e.g., as discussed by Wainwright and Millington 2010 [18]). Through this
experimental use of their model, Barton et al. showed that the non-ABM component of their model
that represents climate and natural vegetation change is able to capture broad-scale (climate-driven)
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vegetation-change impacts on gulley incision. Including the agent-based representation of human
activity shows how finer-scale, localized vegetation change can have similar effects without climate
change. Thus, this example shows how drivers of landscape change acting over different scales may
need to be represented through fundamentally different modelling approaches.

Brändle et al. (2015) [7] compared agent-based versus aggregated models of agricultural change
in a contemporary mountain landscape in Switzerland, examining the trade-offs between model types
for considering different temporal extents of simulation. They found that their ABM, based on recent
behavioural data, was able to simulate landscape change over short and medium durations better
than an aggregated model assuming land optimization, while maintaining equivalent sensitivity to
broader socio-economic drivers. The trade-offs identified are between the greater demand for more
detailed information about (farming) actor behaviour and decision-making by the agent-based model
(making transferability of the model to other landscapes difficult) versus the more realistic spatially
explicit simulation of land abandonment over the short and medium term due to better representation
of diversity in decision-making. However, over longer simulated durations the advantages of an
agent-based approach are less obvious and the results remind us that the choice of modelling approach
depends on the questions being investigated and relative advantages of the available approaches.

In a third example from the Special Issue, Morgan et al. (2015) [3] compared three different
approaches for estimating the likelihood of land-use conversion by agricultural agents in New Zealand:
(i) no difference between agents in likelihood (i.e., assumes universally rational, profit-maximisation
agents); (ii) the social and geographic network of agents influences likelihood (i.e., representing
influence of endorsement and imitation alongside economic considerations), and (iii) empirical
estimation of likelihood based on an individual agent’s attributes (including age, education, land
holdings, etc.). The different approaches reflect differing perspectives and traditions in how human
activity has been investigated by economists compared to geographers. Results showed that at some
broader units of aggregation (catchment level) there was little appreciable difference in simulated land
uses between the approaches, whereas at finer units differences were evident.

The Brändle et al. (2015, [7]) and Morgan et al. (2015, [3]) examples are as good as currently exist
for demonstrating how assumptions about agent heterogeneity are comparable to existing accepted
modelling approaches. Comparisons such as these, and which investigate how and when ABMs are
better for improving understanding than other modelling types, will enable demonstrations of how
ABM are useful and robust for understanding change into the future. However, they also highlight that
differences in modelling approaches are not fully resolved and that the choice of modelling approach
will depend on the scientific and policy questions being asked. Currently, the primary influence on
modelling approach seems to be the scales and organizational levels at which answers are required.
For example, although ABMs may be designed to provide greater representational fidelity (e.g., fine
detail at the level of individuals) implementing such models often comes with costs of development
(time and data), use (computational resources) and transferability (between landscapes). In some
instances the benefits of developing an ABM may ultimately not outweigh the costs, particularly if
there is limited heterogeneity in the decision-making context of actors or limited interaction effects
between agents (e.g., O’Sullivan et al. 2012, [19]).

Taking an alternative perspective, in the Special Issue, Johnson (2015, [6]) explores using an ABM
as a mediator or “interested amateur” in the process of policy making. If constructed independently
of the policy context (i.e., not co-constructed with stakeholders), using the model and its output in
discussions forces a focus on assumptions but in an impersonal way, not directed at any particular
person. The comparisons here are between the way in which the model represents the world, how the
policy maker understands the world to be structured, and between expected and unexpected outcomes
as shown by the model. Johnson argues that for this approach to work there needs to be a degree of
transparency about how the model represents processes (e.g., of landscape change) such that it is not
a black box, but also that a detailed model is an advantage because it provides more assumptions
about which participants can debate and explore the consequences of. More generally then, Johnson
sees ABMs as providing greater benefit than rational utility maximization approaches both because
the latter are more ‘removed from reality’ (e.g., not all actors are perfectly rational) but also because
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their more simplified worldview (with few assumptions) inhibits discussion about structures and
relationships in the real world and how they could change. Johnson found his own particular ABM
useful for facilitating discussion about policy options for soil and water conservation in Ethiopia, but
more general comparison of ABMs against other model types for policy discussion would be welcome.

In future, it seems likely that beyond comparing different types of model (ABM, regression-based
models, systems dynamics models), combining ABM with other modelling types to produce innovative
representations will become more prominent. For example, Verburg et al. (2015, [20]) argue that
if modelling is to assist in designing sustainable solutions to the challenges of the Anthropocene,
innovative model architectures that can represent human-environment interactions across many scales
and levels of organisation will be needed. O’Sullivan et al. (2015, [21]) advocated hybrid forms of
land-use modelling in which competing and complementary approaches (beyond ABM) are compared
and combined in an iterative approach to improve understanding. O’Sullivan et al. (2015, [21]) suggest
different ‘levels’ of hybridity, from comparing different modelling approaches to investigate the same
substantive domain, through coupling different types of model to examine a single domain, to actually
integrating modelling approaches so that there is no discernible point at which one model ends and
another begins (e.g., agents that run regressions dynamically and internally as a proxy for individual
decision-making).

Developing such innovative modelling hybridity in land-change science is particularly imperative
given the recognition that landscape change can be influenced not only by local circumstances
(neighbours’ decisions, local environmental conditions) but also by decisions and processes that
are far remote and operating at different scales and levels of organization (Liu et al. 2013, [22]).
However, careful thought will need to go into operationalising hybrid model forms for investigating
such systems. Although representing all individual actors in a globalized system of land use and
food trade, for example, might theoretically be possible, it is not immediately clear that this would
be desirable. For example, the heterogeneity of decision-making and/or interaction at one level of
organization (e.g., individual farmers) may be so low as to make little difference to what decisions
mean for other levels of organization (e.g., food commodity traders). In such cases if the goal is
understanding global interactions, but it is at other levels of organization at which most uncertainty,
heterogeneity or influence occur, then it may be appropriate to represent local land use decisions in
an aggregated manner and focus individual-level representation at non-global levels or scales. Such
considerations for how to structure future hybrid models are important if we are to ensure the hybrids
do not become ‘monster models’—ever more complicated models that are more and more difficult to
evaluate. Such a situation is not an inevitable result of hybridization (nor advocated), but as usual
important consideration needs to go into developing models that are fit for the desired purpose.

Pursuing innovative and hybrid modelling approaches through iterative approaches to scientific
inquiry, as advocated by O’Sullivan et al. (2015, [21]), might be usefully facilitated through online
platforms that encourage greater collaboration between modellers and engagement with policy- and
decision-makers. One example might be an online a community-modelling initiative to act as a clearing
house for models and best practice. Contemporary online resources such as openABM.org are valuable
as a space to present individual models—complete with a peer-review process—but as structured they
currently do little to encourage modellers to think about how they can combine or build upon one
another’s models. A platform that actively encourages and enables modellers to interact, combine
and ‘mash-up’ their conceptualizations to find synergies and produce novel model architectures that
overcome trade-offs between representational fidelity and development costs would be particularly
valuable going forward. From the perspective of policy-development, an online space such as this
might also host models for policy makers to interact with as “interested amateurs”. By better enabling
modellers to work together to robustly compare and combine their models, and to discuss with users
to learn and improve models, advantages of hybridity might be more readily realised. In turn, the
models produced should enable more insightful contributions to the comparative issues discussed
above and ensure the continuation of innovative modelling for understanding landscape change, its
causes and consequences for sustainability in the Anthropocene.
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