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Abstract: Soil erosion by water has accelerated over recent decades due to non-sustainable land
use practices resulting in substantial land degradation processes. Spatially explicit information
on soil erosion is critical for the development and implementation of appropriate Soil and Water
Conservation (SWC) measures.The objectives of this study were to estimate the magnitude of soil
loss rate, assess the change of erosion risk, and elucidate their implication for SWC planning in
the Gobele Watershed, East Hararghe Zone, Ethiopia. Applying remote sensing data, the study
first derived the Revised Universal Soil Loss Equation (RUSLE) model parameters in an ArcGIS
environment and estimated the soil loss rates. The estimated total soil loss in the watershed was
1,390,130.48 tons in 2000 and 1,022,445.09 tons in 2016 with a mean erosion rate of 51.04 t ha−1 y−1

and 34.26 t ha−1 y−1, respectively. The study area was divided into eight erosion risk classes ranging
from very low to extremely high. We established a change detection matrix of the soil erosion risk
classes between 2000 and 2016. The change analysis results have revealed that about 70.80% of the
soil erosion risk areas remained unchanged, 19.67% increased in total area, and 9.53% decreased,
showing an overall worsening of the situation. We identified and mapped areas with a higher and
increasing erosion risk as SWC priority areas using a Multi-criteria Decision Rules (MCDR) method.
The top three priority levels marked for the emergency SWC measures account for about 0.04%,
0.49%, and 0.83%, respectively. These priority levels are situated along the steep slope areas in the
north, northwest, south, and southeast of the Gobele Watershed. It is, thus, very critical to undertake
proper intervention measures in upslope areas based on the priority levels to establish sustainable
watershed management in the study area.
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1. Introduction

Soil erosion is a naturally occurring environmental process by which soil materials are displaced,
transported, and deposited in downstream areas by wind, water, or gravitational forces [1–3]. In the
context of water-caused soil erosion, removal of soil particles is the result of raindrops, while
surface runoff carried out the transportation process [4]. Though soil erosions are the result of
the interplay between soil erodibility and rainfall erosivity factors, inappropriate human practices such
as cultivation in upslope areas, deforestation, an extension of urban areas and roads, and uncontrolled
and overgrazing aggravate the problem [5–8]. In connection to this, Knapen et al. [9], reported that
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irregular terrain and surface topography are the other causes of soil erosion. Several studies have
shown that soil loss by water erosion is highly attributed to on-site and off-site effects (e.g., land
and water quality degradation, sediment accumulation, emission of soil organic carbon, a decrease
in agricultural productivity, effects on biodiversity and ecosystem) [10–19]. However, the untoward
effects of soil erosion risk are spatially varying among diverse agroecological, biodiversity and
microenvironments throughout the world. In developing countries that largely rely on the efficiency
and workability of their soil, loss of the most productive upper layer of soil has caused severe economic
and environmental impacts [20–27]. In relation to this, Nill et al. [23] reported that “huge investment
in a civil engineering work aiming at renovating the results of erosion is comparatively higher than
investments in soil conservation.”

Ethiopia is affected by different environmental challenges, and water-induced soil erosion is one
of the keys to finding sustainability to agricultural production and productivity to safeguard food
security [28–35]. Although agriculture is the backbone of the country’s economy and sustains the
livelihood of about 85% of the population, loss of productive soil by erosion has massive environmental
and economic impacts [32–36]. There is intense SWC and management efforts to ameliorate soil
degradation in Ethiopia. Despite this, land degradation has continued to threaten livelihood, crop
production and land productivity potential and economic growth in the country [10,37–39]. Reports
from the Food and Agriculture Organization (FAO) [38] estimated the annual soil loss in Ethiopia is
about 1.5 billion tons. According to the study by the FAO [40], about 27 million hectares of the land,
nearly half of the Ethiopian highland areas, were affected by serious soil erosion. Particularly, in Wollo,
Tigray, and Hararghe, half of the agricultural land has soils with a depth of less than 10 cm [38,41]. This
problem has decreased the soil production potential. For example, the annual productivity potential of
land in the Ethiopian highlands are declining by 2.2% per year [38,41].

