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Abstract: Many developing countries have witnessed the urgent need of accelerating cadastral
surveying processes. Previous studies found that large portions of cadastral boundaries coincide
with visible physical objects, namely roads, fences, and building walls. This research explores the
application of airborne laser scanning (ALS) techniques on cadastral surveys. A semi-automated
workflow is developed to extract cadastral boundaries from an ALS point clouds. Firstly, a two-phased
workflow was developed that focused on extracting digital representations of physical objects. In the
automated extraction phase, after classifying points into semantic components, the outline of planar
objects such as building roofs and road surfaces were generated by an α-shape algorithm, whilst
the centerlines delineatiation approach was fitted into the lineate object—a fence. Afterwards,
the extracted vector lines were edited and refined during the post-refinement phase. Secondly,
we quantitatively evaluated the workflow performance by comparing results against an exiting
cadastral map as reference. It was found that the workflow achieved promising results: around 80%
completeness and 60% correctness on average, although the spatial accuracy is still modest. It is
argued that the semi-automated extraction workflow could effectively speed up cadastral surveying,
with both human resources and equipment costs being reduced.
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1. Introduction

1.1. Background

Contemporary claims suggest 75% of global land rights are not registered in a statutory cadastral
system and most are located in developing countries [1]. Proponents of land administration claim
that without confirmation from a cadaster, people tend to find it more difficult to access and use land.
In this situation, land disputes are likely to be aroused and may result in land grabbing, disorder, and
failure of land markets [2]. In response, for several decades, international development donors have
argued for the accelerated establishment or completion of cadastral systems.

Conventional cadastral survey methods are often argued as time-consuming and labor intensive.
As such, nationwide cadastral survey projects, those collections of people, finance, and processes
often made responsible for mapping the millions of parcels within a jurisdiction, often take decades to
complete—and even then, they often remain unsatisfactorily incomplete [1,3,4]. Therefore, to enhance

Land 2017, 6, 60; doi:10.3390/land6030060 www.mdpi.com/journal/land

http://www.mdpi.com/journal/land
http://www.mdpi.com
http://dx.doi.org/10.3390/land6030060
http://www.mdpi.com/journal/land


Land 2017, 6, 60 2 of 23

and accelerate the process of land survey and registration, innovative and automated methods are in
high demand.

In parallel to developments in land administration, mapping techniques based on remote sensing,
specifically aerial photography, and more recently high-resolution satellite imagery, have gained
recognition and increased popularity—even within the cadastral domain. At the forefront in this sector
are developments in high-resolution satellite imagery, UAV-sourced imagery, and laser scanned point
clouds. The latter is far less developed and is the focus of this paper. In contrast to optical images,
laser scanned data enables canopy penetration: point clouds can detect features covered by vegetation,
which cannot be seen from optical imagery. This is considered a major opportunity in the land
administration domain, where overhanging vegetation often obscures fence lines that often represent
cadastral boundaries. Indeed, airborne laser scanning (ALS) has become an increasingly popular tool
for collecting vast amounts of accurate spatial data within a short period of time [5]. ALS can produce
highly accurate 3D positioning information. The height information can be applied to distinguish
vertically distributed constructions. Currently, existing methods for parcel boundaries generations are
mainly manual. If cadastral objects can be extracted semi-automatically from LiDAR data, much less
manpower would be needed, and cost, as well as operation time, could be significantly reduced.

Much research already focuses on feature extraction from point cloud data. Examples include
reconstruction of buildings [6], traffic furniture [7], and trees [8], amongst others. Perhaps most
prominently for this paper, Van Beek [9] designed a workflow to extract general boundaries from
airborne laser scanning data of the Netherlands, and the results were satisfactory [10]. However, in
general, there is limited research focused on semi-automated extraction of cadastral boundaries.
In different areas, parcel boundaries might be marked by different kinds of physical objects.
Research carried out in Port Vila of Vanuatu indicated that over eighty percent of parcel boundaries
coincide with physical objects [11]. Roads, building walls, or fences are all very likely to double
with cadastral boundaries—particularly general boundaries [11]. However, cadastral boundaries are
fundamentally a human construct and not all boundaries are visible. Likewise, not all detectable
features coincide with cadastral boundaries. As a consequence, manual completion will always be
needed. The above challenges and opportunities provide the overarching motivation for the research.
Derived from this situation, the objective of this study is to develop a strategy for semi-automated
extraction of parcel boundaries from ALS point cloud data and assess it in terms of accuracy, completion,
and degree of automation, by comparing with existing cadastral maps.

After stating the background of the research, this paper reviews the concepts and recent research
on relevant disciplines, including advances in cadastral studies and developments in feature extraction
techniques. Then, the methodology is generally illustrated, with an introduction, justification to
study the area, and datasets obtained and utilized. The research mainly deals with two contents: the
developed semi-automated workflow and the performance of the workflow. The processing details,
as well as results, are discussed in separately sections. Finally, based on observations of the research,
conclusions and recommendations for future improvements are made.

1.2. Literature Review

This paper deals with emerging interdisciplinary research fields: accordingly, the literature review
reflects upon several disciplinary areas including cadastral studies, feature extraction techniques,
and LiDAR data. Observed from literature reviews, some extraction algorithms are considered useful
for cadastral purposes.

