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Abstract: This paper presents an evaluation of the multi-source satellite datasets such as Sentinel-2,
Landsat-8, and Moderate Resolution Imaging Spectroradiometer (MODIS) with different spatial and
temporal resolutions for nationwide vegetation mapping. The random forests based machine learning
and cross-validation approach was applied for evaluating the performance of different datasets.
Cross-validation with the rich-feature datasets—with a sample size of 390—showed that the MODIS
datasets provided highest classification accuracy (Overall accuracy = 0.80, Kappa coefficient = 0.77)
compared with Landsat 8 (Overall accuracy = 0.77, Kappa coefficient = 0.74) and Sentinel-2 (Overall
accuracy = 0.66, Kappa coefficient = 0.61) datasets. As a result, temporally rich datasets were found
to be crucial for the vegetation physiognomic classification. However, in the case of Landsat 8
or Sentinel-2 datasets, sample size could be increased excessively as around 9800 ground truth
points could be prepared within 390 MODIS pixel-sized polygons. The increase in the sample size
significantly enhanced the classification using Landsat-8 datasets (Overall accuracy = 0.86, Kappa
coefficient = 0.84). However, Sentinel-2 datasets (Overall accuracy = 0.77, Kappa coefficient = 0.74)
could not perform as much as the Landsat-8 datasets, possibly because of temporally limited datasets
covered by the Sentinel-2 satellites so far. A combination of the Landsat-8 and Sentinel-2 datasets
slightly improved the classification (Overall accuracy = 0.89, Kappa coefficient = 0.87) than using
the Landsat 8 datasets separately. Regardless of the fact that Landsat 8 and Sentinel-2 datasets
have lower temporal resolutions than MODIS datasets, they could enhance the classification of
otherwise challenging vegetation physiognomic types due to possibility of training a wider variation
of physiognomic types at 30 m resolution. Based on these findings, an up-to-date 30 m resolution
vegetation map was generated by using Landsat 8 and Sentinel-2 datasets, which showed better
accuracy than the existing map in Japan.

Keywords: vegetation mapping; physiognomy; Sentinel-2; Landsat 8; MODIS; machine learning;
cross-validation; Japan

1. Introduction

Shifting of vegetation zones and changes in floristic compositions have been reported under
the influence of climate change [1–5]. Discrimination of vegetation physiognomic characteristics
(structure-tree, shrub, herbaceous; or leaf-evergreen or deciduous, needle-leaved or broad-leaved) [6]
using satellite remote sensing data is important for better understanding the vegetation responses to
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changes in environmental conditions with the possibility of tracking changes in vegetation structure
and composition [7].

Different types of remote sensing data: multi-spectral, hyper-spectral, radar, or LiDAR obtained
from satellites or aircrafts have been exploited for the detection and mapping of vegetation at local or
large scale [8–19]. Major techniques used for the detection, classification, and mapping of vegetation
using remote sensing imagery are vegetation indices [20,21], spectral mixture analysis [22], temporal
image-fusion [23,24], texture based measures [25], and supervised classification using machine learning
classifiers such as maximum likelihood [26], random forests [27,28], decision trees [29], support vector
machines [30], fuzzy learning [31], and neural networks [32–34]. Nevertheless, performance of existing
large-scale land cover maps is limited to the discrimination of vegetation physiognomic types, which
is still a challenging field [35].

The distributions of Japanese vegetation are found in highly fragmented condition. In the case of
moderate resolution (~500 m) satellite data such as Moderate Resolution Imaging Spectroradiometer
(MODIS), most of the pixels are influenced by heterogeneous mixtures of the vegetation types.
Therefore, due to mixed pixel effects, discrimination and mapping of the vegetation types is difficult
using the MODIS data. Moreover, the resulted moderate resolution map misses many fragmented
vegetation patches. On the contrary, higher resolution (~30 m) satellite data can represent many
biophysical processes and characteristics of the land surface [36]. Hence, the higher resolution mapping
of vegetation types can play a tremendous role in the conservation and management of the vegetation.
There has been some progress in the production of high-resolution land cover maps at national,
regional, and global scales recently [37–39]. Recent research using the MODIS data has reported that
multi-temporal satellite datasets are crucial for discriminating the vegetation physiognomic types;
whereas classification accuracy does not vary much with the classifier but the performance is very
sensitive to input features and size of the ground truth data [7].