In response to rapid population growth and accelerated threats of water-induced soil erosion risk,
the Ethiopian government has taken SWC measures [42,43]. Since it is difficult to address conservation
problems at the time, it is important to identify areas that are highly vulnerable to soil erosion for
conservation measures [44,45]. Given the shortcomings in the traditional soil erosion risk assessment
methods, one needs a more systematic approach to do an effective soil erosion assessment [46,47].
Significant efforts have been made at local and global levels to assess the magnitude of soil erosion
risk. This has certainly made a promising ground for sustainable use planning and an appropriate
SWC strategy development at the watershed or basin scales [48–52].

So far, many models for predicting soil erosion have been developed and applied. The major
models include Modified Universal Soil Loss Equation (MUSLE), the Universal Soil Loss Equation
(USLE), Morgan-Morgan-Finney (MMF), Agricultural NonPoint Source Model (AGNPS), Erosion
Productivity Impact Calculator (EPIC), Water Erosion Prediction Project (WEPP), Soil and Water
Assessment Tool (SWAT), and European Soil Erosion Model (EUROSEM) [53–60]. Among these
models, the RUSLE is the most widely applied empirical model for offering quantitative soil erosion
estimation and conservation planning around the globe [2,18,61–63].

Nowadays, the RUSLE, in combination with satellite remote sensing and Geographic Information
Systems (GIS) mapping techniques, was found to be a convenient tool for soil loss assessment and
successful conservation planning [41,64–67]. There has been many prediction model-based studies
conducted in various parts of Ethiopia for soil erosion risk assessment and conservation planning by
integrating them with remote sensing data and GIS technology over the past few years. For instance,
Ghebreyesus et al. [41] examined the soil erosion risk in the Mai-Negus catchment in northern
Ethiopia by using the Morgan-Morgan-Finney Model and reported the average annual soil loss
rates of 26 t ha−1 y−1, which is above the maximum tolerable soil loss threshold predicted at the
national level. Abate [5] examined soil loss rates using the RUSLE for soil conservation planning
based on an erosion risk level in the Borena Woreda of South Wollo Highlands of Ethiopia. Likewise,
Kiflu [68] applied RUSLE and Multi-criteria Analysis (MCA) to prioritize critical soil erosion risk areas
for conservation measures in the Mojo river watershed. Ayele [69] also explored soil erosion risk
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using similar techniques in the Holeta watershed in Central Oromia, Ethiopia. Furthermore, Israel [70]
reported the mean annual soil loss rate of 58.30 t ha−1 y−1 and recommended the implementation
of conservation measures to reduce the on-site and off-site effects of soil erosion in the Dire Dam
Watershed. In a related study conducted on the recently dried Lake Haramaya catchment in the East
Hararghe Zone, Senti et al. [71] suggested the importance of an integrated physical soil erosion control
and conservation measures to tackle the on-site and off-site effects of soil erosion. However, none of
these addressed the spatial changes among different soil erosion risk grades over time. Therefore, this
study was designed to (i) estimate the magnitude of soil loss rates in 2000 and 2016; (ii) assess the
spatial changes among soil erosion risk classes between 2000 and 2016; and (iii) identify priority areas
for SWC in the Gobele Watershed, East Hararghe Zone, Ethiopia.

2. Materials and Methods

2.1. Description of the Study Area

The Gobele Watershed is located in the east Hararghe Zone, Oromia Regional State, Ethiopia.
The astronomic location of the watershed extends from 8◦50’10” N to 9◦20’30” N latitude and from
41◦41’10” E to 42◦11’30” E longitude, with elevation ranging between 974 and 3,264 meters above
mean sea level (Figure 1). The Gobele Watershed, with a surface area of 237,786.44 hectares, is one
hydrological watershed within the Wabi Shebelle Basin. Topographically, about 77.51%, 21.58%,
and 0.91% of the total study area have a slope gradient ranging from 0% to 10%, 10% to 30%, and 30% to
100%, respectively. The mean annual rainfall of the watershed is 820.01 mm, with August (152.31 mm)
and April (1.16 mm) being the wettest and the driest months, respectively [72].
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Figure 1. Location of the Gobele Watershed.