1.2.1. Advances in Cadastral Concepts

The concept of cadaster is essential in this study, as the ultimate goal is to deliver an approach
to support production of a cadastral map. A cadaster is a comprehensive official record of the real
property’s boundary, ownership, and value, and is a systematically arranged public register that
depends on survey measurements [2,11,12]. A land register can also be considered part of the system
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and is closely linked to the cadaster [13,14]. Acting like a conjunction with other records, cadasters
play important roles for either juridical or fiscal purposes [15]. The “Fit for purpose” concept is raised
in view of the urgent need for a flexible cadaster [1]. alliance suite of “fit for purpose” land tools is
developed by the Global Land Tool Network (GLTN), in order to establish full cadastral coverage in
shorter amounts of time [16,17].

The geographic part of a cadaster, which is usually represented as maps or plans, is produced
by a cadastral survey [13]. The juridical and fiscal natures of cadastral survey are discussed by
Robillard et al. [18], as well as Bruce [19]. Absolute positioning is argued to offer confidence on parcel
location and area, contributing to tenure security [2,19]. The target of a cadastral survey—cadastral
boundaries—are either fixed or general, depending on whether the boundary is accurately surveyed
and determined [12,19–21]. This study focuses on the general boundary: they are often visible and
more likely to be extracted from remote sensing data.

1.2.2. Developments in Feature Extraction

Kern [22] describes automation of the feature extraction process as a means of deriving informative
values from measured data. Much research has been completed on automatic extraction of physical
objects, some of which inspires thinking on application in the land administration domain. A large
amount of work done in this domain can be linked to the application of cadastral boundary extraction.
For 3D building reconstruction, Overly et al. [23] used the Hough Transform to detected rough roof
planes, while Dorninger & Pfeifer [24] used the mean shift algorithm and region growing to define
rooves. Then, polygon roof outline generation was achieved by a 2D α-shape computation from
building points. Elberink & Vosselman [25] explored extracting complex road junctions information
from point clouds, in which research on the surface-growing algorithm was applied to determine road
elements. Sohn et al. [26] classified powerline scenes with Markov Random Field (MRF).

For multiple entities, Vosselman [27] divided the task into planar and non-planar objects. He used
the 3D Hough transform to determine the surface and subsequently applied a segment-growing
algorithm to address non-planar components. Moreover, Xu et al. [28] proposed a workflow consisting
of four steps on multi-entity classification. They firstly obtained rough classification of planar segments
(ground, water, vegetation, roof, and unclassified objects) by surface growing algorithms.

From the literature review on feature extraction, some algorithms and methods are considered
suitable for cadastral purposes. Connected Component Analysis is a robust and fast algorithm for
segmentation: it calculates the distance between consecutive points [29,30]. In terms of line extraction
algorithms, the skeleton algorithm emphasizes geometrical and topological properties of the shape
of features [31]. Comparatively, the famous Hough Transform algorithm prefers procedure over
parameterized objects to perform edge point grouping into object candidates [32,33]. Further, the
Alpha shape (α-shapes) algorithm can return a smoother outline as it generates the convex hull of
point clusters, whilst the process of Canny Edge detection is flexible in diverse environments, because
it computes sharp edges from blurred images [34–36].

Summarized from the literature review, the feature extraction techniques applied to LiDAR data
could be used to develop an alternate or supplementary cadastral survey method that is both efficient
and effective. An object-based approach would be more straightforward for cadastral boundaries
extraction. This means, useful knowledge of objects could be applied to achieve the best results of
detection. Therefore, a semi-automated workflow, a combination of automatic feature extraction
techniques from LiDAR data, and manual completions, may be suitable for cadastral purposes and, at
the very least, demands exploration.



Land 2017, 6, 60 4 of 23

2. Methods and Materials

2.1. Overarching Methodology

Semi-automated extraction for cadastral boundaries from point clouds can be considered
interdisciplinary endeavor that crosses over LiDAR techniques and geographic information system
(GIS), as well as cadastral surveying. The general strategy is an object-based workflow.

The research comprises two stages. Firstly, a tailored workflow was developed to extract potential
objects to reconstruct a parcel map. Due to the diverse morphology of parcel boundaries, a further
classification strategy was employed in this research. The outlines of these features were then generated
to construct a rough map. Then, post-refinement with visual interpretation improved the extracted
result. In the second stage, the extracted result was accessed with reference data in the evaluation
stage, by inspecting the accuracy, correctness, and completeness of the workflow.

2.2. Study Area and Research Data

For the purposes of the study, the capital of Vanuatu, Port Vila was utilized. Vanuatu is a Y-shaped
archipelago consisting of about 82 relatively small, volcanic origin islands [37]. Figure 1 gives an
overall view of the territory of Port Vila as well as Vanuatu.
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regions in Port Vila.

Vanuatu is an ideal case that has both cadastral and LiDAR data available. Moreover, the
morphology in Vanuatu arguably provides an ideal representation of a developing, if not urbanizing,
landscape, which is the target context of the overarching work. Lastly, initial investigations of the
morphology of cadastral boundaries in Vanuatu supplies confidence on what to measure.

The capital, Port Vila in Efate, is covered by both ALS LiDAR data and a detailed cadastral map
measured with DGPS—therefore, it was selected as the study area. The provided orthophoto was used
as additional ground truth proving reference data. The coordinate system used in this study was UTM
59S, WGS 84.

The overall point density of the LiDAR data in Efate was 9.47 p/m2—a yield an accuracy of
around 10 cm. According to the data quality report [38] the topography LiDAR points are classified
into 9 classes, which is coherent with LAS standards [39].