The main objectives of the research were to evaluate multi-source satellite data such as Sentinel-2,
Landsat 8, and MODIS with different spatial and temporal resolutions for the purpose of nationwide
vegetation mapping; and to generate an improved high-resolution (30 m) vegetation map in
Japan through machine learning and cross-validation approach. The newly produced vegetation
physiognomic map was compared to the existing high-resolution land cover map in Japan, and the
improvements were discussed.

2. Methodology

2.1. Preparation of Input Features

Standard terrain corrected (Level 1T) Landsat 8 Operational Land Imager (OLI) and Thermal
Infrared Sensor (TIRS) scenes available from 2014 to 2016 over Japan were used. Quantized
and calibrated scaled Digital Numbers (DNs) for each OLI and TIRS band delivered as 16-bit
unsigned integers were converted into Top-Of-Atmosphere (TOA) spectral reflectance and brightness
temperature (K) values using the rescaling coefficients found in the metadata file. Seven bands (blue,
green, red, near infrared, mid infrared, shortwave infrared, and thermal infrared) datasets were
extracted. The clouds were removed by using separate Quality Assessment (QA) band information
available in the data. In addition, three spectral indices: Normalized Difference Vegetation Index
(NDVI; [20]), Urban Built-up Index (UBI; [40]), and Superfine Water Index (SWI; [41]) were also
calculated for each scene. The multi-temporal data consisting of spectral and spectral indices were
composited by calculating multiple percentiles (0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100) pixel by pixel.
In this way, 110 layered datasets (features) were prepared for machine learning and cross-validation.
This research deals not only with the classification of vegetation types but also with the discrimination
of the vegetation types from non-vegetative cover types (urban, water, and barren). Therefore, the UBI
and SWI were used for improving the discrimination between non-vegetation and vegetation types.
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All eight-day cycle Nadir BRDF-Adjusted Reflectance (NBAR) data from the MODIS
BRDF/Albedo (MCD43A4) product available at 500 m resolution over Japan from 2014 to 2016 were
used. Six bands (red, near infrared, blue, green, mid infrared, and shortwave infrared) datasets were
extracted which were cloud free. We calculated three spectral indices—NDVI, UBI, and SWI—using
the NBAR for each scene. The eight-day datasets were composited using multiple percentiles (0, 10, 20,
30, 40, 50, 60, 70, 80, 90, 100) method, and rich features (in total 99) were prepared for further analysis.

Nine spectral bands (blue, green, red, red edge1, red edge2, red edge3, near infrared, red edge4,
and shortwave infrared) datasets from the Sentinel-2 Top-Of-Atmosphere (TOA) reflectance product
were used. Cloudy pixels were masked out by using separate quality assessment band. Sentinel-2
data with spatial resolutions varying from 10 to 60 m were resampled into 30 m. All available scenes
from 2015 to 2017 over Japan were used. Similar to the Landsat 8 and MODIS datasets, three spectral
indices (NDVI, UBI, and SWI) were also calculated for each scene. Finally, the data were composited
using multiple percentiles (0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100) method. In total, 132 features were
prepared for further analysis.

2.2. Machine Learning, Cross-Validation, and Mapping

The ground truth polygon data prepared in the previous studies [7,35] which were basically
constructed through on-site field inspection were used in the research. This data comprise of 390
polygons for each class under the study. In the case of 30 m resolution Landsat 8 or Sentinel-2 datasets,
sample size could be increased excessively as around 9800 ground truth points could be prepared
within 390 polygons. This research deals with the classification of six vegetation physiognomic
classes: evergreen coniferous forest, evergreen broadleaf forest, deciduous coniferous forest, deciduous
broadleaf forest, shrubs, and herbs; and two land cover types: arable, and non-vegetation (urban, water,
and barren). The distribution of ground truth data (390 polygons and 9800 points) is demonstrated in
Figure 1.