2.2. Data Sources

In this study, several geospatial datasets were collected and processed in a raster format to
suit the RUSLE model for estimating the soil loss. We obtained the mean annual rainfall data for a
period of sixteen years (1999–2015) with twelve rain gauge stations from the National Meteorological
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Agency (Table S1) [72]. We used two cloud-free satellite images of Landsat-7 ETM+ (Enhanced
Thematic Mapper Plus) image (path/row 168/054) captured on 26 March 2000, and Landsat-8 OLI
(Operational Land Imager) image (path/row 168/054) captured on 14 March 2016. The images
were downloaded from the United States Geological Survey’s (USGS) Earth Explorer website [73].
In addition, a digital elevation model (DEM) with a spatial resolution of 30 m was accessed from
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation
Model (GDEM) website [74]. The soil data covering the study area was accessed from the FAO
website in Environmental System Research Institute (ESRI) shapefile format [75]. Furthermore, field
observation was made between September 2016 and November 2016 to collect reference data of land
use/land cover (LULC) classes. A total of 150 ground truth data were collected from the field stratified
proportional to each LULC class to support image classification and accuracy verification. Handheld
Global Positioning System (GPS) was used to collect the required data. Figure 2 shows sampled LULC
types in the study area.
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Figure 2. Partial view of LULC types in the study area: (a) bare land; (b) shrub; (c) grassland;
(d) cultivated land; (e) Khat (Catha edulis); (f) forest; (g) water; (h) settlement.

2.3. Methods

2.3.1. Satellite Images Preprocessing

Before LULC classification and change detection, one should preprocess the distorted and
degraded images to ensure the results of adequate quality with a more correct and faithful
representation of the real ground scene. In the context of the current study, this involved removing or
diminishing any undesirable image characteristics that occurred during the acquisition process [76,77].
This was applied to all raw Landsat image data on board ETM+ and OLI sensors. The Landsat images
were preprocessed at each band level using the ENVI software version 5.1 (Exelis Visual Information
Solutions, Inc. Boulder, CO, USA). The first step involved the re-projection of the Landsat images into
World Geodetic System (WGS 84) spheroid, a spatial reference system of the Universal Transverse
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Mercator (UTM) with Datum Zone 37 N. The preprocessing includes a series of sequential operations.
This includes an atmospheric and radiometric correction to diminish the effects of clouds and the
sun elevation angle of satellite images taken during different periods and from different sensors.
Geometric rectification accurately links the Landsat imagery with a ground truth data and other
ancillary data sets, and masking operations [78,79]. Then, single-band images were combined to get
multi-band composite images [80]. Additionally, image enhancement operations, including density
slicing, contrast adjustment, edge enhancement and color composite were employed to enhance the
interpretability of image data [81]. Since the entire scene of ETM+ and OLI images respectively covers
170 km by 185 km and a 190 km by 180 km surface area [73], the area of interest (AOI) that covers the
study area (237,786.44 ha) was extracted using vector polygon layer and the subset tool available in
ERDAS IMAGINE software version 10 (ERDAS, Inc., Norcross, GA, USA).