Two regions in Port Vila were selected as the subset for further statistical analysis, one for the
dense urban area and the other for the suburban area (Figure 1). From the orthophoto, these two
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regions are clear, with diverse land covers clearly distinguishable. They represent typical dense urban
and suburban areas, respectively. Additionally, the research focus on general boundaries in the urban
area, and the selected test regions, were both covered by the reference data. Separating these two
regions enabled the study focus on the performance of the workflow on the diverse landscape of the
urban area, in addition to shortening the processing time.

3. The Semi-Automated Workflow of Cadastral Boundaries Extraction

Based on the most prominent physic objects, namely roads, buildings, and fences, a workflow
was developed to semi-automated extracting parcel boundaries.

3.1. Overview of the Semi-Automated Workflow

The developed workflow consisted of two phases: automated extraction and post-refinement.
Three steps made up the automatic extraction phase: (1) classifying points into target objects; (2) generating
planar object outlines—roads and buildings; (3) fitting centerlines to linear objects—fences.

Specific approaches were selected to conduct each step. In view of the complex morphology of
cadastral boundaries, these approaches were able to deal with the large number of datasets, as well as
with particular targets of the cadastral objects. Afterwards, extracted line segments were edited and
completed in the post-refinement phase.

Diverse types of software were tested in different steps, in order to find an effective and efficient
approach. Comparing the performance of each piece of software, with time and budget considered,
the most suitable were determined for each step. Specifically, MATLAB executed outline generation
algorithms because the tested algorithms were implemented in it. ArcScan was selected to achieve
centerline fitting for its outstanding vectorizing function. LasTools was used to produce the hillshade
images because it is the fastest solution for LiDAR data processing. CloudCompare, an open source
and efficient software, was selected to conduct the segmentation and points filtering. Lastly, the
well-known ArcGIS was used for output visualization and post-refinement. An overview of the
extraction framework is given in Figure 2. It illustrates the designed steps and algorithms applied.
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3.2. Further Classification for Expected Objects

The very first step of the workflow was to further classify points into target components, which
were the road and fence in this study. Different methods were applied to recognize these two objects.

3.2.1. Road Detection from Ground Points

A cadastral boundary morphology study indicates that roads very likely coincide with cadastral
boundaries [11]. Normally, roads lie at ground level and they cannot be separated by height
differentiation. Inspired by the work of Clode, Kootsookos, and Rottensteiner [40], road material is
usually uniform along a road section, in spite of the noisy value of intensity returned by scanning units.
Therefore, points were then selected when their last pulse intensity values fell in the acceptable range
for this type of road material. By searching for a particular intensity range (defined by Equation (1)),
it is possible to extract most LiDAR points that were on roads, even though there were also some
other on-road detections that were also produced. Equation (2) illustrates how the LiDAR points were
filtered based on their intensity, in order to create a new subset of points [40].
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S1 = {Pi ∈ S: imin < Pi < imax} (1)

where and imin and imax are the minimum and maximum acceptable LiDAR intensities at point Pi.
By visual interpretation, the intensity of road points in the two study regions was similar.

This illustrated that in Port Vila, the material used in road constructions is uniform. The selected range
was 0–25 and 30–55. The followed equation describes the road points subset S2.

S2 = {Pi ∈ S: 0< Pi < 25||30 < Pi < 55}, (2)

Since roads are flat linear networks, they were assumed to be connected planes. After the points
were selected, they were segmented by connected component analysis, based on planar distance
among points. After the connected component segmentation, segments size was computed, and then
small segments were defined as unvalued physical objects and removed. The remaining points were
points on roads.

The result (Figure 3e,f) showed that some portion of roads were wrongly deducted, while some
roadside bare lands still remained. Figure 3e (region 1) contains more irregular physical objects, while
Figure 3f (region 2) presents a clearer linear road structure. This might be caused by more car parks and
bare land in developed region 1, compared to region 2, where was covered by vegetation. Gaps exist in
both regions, because of the wrong removal of small segments. Uneven points consequently distribute
on the road surface in this incorrect segmentation.

Land 2017, 6, 60 7 of 22 

= { ∈ : < < } (1) 

where and  and  are the minimum and maximum acceptable LiDAR intensities at point Pi.  
By visual interpretation, the intensity of road points in the two study regions was similar. This 

illustrated that in Port Vila, the material used in road constructions is uniform. The selected range 
was 0–25 and 30–55. The followed equation describes the road points subset S2. = { ∈ : 0 < < 25||30 < < 55}, (2) 

Since roads are flat linear networks, they were assumed to be connected planes. After the points 
were selected, they were segmented by connected component analysis, based on planar distance 
among points. After the connected component segmentation, segments size was computed, and then 
small segments were defined as unvalued physical objects and removed. The remaining points were 
points on roads.  

The result (Figure 3e,f) showed that some portion of roads were wrongly deducted, while some 
roadside bare lands still remained. Figure 3e (region 1) contains more irregular physical objects, while 
Figure 3f (region 2) presents a clearer linear road structure. This might be caused by more car parks 
and bare land in developed region 1, compared to region 2, where was covered by vegetation. Gaps 
exist in both regions, because of the wrong removal of small segments. Uneven points consequently 
distribute on the road surface in this incorrect segmentation. 

(a) (b)

(c) (d)

Figure 3. Cont.



