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This supplementary material supports the main text as follows: 

Materials and Methods 

S1. Standardisation and Normalisation 

The non-urban land cover class was composed of four classes defined based on existing 
literature (e.g., [1–3]) and study area characteristics. These classes were forest, water, grassland and 
bare earth. Grassland and forest were also merged to create a single vegetation class. A complete set 
of land cover classes enabled examination of statistical differences generated from normalisation 
(Figure S1). The Coefficient of Variation (CV) statistic was calculated to describe the amount of 
variability relative to the mean spectral reflectance of the post classification datasets [4]1. The CV was 
calculated for pre- and post-normalisation datasets for both intra-year class reflectance, which 
describes the variability within each class per year, and the inter-year reflectance, which describes 
the variability of each class across all imagery dates. Post-normalised Landsat data exhibited 
statistically significant lower inter- and intra-CV with T = 0, Z = −2.154, p = 0.016, r = −0.359 and T = 0, 
Z = −2.418, p = 0.008 r = −0.373, respectively. The test statistic (T) was obtained from dataset 
differencing (pre- minus post-processed images), representing the lowest value of the sum of positive 
ranks (values increased) or negative ranks (values decreased). Hence, T = 0 dictates that post-
processed data consistently obtained a lower value than pre-processed imagery, statistically 
significant at p < 0.05 [5]. Therefore, reduced intra and inter year variance facilitates more appropriate 
one model classification for Landsat 5 TM and Landsat 7 ETM+ and another for Landsat 8 OLI. 

Figure S1. Inter year classification reflectance variation categorised by classified output for each 
spectral band for: pre (a) and post (b) normalisation correction. 

S2. Accuracy Assessment 

For each land use category, 50 random pixels per class per year were visually identified and 
classified based on the majority land cover within the coincident Landsat pixel from Google Earth 

                                                 
1 Using R version 3.3.0 
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imagery for the available years: 2000, 2003, 2005, 2007, 2013 and 2015 [6]. Both user’s accuracy 
(fraction of correctly classified pixels relative to all others classified as a particular land cover), 
producer’s accuracy (fraction of correctly classified pixels compared to ground truth data) and 
associated Kappa coefficients were consistently high except for the producer accuracy of bare earth 
which has an average accuracy of 53.33% (Tables S1 and S2). This is due to the known spectral 
similarities between bare earth and impervious surfaces, and water and shadow which resulted in 
spectral confusion during classification [3,7–10]. 

Table S1. Classification accuracy and associated Kappa Coefficient per year of classified Landsat. 

Year Accuracy (%) Kappa Coefficient
2000 82 0.75
2003 80 0.72 
2005 82 0.74 
2007 84 0.78 
2013 79 0.70
2015 79 0.70 

Average 81 0.73 

Table S2. Producer’s and User’s accuracy per year of classified Landsat imagery. 

Producer Accuracy Bare Earth Vegetation Urban Water 
2000 56.00 96.00 90.00 66.00 
2003 50.00 97.00 85.00 68.00 
2005 52.00 98.00 86.00 72.00 
2007 48.00 98.00 83.00 94.00 
2013 52.00 99.00 81.00 62.00 
2015 62.00 99.00 80.00 52.00 

Average 53.33 97.83 84.17 69.00 
User Accuracy Bare Earth Vegetation Urban Water 

2000 84.85 76.80 84.11 94.29 
2003 69.44 76.98 83.33 94.44 
2005 81.25 78.40 81.13 97.30 
2007 68.57 80.33 87.37 97.92 
2013 68.42 73.88 83.51 100.00 
2015 75.61 73.88 83.33 89.66 

Average 74.69 76.71 83.80 95.60 
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S3. Local Government Areas 

 
Figure S2. Local Government Areas (LGAs) located in Perth Metropolitan Region (a); with (b) 
exhibiting LGAs South and West of the Swan River and (c) LGAs North and East of the Swan River.  
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