2.3.2. LULC Classification

We used a computer-aided digital image classification procedure to classify satellite images to
generate thematic LULC maps of the study area based on known features on the ground [82]. For this
purpose, the training signatures were collected for each LULC class from satellite images aided by
sampled field reference data, and knowledge of experts and people of the locality about the earlier state
of land cover in the watershed. A supervised classification method based on the Maximum Likelihood
Classifier (MLC) was applied to classify the Landsat image of 2000 and 2016 separately [83,84]. We
applied a 3 × 3 moving window majority filtering operation for neighboring cells in classified LULC
images to minimize salt-and-pepper effects. A total of seven LULC classes were identified in the study
area for the years 2000 and 2016 (Table 1). This includes bare land, cultivated land, settlements, forest,
grazing land, shrubland, and water body, with a share of each class in 2000 contributes 67,021.03 ha
(28.19% of the total study area), 64,159.60 ha (26.98% of the total study area), 1199.16 ha (0.50% of the
total study area), 7728.48 ha (3.25% of the total study area), 299.16 ha (0.13% of the total study area),
96,822.90 ha (40.72% of the total study area), and 556.11 ha (0.23% of the total study area), respectively
(Figure 3a). As shown in Table 1, each LULC class in 2016 accounted for 49,932.80 ha (21% of the
total study area), 135,972.81 ha (57.18% of the total study area), 13,320.50 ha (5.60% of the total study
area), 4794.84 ha (2.02% of the total study area), 1863.97 ha (0.78% of the total study area), 31,704.40 ha
(13.33% of the total study area), and 197.12 ha (0.08% of the total study area), respectively (Figure 3b).
During the study period, shrubland, bare land, forest, water body have decreased from 96,822.90 ha
(40.72% of the total study area), 67,021.03 ha (28.19% of the total study area), 7728.48 ha (3.25% of
the total study area), and 556.11 ha (0.23% of the total study area) to 31,704.40 ha (13.33% of the total
study area), 49,932.80 ha (21% of the total study area), 4794.84 ha (2.02% of the total study area),
and 197.12 ha (0.08% of the total study area), respectively. On the contrary, areas covered by cultivated
land, settlements, and grazing lands have increased from 64,159.60 ha (26.98% of the total study area),
1199.16 ha (0.50% of the total study area), and 299.16 ha (0.13% of the total study area) to 135,972.81 ha
(57.18% of the total study area), 13,320.50 ha (5.60% of the total study area), and 1863.97 ha (0.78% of
the total study area), respectively.

Table 1. Areal statistics of classified LULC for 2000 and 2016.

LULC Class
2000 2016 Rate of Changes

2000–2016 (%)ha % ha %

Bare land 67,021.03 28.19 49,932.80 21.00 −25.50
Cultivated land 64,159.60 26.98 135,972.81 57.18 111.93

Forest 7728.48 3.25 4794.84 2.02 −37.96
Grazing land 299.16 0.13 1863.97 0.78 523.07
Settlements 1199.16 0.50 13,320.50 5.60 1010.82

Shrub 96,822.90 40.72 31,704.40 13.33 −67.26
Water bodies 556.11 0.23 197.12 0.08 −64.55
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2.3.3. Accuracy Assessment

The thematic layers of the classified LULC images for 2000 and 2016 were validated using ground
truth data. Out of the total sampled ground truth data collected from the field stratified proportionally
to each LULC classes, we used 50 points as a reference data for image classification. The remaining 100
points were used to examine the classification accuracy of the LULC images. A lack of field reference
data on the state of historical LULC of the study area necessitated using knowledge of the local elders
and experts to minimize the misclassification of remote sensing images. Thus, the ground truth data
collected between September 2016 and November 2016 were used as a reference for image classification
and validation of classification accuracy in 2000 and 2016. We calculated the classification accuracy
in terms of producers’ and users’ accuracy, overall accuracy, and Kappa Statistics [85]. The results
revealed that the overall classification precision obtained per LULC map in 2000 and 2016 was 84.26%
and 94.44%, respectively (Table 2). The Overall Kappa Statistics (Kˆ) calculated for each LULC images
in 2000 and 2016 were 0.815% and 0.934%, respectively. The highest producers/users and Kˆ is found
in the water bodies and cultivated land in classified images for 2000 and 2016.
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Table 2. Accuracy assessment of the classified LULC for 2000 and 2016.

LULC Class
2000 2016

Producers
Accuracy %

Users
Accuracy %

Kappa
(Kˆ)

Producers
Accuracy %

Users
Accuracy %

Kappa
Kˆ

Bare land 69.57 86.96 0.84 95.65 100.00 1.00
Cultivated land 100.00 94.12 0.93 100.00 95.24 0.94

Settlements 100.00 66.67 0.63 91.67 100.00 1.00
Forest 70.00 58.33 1.00 100.00 100.00 1.00

Grazing land 70.00 81.82 0.54 60.00 100.00 1.00
Shrub 60.00 81.82 0.79 100.00 75.00 0.71