Land 2017, 6, 60 8 of 23

Land 2017, 6, 60 8 of 22 

(e) (f)

Figure 3. (a–f) Show how a rough road network was extracted in two regions, respectively. 
Specifically, (a,b) present the intensity filtering result; (c,d) illustrate the segmentation process; and 
(e,f) show the road extraction results of two region. 
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Furthermore, they cannot be computed from local smoothness, as they are too narrow to form planes. 
After eliminating classified building and ground points, the rest of the points were found to be 
composed of small structures like fences or vegetation.  

Moreover, the material of the fence was uncertain: they may be made up by bush, concrete, or 
wood. In addition, the spectral information provided by LiDAR data over thestudy area was 
insufficient for recognizing fences. Except from reflectance intensity, an extra criterion—local point 
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3.2.2. Fence Detection for Low Vegetation

In the suburban area, fences were the object that coincided the most with cadastral boundaries.
However, they are hard to be distinguished from low vegetation: their heights were very similar.
Furthermore, they cannot be computed from local smoothness, as they are too narrow to form planes.
After eliminating classified building and ground points, the rest of the points were found to be
composed of small structures like fences or vegetation.

Moreover, the material of the fence was uncertain: they may be made up by bush, concrete,
or wood. In addition, the spectral information provided by LiDAR data over thestudy area was
insufficient for recognizing fences. Except from reflectance intensity, an extra criterion—local point
distance—was computed. The threshold was set to 1 pixel and standard deviation was computed of
6 neighbourhood points; afterwards, sporadic points were removed. However, as shown in Figure 4,
the detection performance was better.
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From the very general view on region 2, a rough impression of parcels can be identified.
Some building edge points remain, as they were misclassified. Further, in denser vegetation cover
areas, parcels cannot be distinguished.

3.3. Complemented Knowledge from Height Jumps

A complementary procedure was tested to delineate the outline of objects from height information.
This supplementary process provided more knowledge on parcels boundaries, in cases where the
topography relief resulted in incorrect detection. Hillshading was applied to visualize the height
difference in this step. LAStools, a commercial software tool, was applied to conduct this process.

As illustrated as Figure 5, in region 1, building outlines were highlighted. Specifically, very
closed building roofs were distinguished, as they were at different heights. The topography relief was
also visible, which aids in separating road plane with roadside slopes. On the contrary, in region 2,
whose topography is a flatter, hillshade visualization did not add much value. Even though building
roofs were also highlighted, dense low vegetation was also mixed inside and ended up as noise.
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3.4. Outline Generation of Detected Planar Objects

After the recognition of roads and fences, points were classified into target objects; the second
step of the automatic extraction phase was to derive outlines from planar objects. According to the
nature of objects, the physical objects were either planar or linear. The boundary approach was applied
in planar objects such as building roofs, while the line fitting approach was more suitable for linear
objects such as fences. However, roads lay between these two types of physical objects; therefore,
both approaches were tested on roads. The following contents describe the process and results of each
algorithm tested in the outline delineation of planar objects, the preliminary step for vectorization of
boundaries from objects. A number of approaches were tested, including α-shape, Canny detector,
and Skeleton. Though some of them worked on very regular contexts, most of them were found to not
perform adequately.

3.4.1. Building Outlines Extraction

A subset of building roof points was separated. The α-shape and Canny detector were tested for
building outline generation (the results are shown in Figure 6). When testing α-shape, the radius was
set to 1 in both regions, in order to acquire the best-fit and appropriately detailed outlines. In region 1,
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less vegetation mixed with roof edges, resulting in the shape of points being comparatively regular,
and straight outlines. However, region 1 also has higher density construction, with buildings close to
each other; therefore, they were difficult to separate.
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Figure 6. (a–d) Present the result of building outline generation of two regions. Specifically, (a,b) are
the result of α-shape algorithm of two regions; and (c,d) are the result of Canny algorithm.

Buildings in region 2 were sporadically mixed with low vegetation, with their borders covered.
As a consequence, though building roof outlines were not as regular as in area 1, they were
better separated.

The Canny algorithm is widely applied in the image processing field. Building points were
projected on raster images, with pixel size equal to point space. It provided a similar result to α-shape.
However, the extra rasterizing step introduced a decrease in the resolution. The edges were not as
sharp as the result of the α-shape. Especially in region 2, small constructions lost their original shape.
The most obvious error produced by the Canny algorithm was the small dots inside buildings and this
may be originated from uneven point densities. Therefore, in this study, α-shape was adopted.
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3.4.2. Road Outlines Extraction

Roads lie between planar or linear constructs. α-shape and Canny were applied to generate road
outlines, while Skeleton was used to detect road trend. Due to the coarse road point classification, the
shapes of roads were irregular. When generating road outlines, noisy objects were also included, and
this resulted in zigzag outlines. The α-shape produced a detailed road outline map that described
the roadside objects (Figure 7a). For both regions, the radius was set to 1.6, in order find a balance
between straightening lines and maintaining details. Specifically, in region 1, the shape of roads on the
slope was odd. On the other hand, since the width of roads in region 2 was smaller than in region 1,
disconnects occurred with smaller radius (however, enlarging the radius setting would have resulted
in a loss of detail).
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Figure 7. (a–f) Show how a rough road network was extracted in two regions, respectively. Specifically,
(a,b) present the intensity filtering result; while (c,d) illustrate the segmentation process, and (e,f) show
the road extraction results of two region.