Random forests based supervised classification approach was adopted in the research because
it can handle highly non-linear interactions and shows superior performance than other classifiers
for the discrimination of vegetation physiognomic types [7,42]. The random forests classifier uses
bootstrap aggregating (bagging) to form an ensemble of trees by searching random subspaces from
the given data (features) and the best splitting of the nodes by minimizing the correlation between
the trees. The performance of different features was evaluated by using the 10-fold cross-validation
method. The procedure of 10-fold cross-validation method is described as follows:

First of all, the given features were divided into 10-fold of samples after shuffling them well.
For each fold of samples, learning was carried out only for nine folds, whereas the remaining one
fold was used for the validation. However, inside the cross-validation loop, the best scoring features
(training) were scored using the random forests algorithm, and different sets of best features (5, 10,
25, 50, and 75) were obtained. Results up to 75 best features are presented because the performances
were usually saturated after that. For each set of best features, the random forests model established
with the training folds was used to predict the physiognomic classes with the validation fold. Finally,
the predictions were collected from cross-validation loops. The same processing was conducted for
each dataset (MODIS, Landsat 8, and Sentinel-2). The optimum parameters (no. of trees = 300, max.
features = all) of the random forests classifier obtained from hit and trial method were used for each
processing. The validation metrics: confusion matrix, overall accuracy, and kappa coefficient were
used for assessing the performance. The overall accuracy—sum of true positives and true negatives
divided by number of validation points—measures correctness of the classification. Kappa coefficient
measures inter-rater agreement by counting the proportion of instances that predictions agreed with
the validation data (observed agreement) after adjusting for the proportion of agreements taking place
by chance (expected agreement) [43].
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Figure 1. The distribution of ground truth data (polygons and points inside polygons) prepared in 
the research: (a) display of the national territory; (b) zoomed in over the black polygon region in (a) 
showing the density of the reference points. The national boundary is based on the Global 
Administrative Areas database (GADM) Version 2.8, November 2015. 

The random forests based model by selecting best features from the combination of Landsat 8 
and Sentinel-2 datasets was used for the production of seamless nationwide vegetation map. The 
resultant map was compared with the most recently available land use and cover map (Version 16.09, 
September 2016) in Japan (http://www.eorc.jaxa.jp/ALOS/lulc/jlulc_jpn.htm, accessed on May 05, 
2017) using 9800 ground truth points data prepared in the research. For this comparison, 50 m 
resolution existing map was remapped according to the legends used in the research, and resampled 
into 30 m resolution.  

  

Figure 1. The distribution of ground truth data (polygons and points inside polygons) prepared
in the research: (a) display of the national territory; (b) zoomed in over the black polygon region
in (a) showing the density of the reference points. The national boundary is based on the Global
Administrative Areas database (GADM) Version 2.8, November 2015.

The random forests based model by selecting best features from the combination of Landsat 8 and
Sentinel-2 datasets was used for the production of seamless nationwide vegetation map. The resultant
map was compared with the most recently available land use and cover map (Version 16.09, September
2016) in Japan (http://www.eorc.jaxa.jp/ALOS/lulc/jlulc_jpn.htm, accessed on May 05, 2017) using
9800 ground truth points data prepared in the research. For this comparison, 50 m resolution existing
map was remapped according to the legends used in the research, and resampled into 30 m resolution.

3. Results

3.1. Cross-Validation Results

The cross-validation results obtained from different datasets (MODIS, Landsat 8, and Sentinel-2)
are summarized in Table 1. Different sets (5, 10, 25, 50, and 75) of important features given by the
random forests classifier were examined. In the case of sample size of 390, performances of the
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Landsat 8 (Overall accuracy = 0.77, Kappa coefficient = 0.74) and Sentinel-2 (Overall accuracy = 0.66,
Kappa coefficient = 0.61) datasets were significantly lower than the performance of MODIS
(Overall accuracy = 0.80, Kappa coefficient = 0.77) datasets. However, availability of large size (9800)
of samples could increase the classification accuracy (Overall accuracy = 0.86, Kappa coefficient = 0.84)
significantly in the case of Landsat 8 datasets. The performance of the Sentinel-2 datasets was
still lower (Overall accuracy = 0.77, Kappa coefficient = 0.74) than the performance of Landsat 8
datasets. Combination of Landsat 8 and Sentinel-2 datasets slightly improved the classification
in the case of 9800 samples (Overall accuracy = 0.89, Kappa coefficient = 0.87) or 390 samples
(Overall accuracy = 0.78, Kappa coefficient = 0.75) than using the Landsat 8 datasets separately.