Water bodies 93.75 100.00 1.00 100.00 100.00 1.00

2000 2016

Overall Accuracy (%) 84.26 94.44
Overall Kappa Statistics 0.815 0.934

2.3.4. Development of the RUSLE Model Factors

The RUSLE is a practical tool for predicting the long-term average annual soil loss attributed
to raindrop splash and runoff [63]. According to Jiang et al. [16], “to build the quantification model,
as many as possible of the criteria that influence soil erosion should be taken into consideration.”
In the present study, we used the empirical prediction model of RUSEL, which is easily applicable in
different scales with Geographic Information system (GIS) tools [86,87]. The application of RUSLE
model require five factors: rainfall erosivity (R) factor, soil erodibility (K) factor, slope length and
steepness (LS) factor, cover management (C) factor, and conservation practice (P) factor determined in
an ArcGIS environment (Figure 4) and multiplied together to estimate the amount of the soil loss rates
(Equation (1)) [63]. Since the input model layers were acquired from various sources, and at varying
scales, resampling procedures provided in digital analysis tools need to apply for the input datasets to
be compatible with each other [86–89].

A = R × K × LS × C × P (1)

where A is average annual soil loss (t ha−1 y−1); R is the rainfall-runoff erosivity factor; K is a soil
erodibility factor; LS is a slope length-steepness factor (dimensionless); C is a cover management factor
(dimensionless), and P is a support practice factor (dimensionless).

The RUSLE model was run to estimate the soil loss rate for the year 2000 and 2016 separately.
Erosion risk area was categorized into eight classes from very low to extremely high, following
Uddin et al. [90] for Koshi Basin. Classification of soil erosion risk area was based on the estimated rate
of mean annual soil loss (Table 3). By overlaying thematic soil erosion risk map for 2000 and 2016 using
a transformation matrix (GIS analysis), the study obtained information about spatial changes among
the erosion risk class between 2000 and 2016. Moreover, conservation priority levels were obtained to
support the spatial planning and implementation of SWC measures in the study area. Prioritization
was based on soil loss assessment results and change in erosion risk classes between 2000 and 2016
with the help of MCDR method [90–92]. We set the highest value for areas with a high and increasing
risk of soil erosion.
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Table 3. Standards for the soil erosion risk classification.

Erosion Risk Class Rate of Erosion (t ha−1 y−1)

Very low <5
Low 5–10

Low medium 10–15
Medium 15–20

High medium 20–25
High 25–35

Very high 35–50
Extremely high >50

Rainfall Erosivity (R) Factor

The R factor reflects the ability of rainfall-runoff to erode the soil particles due to the joint effect of
rainfall kinetic energy, duration, and potential [93]. We calculated a mean annual rainfall data using
the mean yearly rainfall data covering the period from 1999 to 2015. It follows that the rainfall spatial
distribution of the study area was mapped using the spline interpolation method. Finally, spatially
distributed R factor value was calculated by Equation (2) (Figure 5b and Table S1) [94,95].

R = [38.46 + (3.48 × P)] (2)

where P is an annual rainfall (mm).
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(C) factor in 2000 (g) and 2016 (h); Support practice (P) factor in 2000 (i) and 2016 (j) of the Gobele
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Soil Erodibility (K) Factor

The K factor corresponds to the rate of soil loss per rainfall erosion index unit measured on a
standard plot by taking into consideration the inherent soil properties [96]. It is the average prolonged
effects of soil profile characteristics, soil properties (e.g., soil texture, size, thickness, organic matter,
clay type, and permeability) and human activities on soil loss [22,61,63,97–99]. The erodibility of
a soil caused by rainfall-runoff will increase proportionally with an increase in the amount of fine
sand and silt contents [97–100]. For instance, the finer and the richer the soil texture in a clay ratio
is, a more resistant is soil to particle detachment and the lower the soil erodibility factor is and vice
versa. Moreover, the content of the organic matter is a key factor that decides erodibility of soil layers.
It contributes to the increment of particle aggregation (due to the presence of chelating agents) and
water infiltration [100,101]. When the K factor value of a specific soil class gets higher, more erosion
occurs as the soils are exposed to the erosive force of rainfall, splash, or surface flow [102]. According
to Yahya et al. [103] the soil erodibility value mostly ranges between 0 and 1, where 0 shows the soil
class’s sensitivity to erosion while 1 is the high susceptibility of soil class to water erosion (Figure 5c,d).
The K factor value was estimated based on a formula adapted from published literature [104–107] with
the FAO harmonized digital soil map [75] as follows:

KUSLE= fcsand. fcl−si· forgC· fhisand (3)

where fcsand is a factor that lowers the K indicator in soils with a high proportion of coarse-sand
content and higher for soils with little sand; fcl−si gives low soil erodibility factors for soils with a high
clay-to-silt ratio; f orgC reduces the K values in soils with a high organic carbon content while fhisand
reduce the K value of soil classes with high sand contents (Table S2). The fcsand, fcl−si , forgC and fhisand
was calculated using Equations (4)–(7) [101,104]:

fcsand =
(

0.2 + 0.3·Exp
[
−0.256·ms·

(
1 +

msilt
100

)] )
(4)

fcl−si =

(
msilt

mc + msilt

)0.3
(5)

forgC =

(
1.0 − 0.256 ·orgC

orgC + exp[3.72 − 2.95.orgC]

)
(6)

fhisand=

(
1.0 −

0.7 ·
(
1 − ms

100
)(

1 − ms
100
)
+ Exp

[
5.51 + 22.9

(
1 − ms

100
)]) (7)

The highest soil erodibility (K) factor value was found in the Eutric Nitosols (0.42 t h MJ−1 mm−1),
while the lowest is in Eutric Camisoles (0.33 t h MJ−1 mm−1) along the southeastern and northwestern
part of the watershed (Figure 5d).

Slope Length and Steepness (LS) Factor

The slope length (L) and steepness (S) factor reflect the effect of terrain and topography on soil
erosion [61]. The increase in slope length (L) and slope steepness (S) can result in the higher overland
flow speed and higher erosion [1,63,103]. The specific effects of topography on soil erosion are
estimated by the dimensionless LS factor as the product of the slope length (L) and slope steepness (S)
constituents converge into a point of interest [5,108]. The LS factor is a ratio of soil loss under a given
condition of a site for a slope length of 22.13 meters and slope steepness of 9%, free of vegetation
and left in a seedbed condition [5,61]. The LS factor (Figure 5f) was calculated from the ASTER DEM
of 30-m grid size of the watershed area with the Arc-Hydro extension and raster calculator tool of
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the ArcGIS software version 10.3 (Environment Systems Research Institute (Esri), Inc. Redlands, CA,
USA) [53,86,103,109].

L =

(
λ

22.13

)
m (8)

where, L is a slope length factor, λ is the field slope length in meters, and m is a variable slope length
exponent related the value of the slope gradient (Figure 5e): 0.5 for slopes steeper than 4.5%; 0.4 for
slopes from 3% to 4.5%; 0.3 for slopes from 1% to 3%, and 0.2 on slopes less than 1%.

Given the uneven distribution of slope gradients over the study area, the slope steepness (S) was
sub-divided into segments using Equation (9) [110,111], as follows:

Li,j =

(
Ai,j−in + D2)m+1−Am+1

i,j−in

Dm+1 × xm
i,j × 22.13m (9)

where Ai,j−in is the contributing area at the inlet of the grid cell (i, j) is measured in m2; D is the grid cell
size (meters); xi,j is sin ai, j + cos ai,j; Ai,j is the aspect direction of the grid cell (i, j); m is the slope length
exponent related to the ratio of β of rill erosion and interill erosion Equations (10) and (11) [107,109]:

m =

(
β

1 + β

)
(10)

where,

β =
sin θ

0.0896

[0.56 + 3 × (sin θ)0.8]
(11)

θ is slope steepness angle in degrees was calculated by Equation (12) [112] as:

S = 10.8 sin θ + 0.03, where slope gradient < 0.09 (12a)

S = 16.8 sin θ − 0.5, where slope gradient ≥ 0.09 (12b)