Figure 7b displays the result of the outline generated by the Canny algorithm. A Gaussian
blur was integrated before the computation of Canny, in order to decrease the thickness of roads.
The process helped in removing the noisy roadside objects, though it also introduced disconnection.
The Canny outline computed the concave hull of road segments, excluding small gaps inside the road
surface. In both regions, the performance of the Canny algorithm depended mostly on the quality of
the classification of road points.

Skeleton created rough centerlines of roads (Figure 7e,f). Though an impress of road network was
clear visible, the width of roads was lost. As parcel boundaries usually coincide with road edges—the
role of the road width and edges cannot be overlooked—this method therefore has limitations.
In addition, line segments generated by skeleton were unconnected, and further simplification
is required.

Comparing different approaches, the α-shape algorithm was the most suitable for road generation.
The zigzag outlines were simplified and straightened in GIS environment (Figure 7), and the maximum
acceptable distance was set to 2 m in both regions.

3.5. Line Fitting From Linear Fences

The last step for the automatic extraction phase was delineating lines from linear objects.
ArcScan has a centerline fitting function: it can vectorize lines by tracing pixels. The roughly classified
fence points were projected onto raster images. Pixels were reclassified into two classes: foreground
and ground level. Line fitting was conducted on foreground pixels.

Before operating the line-fitting progress, an opening pre-processing was applied to fill in the
small gaps. Afterwards, raster clearance removed single points by calculating the local stand deviation
of point distances.

Line fitting results are shown in Figure 8a. Both centerline and outline were generated. Obviously,
certain percentages of fence centerlines were drawn. The overview of parcels was vectorized into a
polyline. Disconnecting pixels produced many very short line segments (shorter than 2 m), and they
were unvalued noise.
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A similar approach was conducted in hillshade images of region 1, to generate topography relief
and building outlines. Since building outline generation from points cannot be separated from close
buildings, this results in a more detail building interpretation. In region 1, building walls coincide
with a large portion of cadastral boundaries. Therefore, it was necessary to ensure a more detailed
building outline.

3.6. Reconstructing the Parcel Map by Post-Refinement

When rough lines had been generated by the automatic extraction phase, the results were further
refined by the second phase of the workflow: post-refinement phase.

When overlaying all the automated extracted results with the orthophoto mosaic (the study
regions’ cadastral situation), obvious mismatches between road boundaries and fitted lines emerged
in both regions, due to the road thickness deduction along extraction. Furthermore, fitting lines and
building outlines provide much more detail than roads boundaries. Generally, building outlines
coincided with fitted lines, illustrating that the building extraction process approximately maintains
the original shapes. However, the centerline-fitting approach produced a large number of short line
segments. It was difficult to judge whether these sporadic short lines were meaningful.

In region 1, the fitted line of the hillshade visualization serves as complementary for distinguishing
building blocks. However, as a highly developed area, morphology of parcels in region 1 is so irregular
that it was hard to define the lines that are likely to coincide with cadastral boundaries. In region 2,
where the majority of cadastral boundaries were composed of fence and road, building outlines serve
as a supplement for defining parcel locations. In particular, when determining useful lines from line
clusters, parcel boundaries normally surround buildings, rather than cutting through them.

After acquiring general knowledge from the automated extraction results, manual editing was
conducted to reconstruct a rough parcel map. Different strategies were designed for the two regions.

An overall reorganization of the detected lines was preliminarily conducted on both regions. With
a topology check, close and intersecting lines were merged. In the post refinement phase, less editing
was executed on automatically extracted building outlines and road outlines, because they had higher
positional accuracy.

The editing was mainly conducted on fitted lines. In region 1, a topology check was used to search
for fitted lines that coincide with building boundaries: they were removed because of redundancy.
On the other hand, the left fitted lines created from gaps between buildings or topography reliefs were
kept. Comparatively, in region 2, portions of the fitted lines were generated from roadsides, in spite
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of fence centerlines. Topology was also applied to remove this redundancy. Afterwards, the length
of the fitted lines was computed as a line attribute: line segments shorter than 2 m were removed.
Based on the target feature strategy, a different combination of object lines was applied in the two
regions. The rough parcel map of region 1 consisted of automatically extracted road outlines, building
outlines, and edited fitted lines from hillshade visualization. Meanwhile, for region 2, the automatically
extracted road outlines and edited fence fitted lines were grouped.

Manual completion was the final step for scene clearance. After determining the useful line
segments with the help of visual interpretation, gaps among these line segments were manually filled
in and short lines connected. Partition lines were created on the place where there were thought
to be parcel boundaries. The final vector draft parcel maps of two regions are shown as Figure 9,
respectively, edited lines are automated extracted lines but have been corrected or changed, while
completion refers to lines that manually added. The whole manual editing process took less than half
an hour to complete.
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Figure 9. Final maps produced by the workflow: (a) describes region 1; and (b) presents region 2.

Generally speaking, for maintaining the research objective, in the post-refinement step, uncertain
errors were left maintained, and only obvious and identifiable errors were edited. Certain rules were
designed for this post-refinement. For instance, when editing road outlines, the over simplified sharp
corners were left, but when the shape of roads were irregular rather than linear, these parts were
removed. In terms of centerline fitting, for both the building gaps fitting in region 1 and the fence
fitting in region 2, majority edits were made when encounter following two conditions. The first
related to the angle between line segments. That is, the angle needed to be larger than a certain about
of degrees (e.g., 75), because parcel corners are not likely to be too acute. The other condition was
when the endpoint of a line segment was close to an intersection. In addition, if line segments were
randomly orientated or sporadically distributed, they were removed.
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4. Workflow Performance Evaluation

4.1. Comparison with Exiting Cadastral Map

The evaluation stage compared the extracted results of both phases with reference data, the
cadastral map, and made assessment in terms of the correctness and completeness of the developed
workflow. Figure 10 provides an overview of the workflow performance. There is a small portion of
reconstructed lines that completely coincide with ground truth, whilst the others possess errors like
offsets and wrong detections. The error sources, as well as tolerances, will be described now.
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Figure 10. Overlay of workflow results and reference cadastral maps: (a) and (b) illustrate region 1
and 2 respectively.