Table 1. Cross-validation results with different datasets and ground truth sample size (s). The computed
overall accuracy (Kappa coefficient) with different sets of important features (f) are shown. Highest
accuracy results obtained among different sets of best features (f) are highlighted.

Datasets f = 5 f = 10 f = 25 f = 50 f = 75

MODIS (s = 390) 0.74 (0.71) 0.78 (0.75) 0.79 (0.76) 0.80 (0.77) 0.80 (0.77)
Landsat 8 (s = 390) 0.68 (0.64) 0.76 (0.72) 0.77 (0.74) 0.77 (0.74) 0.77 (0.74)

Landsat 8 (s = 9800) 0.73 (0.69) 0.83 (0.81) 0.86 (0.84) 0.86 (0.84) 0.86 (0.84)
Sentinel 2 (s = 390) 0.54 (0.48) 0.61 (0.55) 0.63 (0.58) 0.66 (0.61) 0.66 (0.61)

Sentinel 2 (s = 9800) 0.61 (0.55) 0.71 (0.67) 0.76 (0.72) 0.77 (0.74) 0.77 (0.74)
Landsat 8 + Sentinel 2 (s = 390) 0.68 (0.64) 0.76 (0.72) 0.77 (0.73) 0.77 (0.73) 0.78 (0.75)
Landsat 8 + Sentinel 2 (s = 9800) 0.75 (0.71) 0.83 (0.81) 0.87 (0.85) 0.88 (0.86) 0.89 (0.87)

Confusion matrices computed with different datasets and ground truth sample sizes are plotted
in Figures 2 and 3. The discrimination between inter-class physiognomic types are well demonstrated
by the confusion matrices.
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Figure 2. Confusion matrices computed with different datasets in the cases when the ground truth 
sample sizes were 390. Only the highest accuracy results among different sets of best features (f) are 
plotted: (a) MODIS (f = 50); (b) Landsat 8 (f = 25); (c) Sentinel 2 (f = 50); (d) Landsat 8 + Sentinel 2 (f = 75). 
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plotted: (a) MODIS (f = 50); (b) Landsat 8 (f = 25); (c) Sentinel 2 (f = 50); (d) Landsat 8 + Sentinel 2
(f = 75).
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vegetation map. The resultant seamless 30 m resolution map is displayed in Figure 4. 

The seamless vegetation map produced in the research was compared to the existing map with 
reference to the ground truth data prepared in the research. Due to variation in the definitions of 
corresponding legends between two maps, only four types of forests (evergreen coniferous forest, 
evergreen broadleaf forest, deciduous coniferous forest, and deciduous broadleaf forest) and non-
vegetation (merge of urban, water, and barren) type were used for the comparison. The resultant 
vegetation physiognomic map was superior to the existing map (Overall accuracy = 0.72, Kappa 
coefficient = 0.66). The low accuracy of the existing map may be due to limited temporal information 
carried out by the multi-spectral data, insufficient size of the ground truth samples, and satellite 
datasets of long time span (2006–2011). 
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plotted: (a) Landsat 8 (f = 25); (b) Sentinel 2 (f = 50); (c) Landsat 8 + Sentinel 2 (f = 75).

3.2. Production of Vegetation Map

The random forests model established by selecting best-performing features from the combination
of Landsat 8 and Sentinel-2 datasets was used for the production of nationwide vegetation map.
The resultant seamless 30 m resolution map is displayed in Figure 4.

The seamless vegetation map produced in the research was compared to the existing map with
reference to the ground truth data prepared in the research. Due to variation in the definitions
of corresponding legends between two maps, only four types of forests (evergreen coniferous
forest, evergreen broadleaf forest, deciduous coniferous forest, and deciduous broadleaf forest) and
non-vegetation (merge of urban, water, and barren) type were used for the comparison. The resultant
vegetation physiognomic map was superior to the existing map (Overall accuracy = 0.72, Kappa
coefficient = 0.66). The low accuracy of the existing map may be due to limited temporal information
carried out by the multi-spectral data, insufficient size of the ground truth samples, and satellite
datasets of long time span (2006–2011).
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has been reported in Japan [35]. On the other hand, visual interpretation techniques have been used 
for the nationwide vegetation mappings. For example, Harada et al. [44] prepared the MODIS based 
vegetation map of year 2001 in Japan by manually labeling the clusters obtained from the Iterative 
Self-Organizing Data Analysis Technique. Roy et al. [45] used on-screen visual screen technique for 
the preparation of land use and land cover database in India using medium-resolution Indian remote 
sensing satellite data. More recently, Sharma et al. [35] employed machine learning and automated 
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Ground truth data are inevitable assets of machine learning and cross-validation approach. 
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4. Discussion and Conclusions