Cover Management (C) Factor

The C factor is typically associated with the effects of cropping and management practices on soil
erosion [14,108]. It is the ratio of soil loss from land with specific vegetation to the corresponding soil
loss under clean tilled continuous fallow or management systems to reduce erosion [54,63]. The C
factor is a dimensionless factor that ranges from 0 for a completely non-erodible condition in areas with
high plant cover to 1 which corresponds to the greater magnitude of soil loss due to very extensive
tillage, leaving a very smooth surface that produces much runoff and makes the soil susceptible to
erosion [22,63]. In this study, the C factor was derived from the Normalized Difference Vegetation
Index (NDVI) interpreted using image data from ETM+ and OLI sensors (Figure 5g,h). The equation
to calculate the spectral indices of NDVI is as follows [113,114]:

NDVI =
NIR − Red
NIR + Red

(13)

where NIR is the reflectance of near infrared bands, Band 4 of ETM+ and Band 5 of OLI, while Red is
the reflectance of visible red bands, which are Band 3 of ETM+ and Band 4 of OLI imagery. The spatial
distribution of the C factor was calculated using Equation (14) [115]:

C = ((1 − NDVI)/2) (14)
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Support Practice (P) Factor

The P factor reflects the effect of soil conservation practices that reduce the amount and rate of
erosion by rainfall-runoff [116]. The P factor is mechanical practices such as the effects of contouring,
strip cropping, or terracing and the resultant average annual soil loss rate due to water erosion [103].
The P factor ranges between 0 and 1, where the value closer to 0 shows good conservation practices and
the values close to 1 is showing little conservation practices [47]. Several studies have tried to generate
the P factor value considering the slope gradient and conservation practices [54,87,117,118]. Due to
a lack of field data concerning the conservation practices that have been implemented in the study
area, the P factor value corresponds to LULC classes was adopted from published literature [67,119].
The values of the P factor were set to 1.00, 0.40, 0.10, 0.3, 1.00, 1.00, and 0.00 for the bare land, cultivated
land, forest, grazing land, settlement, shrubland, and water bodies, respectively. Figure 5i,j display the
spatial distribution of the P factor in the study area in 2000 and 2016.

3. Results

3.1. The Soil Erosion Risk in the Gobele Watershed

The soil erosion risk maps are shown in Figure 6a in 2000 and Figure 6b in 2016 while the statistical
details of the soil loss rates and associated erosion risk classes are presented in Table 4. The estimated
total soil loss in the Gobele Watershed was 1,390,130.48 tons in 2000 and 1,022,445.09 tons in 2016.
The result suggests a net decrease of 367,685.39 tons (15.24% of the total study area). Mean annual soil
loss in the watershed was 51.04 t ha−1 y−1, 34.26 t ha−1 y−1, in 2000 and 2016, respectively. Based on
the estimated rate of mean annual soil loss, the watershed area was classified into eight erosion risk
classes to show spatial distribution and the area coverages in 2000 and 2016. The very low constitutes
a larger part of the study area and covered 184,321 ha (77.52% of the total study area) in 2000. This
class continues to dominate the watershed area, and accounts for 206,910 ha (87.02% of the total study
area) in 2016, suggesting a 22,589 ha (9.50% of the total study area) increase over the study period.
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Table 4. The erosion risk classes and their corresponding areas for 2000 and 2016.

Soil Loss
(t ha−1 y−1) Erosion Risk Class

2000 2016

ha % ha %

<5 Very low 184,321.00 77.515 206,910.00 87.015
5–10 Low 32,663.20 13.736 18,929.50 7.961

10–15 Low medium 12,935.50 5.440 6685.71 2.812
15–20 Medium 4176.67 1.756 2986.66 1.256
20–25 High medium 1986.96 0.836 1295.24 0.545
25–35 High 952.93 0.401 607.86 0.256
35–50 Very high 608.25 0.256 244.76 0.103
>50 Extremely high 141.93 0.060 126.67 0.053

The area covered with low, low medium, medium, and high medium decreased from 32,663.20 ha
(13.736% of the total study area), 12,935.50 ha (5.44% of the total study area), 4176.67 ha (1.756% of
the total study area), and 1986.96 ha (0.836 of the total study area) to 18,929.50 ha (7.961% of the total
study area), 6685.71 ha (2.812% of the total study area), 2986.66 ha (1.256% of the total study area),
and 1295.24 ha (0.545 of the total study area), respectively.