Obviously, the workflow performs better in region 2 than region 1. In region 2, the scene is clearer
with less disruptive lines, while on the contrary, in region 1, redundant and single stand lines exist.
Cadastral morphology is indeterminate in dense urban areas. For instance, when a block consists of a
couple of parcels, the outer parcel boundaries normally coincide with roads surrounding the block.
However, the interdivisional lines normally cut through building gaps. Nevertheless, in dense urban
areas, buildings often adjoin to roads: more efficient land use is caused by higher land price. Thus,
when the workflow extracts both buildings and roads outlines, a certain redundancy occurs on block
outlines. On the other hand, the parcel shape and size are not uniform—for example, some parcels
possess more than one building, some parcels are larger, and the others are smaller. This phenomenon
contributes difficulties to the boundary location prediction. Therefore, diverse noise made the overall
result of region 1 looks coarser.

Comparatively, the scene of region 2 is cleaner. There are more recognizable parcels in the scene.
Similar to region 1, blocks are separated by roads outlines. Within blocks, parcels are regularly arranged
with evenly distributed areas. Most parcels are rectangle and north orientated. Though fences were
hardly seen from images when they were covered by vegetation, the workflow filtered out the high
vegetation and fences mixed with the low vegetation were then left. They serve as markers describing
the range of land parcels. However, in real-life situations, boundaries do not always cut through the
middle of thick brush, therefore there are obvious offsets existing between extracted fence lines and
the reference data. In general, the fitted centerline partly draws the division boundaries.
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4.2. Error and Tolerance

As described previously, extracted lines are not totally aligned with the ground truth. Errors can
be summarized into three categories, by their sources and appearance. One is raised from outlines
generation; the second presented as offset; and the third is caused by misalignment between features
and cadastral boundaries. By studying the characteristics of errors, standards for the result evaluation
were defined based on whether the error can be improved. Tolerance was determined according to
the maximum distance between extracted lines and relative reference data. If errors can be eliminated
through further improvement, they were recognized as acceptable.

The coarse outline extraction introduced errors when connecting boundary points. Especially
in road outline generation, the reducing approach incorrectly subtracted points on roads, as well as
decreasing the road’s thickness. Though a simplification step was integrated, it also brought noises
through over-simplification. As shown in Figure 10a, the roads width was decreased and the shape of
some corners were lost. A better threshold for straighter and simplified road outlines should have
been investigated.

If the maximum distance to reference data is smaller than 4 m, which is approximately one third
of the road width, the extraction was recognized as correct: in general less accuracy is required in
general boundary surveys. However, if the maximum distance is too large, though they were correctly
extracted from features, they were determined as errors.

The most common error cause was the offset between the extraction result and reference data.
Offsets occur in both building outlines and fence fitting lines, but the causes for both were different.
No systematic shift was observed between these two datasets, and the causes of the offset might be
dynamic. In region 1, building outlines were shifted at certain angles, and this might be caused by the
vague edge of building points. In region 2, probably because not all cadastral boundaries cut through
the center of fences, offsets exist between the extracted result and reference data. Fortunately, the
thickness of brushwood and fences are small enough to control the maximum shift distance.

Similar to the previous type of error, when the average distance between the extraction result and
the reference data was smaller than one third of road width, errors were considered within tolerance.
Otherwise, they were recognized as unvalued.

In reality, there are certain percentages of parcel boundaries that are neither coincidental with
any features, nor visible by human eyes. Conversely, these feature outlines may represent no parcel
boundaries. Simply improving extraction techniques cannot decrease this type of error. More intelligent
approaches should be integrated to mitigate human definition of cadastral boundaries. Thus, this type
of errors falls outside tolerance.

4.3. Workflow Correctness and Completeness

Since errors and tolerance were determined, the performance could be quantitatively evaluated by
statistical analysis. The percentage of correctly extracted lines and the proportion of detected parcels
were selected as measures to describe the completeness of the designed workflow. Correctness is
illustrated by the percentage of correct extraction from the total number of extracted lines.

4.3.1. Proportion of Detected Lines from Each Kind of Feature

Table 1 describes the number of both true and false line segments from total extracted lines.
Road extraction was conducted on both regions: building outlines and fence fitting were executed in
region 1 and region 2, respectively. The total number of extracted line segments was counted. True lines
are extracted lines that coincide with relative cadastral boundaries, while false lines are either wrongly
detected or their error are larger than tolerance.

The correctness was computed as a percentage of true line segments from total extraction in each
region. The completeness refers to the ratio of correctly extracted lines segments to the total cadastral
boundary segments in each region. In region 1, a total of 54.32% of extraction are true, whilst this
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number rises to 84.1% in region 2. Completeness was computed by the percentage of extracted line
segments from detectable boundaries (Table 2).

Table 1. Number of detected lines coincide with features.