The MODIS Land Cover Type product (MCD12Q1) is one of the most recently available global
land cover product from which vegetation physiognomic information can be obtained. However,
in terms of the mapping of vegetation physiognomic types, poor performance of the MCD12Q1 product
has been reported in Japan [35]. On the other hand, visual interpretation techniques have been used
for the nationwide vegetation mappings. For example, Harada et al. [44] prepared the MODIS based
vegetation map of year 2001 in Japan by manually labeling the clusters obtained from the Iterative
Self-Organizing Data Analysis Technique. Roy et al. [45] used on-screen visual screen technique for
the preparation of land use and land cover database in India using medium-resolution Indian remote
sensing satellite data. More recently, Sharma et al. [35] employed machine learning and automated
classification approach for the production of nationwide vegetation physiognomic map in Japan using
MODIS data. However, mapping of the vegetation physiognomic types by using the 500 m resolution
MODIS datasets are affected by mixed pixel effect, and the resulting map misses distribution of many
vegetation types that occurred in smaller patches.

Ground truth data are inevitable assets of machine learning and cross-validation approach.
Vegetation types are found in highly fragmented condition in Japan, and thus preparing ground
truth data even from a homogenous area of at least 500 m pixel-size is difficult. In the case of
limited size of the ground truth samples (390), MODIS datasets provided best performance (Overall
accuracy = 0.80, Kappa coefficient = 0.77) for the classification of vegetation physiognomic types.
It should be because of higher temporal resolution covered by the MODIS datasets than by Landsat
and Sentinel-2 datasets. Consequently, temporally rich datasets were found to be crucial for vegetation
physiognomic mapping. On the contrary, sample size could be increased excessively as around
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9800 ground truth points could be prepared within 390 MODIS pixel-sized polygons in the case
of 30 m resolution datasets. The increase in the sample size significantly enhanced the Landsat-8
datasets based classification (Overall accuracy = 0.86, Kappa coefficient = 0.84). However, Sentinel-2
datasets (Overall accuracy = 0.77, Kappa coefficient = 0.74) could not contribute as much as the
Landsat-8 datasets. This is possibly due to temporally limited datasets covered by Sentinel-2
satellites so far. Regardless of the fact that Landsat-8 and Sentinel-2 datasets have lower temporal
resolutions than MODIS datasets, they could enhance the classification of otherwise challenging
vegetation physiognomic types due to possibility of training a wider variation of vegetation types at
30 m resolution.

In this research, classification accuracies were assessed by 10-fold cross-validation method using
the random forests classifier. Random forests is a powerful algorithm, which is increasingly used
in the classification of remote sensing images [46,47]. Random forests can handle highly non-linear
interactions and classification boundaries of the multi-temporal spectral data. Random forests consists
of a large number of deep trees, where each tree is trained on the bagged data using the random
selection of features, so gaining a full understanding of how the features interact non-linearly by
examining each individual tree is difficult. However, the spectral indices (NDVI, UBI, SWI) used in
the research were in the top list of important features as retrieved from the inbuilt feature importance
function of the random forests algorithm.

Based on findings from the evaluation of multi-source satellite datasets, a nationwide 30 m
resolution vegetation map was produced through machine learning and cross-validation approach.
The resultant map showed higher accuracy than the existing map of Japan. Nevertheless, bottlenecks
present in the discrimination of some classes especially between the coniferous and broadleaved
forests require further improvements in future. With the additional temporal coverage by Sentinel-2
satellites in near future, further improvements in the classification and mapping of vegetation types
are expected. The availability of temporally rich datasets from Sentinel-2 satellites would also be useful
for much higher resolution (10 m) vegetation mapping activities on a large scale.
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