Region Feature Extracted True False Lost

Region 1
Road 111 90 21 13

Building 97 23 74 62

Region 2
Road 177 148 29 49

Fence_fit 106 91 15 11

Table 2. Overall performance of workflow with features.

Region Feature Correctness Completeness Overall Expected Completeness

Region 1
Road 81.08% 87.38%

43.13% 71.76% 60.11%
Building 23.71% 27.06%

Region 2
Road 83.62% 75.13%

59.60% 74.56% 79.93%
Fence_fit 85.85% 89.22%

Specifically, Table 2 indicates a very low contact ratio on building outlines, which also reveals
the complicated cadastral boundary morphology in urban areas. The fence fitting realized the highest
correctness in this study.

4.3.2. Performance of Full Parcel Identification

The Table 3 illustrates the fully detected parcel. Identifiable parcels are parcels where all their
boundary segments have been extracted. It is illustrated that the ratio of identified parcels of region 2
is almost double that of region 1. ‘Shifted’ parcels refers to those extracted parcels, that are significantly
shifted from reference position. The workflow extracted less shifted parcels from region 2 than from
region 1, reflecting that the workflow performed higher positional precision in a more regular area.

Table 3. Parcels identification correctness.

Region Tested True False Shifted Lost Total Correctness

Region 1 55 21 9 25 34 89 38.18%
Region 2 72 45 8 19 35 107 62.50%

Figure 11 displays a straightforward illustration on parcels identification. It uses true, false,
positive, and negative to summarize the overall performance on the parcel extraction. TP refers to
parcels appearing in both extracted results and reference data. FP refers to where parcels were in
reference data, but were not extracted. FN refers to those parcels that appear in the result, but do not
exist in reference data. Lastly, TN refers to those parcels from the reference data that were only partly
extracted or had a visible shift. TP describes the completeness of the parcel identification, and both
regions achieved less than half, with region 1 having even less.
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4.4. Degree of Automation

Two phases of the semi-automated workflow were separately evaluated, in order to assess the
workflow’s degree of automation. Firstly, the total length of the line segments generated in both
automatic extraction and post-refinement phase were computed. Then, the correctness of each phase
was assessed respectively. The results indicated that the workflow performed better in region 2 in
either phase. Table 4 illustrates the different performance of the workflow in two regions.

Table 4. Comparison of automated extraction and post-refinement.

Region Feature Length True Correctness

Region 1

Manual 982.05 667 67.93%

Edited 1111.54 727 65.46%

Road 5354.7 3945 73.69%

Building 12,133 9214 75.94%

Region 2

Edited 4787.57 4376 91.41%

Manual 1651.8 1374 83.22%

Road 5428.36 5011 92.33%

Building 11,392.59 11,252 98.80%

Fence_fit 10,099.8 – –

In Region 1, the workflow was conducted on the two highest probability features—roads and
buildings—and this achieved both approximately two-thirds correctness. Without ground reference, it
is hard to judge whether extracted lines from road points are correct or not. Therefore, for maintaining
this experiment objectivity, in the post-refinement step, uncertain errors were left maintained, and only
obvious and identifiable errors were edited.

Equation (3) calculates the degree of automation D, where the total length is the total length of
workflow result that consists of automated extraction result and post-refinement result; automated
extraction is the total length of the automated extraction phase result that have been used for
reconstruction. In this study, in region 1, automated extraction results of road and building outlines
were used, whereas in region 2, only road outlines were used, and all fence fitted lines were edited.

D =
Automated Extracted

Total Length
∗ 100% (3)
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The automation degree of workflow in region 1 is 89.3%, and the number drops to 45.75% in
region 2. This slight difference is caused by more unpredictable parcel morphology in the dense urban
area, which is region 1 in this study. It was difficult to judge whether an extracted line in region
1 is valuable. As a consequence, in many cases, errors were maintained with less manual editing.
Comparatively, the fence-fitting result was coarse and all of them have been manually inspected.

From another perspective, the post refinement phase achieved higher correctness in region 2 than
in region 1. It further proves that without reference, regular parcel shape and uniform parcel size
would contribute to correctness of the post-refinement activities. That is, human interpretation highly
depends on these regular patterns.

4.5. Suitable Point Density for Target Objects

Observed from the result, some skinny stand-alone parcel boundaries cannot be detected from
lower density point clouds. Therefore, a suitable point density should be defined in advance, according
to the accuracy requirement of cadastral surveys. After defining the target objects, the Equation (4)
adapted from the Nyquist Sampling equation determined a suitable point cloud, to inspect the
capability of study data. The smallest dimension of a particular object in a point cloud was used to
determine the minimum point cloud density for detecting that particular object. When determining
the smallest dimension of a target object from the nadir view, only the width and length of objects
were considered. The point spacing should be smaller than the smallest object dimension.

p =
1

(smallest object dimension/2)2 (4)

In this study, the thinnest target object is the fence. Normally, the width of the fence is 0.5 m,
thus, the smallest point cloud density for detecting the fence is 16 points per square meter (p/m2).
However, the point density of the study data is only 9 p/m2: the smallest detectable dimension is
1.3 m, smaller objects like the fence may be undetectable in this study, while others are larger than the
minima. Although in reality, very thin and long objects still have possibility to be seen from point
cloud, because points are regularly arranged.

Obviously, a higher point cloud density would have helped to detect more fences. Though higher
point density provides more details, it also costs more. Thus, appropriate data volume should be
investigated based on the fit-for-purpose concept.

5. Discussion

5.1. Observations from the Workflow Development

After exploring the proposed workflow, the α-shape algorithm was adopted for both building
outline and road outline generation. Since this study aimed to the reconstruct a 2D cadastral map,
only planar coordinates of points were taken into consideration. However, this manner introduces
errors, in that different roof planes cannot be separated from different heights. Additionally, in many
cases, close building roofs were wrongly segmented into one cluster, in that the gaps among buildings
are too thin to be separated. The accuracy of the α-shape algorithm highly depends on point cloud
segmentation quality, because it connects all boundary points of a segment to construct the boundary
polyline. As a result, when generating building outlines in the urban area, close building roofs were
wrongly merged into one polygon.

In terms of the road point classification, the quality was restricted by the limited spectral
information of point clouds. The LiDAR data in this study works on one band, which offers much
less spectrum information than multi-spectral images. The workflow detected points of roads from
its intensity, however, the reflectance from road surface and roadside constructions are too similar, so
incorrect detections occured along the roadside. A fusion of point clouds and multi spectral images
might provide a better quality result.
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The evaluation results indicate that the workflow performed better in the more regular suburban
area. Therefore, the workflow performs better in regular contexts: parcel morphology plays an
important role in extracting boundaries. However, the complex parcel morphology in the dense urban
area created difficulties in parcel boundaries delineation. As an exploratory approach, the tolerance
was set modestly, which was significantly larger than most cadastral survey requirements, with the
concept of realistic boundary and general boundary taken into consideration.

5.2. Strenghts and Limitation

LiDAR data possesses both strengths and weakness with respect to cadastral purposes, and
the workflow explored the feasibility of LiDAR applied to cadastral surveys. The most significant
advantage is its ability to penetrate through a vegetation canopy, which contributes much to the
fence extraction. Fences are widely-used as cadastral markers, but they are often invisible from aerial
images. Although there is high vegetation covering above, laser beams can penetrate through the
canopies and return footprints of objects below high vegetation, which in this study was the low ‘mixed
vegetation’fences. Another strength of using LiDAR is that it provides height information. Point cloud
data can provide high accuracy XYZ measurements. Height plays an important role in objects
recognition. On the contrary, the major weakness of using point clouds is its accuracy. The level of
detail that LiDAR can provide is highly dependent on the point cloud density. Extracting small objects
such as fences occurring in the test site requires a higher point density, but, of course, a higher point
density also means a larger data size, as well as higher costs of data acquisition. This is a disadvantage
in application in developing countries, where cost remains a primary concern and inhibitor.

Since a cadastral boundary is a societal construct, manual verification can be largely reduced
through semi-automated extraction, rather than eliminated totally. However, not all cadastral
boundaries are visible, and not all objects coincide with cadastral boundaries. Therefore, it was
hard to judge whether the lines are valuable, and in consequence, redundancy and incompleteness
are inevitable during the whole workflow. Whether the accuracy of automated extraction meets the
requirement of cadastral survey needs a quantifiable justification.

In view of the strengths and weakness of the workflow, several recommendations are derived for
improvement. The first one is to improve the feature extraction approach. A constraint that restricts the
road width was not integrated into this workflow. By computing the distance between points, a fixed
width road surface can be formed and then the ‘zigzag’ outline problem may be solved. In addition,
when generating building outlines, the workflow only considered the xy coordinates. If the α-shape
algorithm is extended to 3D, close roof planes can be separated by their different heights. Furthermore,
a combination of multi-spectral images can enrich spectral information and makes a contribution
to point-based classification. The third recommendation is to automate the post-refinement phase.
This can be achieved by integrating them into line generation. Taking a topology check and the line
simplification as an example, if they can be executed during the generation of lines, not only can much
person power could be saved, but also the whole workflow would be accelerated.

Another suggestion for improvement would be to adapt the object-based approach to investigate
the relationship between objects and parcel boundaries, such as the possible distance between
constructions and parcel boundaries. In urban areas, cadastral boundaries may be close to a building
outline; whilst in suburb areas, cadastral boundaries may evenly partition an area. These parameters
could be taken into consideration for predicting parcel range and location by means of machine
learning. These conjectures could contribute to a future research prospect.

6. Conclusions

This study, which explored the feasibility of point cloud data for cadastral survey, achieved the
main objective: to develop a workflow for semi-automated extraction of cadastral boundaries from
airborne laser scanning data. Port Vila of Vanuatu was selected as the study area, in order to investigate
the capability of semi-automated cadastral mapping in a developing country context. The study
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focused on the visible general boundaries, through exploring suitable methods; an object-based
workflow was developed to semi-automatically extract cadastral boundaries from ALS point clouds.
The result of the developed workflow is promising, with around 50% of parcel boundaries successfully
extracted. A coarse parcel map can be arranged with the workflow within several hours. If one brings
the parcel map to field for verification, only incorrect boundaries need to be digitized afterwards.
However, the spatial accuracy of this workflow is still modest, because most steps of the workflow
introduce errors. Furthermore, the workflow is context specific. It was fortunate that in the study
area, a large proportion of cadastral boundaries coincided with topographic objects. It may not be
suitable for areas with irregularly shaped land holdings, such as dense slum areas:the workflow
performed better in the more regular suburban area. Due to the complexity of the cadastral boundary
morphology in the dense urban area, the performance of the workflow in the dense urban area is
still modest. More research on the relationship between topographic objects and parcel boundaries
deserves further exploration.
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