The high, very high, and extremely high areas have also declined from 952.93 ha (0.401% of
the total study area), 608.25 ha (0.256% of the total study area), and 141.93 ha (0.06% of the total
study area) to 607.86 ha (0.256% of the total study area), 244.76 ha (0.103% of the total study area),
and 126.67 ha (0.053% of the total study area), respectively. In the present study, the areas with erosion
risk higher than the class value of very low were defined as eroded areas. Thus, the area of eroded
classes decreased from 53,465.44 ha (22.49% of the total study area) in 2000 to 30,876.40 ha (12.99% of
the total study area) in 2016. This suggests that the magnitude of soil erosion rates has decreased over
the study period. This is partly attributed to some conservation measures taken by the local people
over the recent years.

3.2. Spatial Changes in Soil Erosion Risk in the Gobele Watershed

Table 5 presents the percentage of each erosion risk class transformation between 2000 and 2016.
The diagonal numbers showed in italic down the change matrix represents the proportion of each
class that stayed unchanged for the total soil erosion risk classes in the study area. The above diagonal
elements show the percentage decrease in the erosion risk area while an increase in erosion risk is
below the diagonal. The change detection matrix reveals that about 70.80% of the total soil erosion risk
classes covered in 2000 (i.e., the sum of the diagonal elements in Table 5) showed no change in 2016.
Overall, the erosion risk areas increased by 19.67% of the total study area, and decreased by 9.53%,
showing that the soil erosion situation is getting worsening in the study area.

The proportion of the area at very low risk of erosion was the largest unchanged class during the
study period, while the area of extremely high-risk was the lowest persistent class. Out of the 77.51%,
the very low class covered in 2000 about 68.69% of the total area stayed unchanged, and only about
8.82% were converted to other erosion risk classes. The highest percentage gain was also found in
erosion risk in the category of very low. It accounts for 18.47% of the total area due to area converted
primarily from low (11.63% of the total area), low-medium (4.38% of the total area), and medium (1.29%
of the total area), respectively. Although the soil erosion at risk of very low gained area converted from
the low, low-medium, and medium, it lost about 8.77% of the total area to other classes. In addition,
the proportion of losses were comparatively higher in the area at low, very low, and low medium risk
of soil erosion. It accounts for about 12.19%, 8.77%, and 5.11% of the total area, respectively. On the
contrary, the lowest percentage losses were figured out in areas at extremely high, very high and high
erosion risk by 0.06%, 0.26%, 0.40% of the study area, respectively.



Land 2018, 7, 25 15 of 25

Table 5. Change detection matrix showing the erosion risk class changes between 2000 and 2016 (%).

Soil Erosion
Risk Class A B C D E F G H Total 2000 Loss

A 68.69 5.50 1.94 0.79 0.36 0.13 0.03 0.01 77.44 8.76
B 11.63 1.58 0.37 0.14 0.04 0.01 0.00 0.00 13.76 12.19
C 4.38 0.58 0.34 0.09 0.04 0.01 0.01 0.00 5.44 5.11
D 1.29 0.19 0.11 0.14 0.03 0.01 0.00 0.00 1.77 1.63
E 0.63 0.07 0.02 0.07 0.03 0.01 0.00 0.00 0.83 0.80
F 0.28 0.03 0.02 0.02 0.03 0.01 0.01 0.00 0.41 0.40
G 0.20 0.01 0.01 0.01 0.02 0.01 0.01 0.00 0.27 0.26
H 0.05 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.07 0.06

Unchanged 70.80
Total 2016 87.15 7.96 2.82 1.26 0.55 0.19 0.06 0.01

Gain 18.47 6.39 2.48 1.12 0.52 0.18 0.05 0.01
Net change 9.70 −5.8 −2.63 −0.51 −0.28 −0.22 −0.21 −0.05

A = Very low; B = Low; C = Low-medium; D = Medium; E = High-medium; F = High; G = Very high;
H = extremely high.

3.3. Identification of Conservation Priorities

Proper identification of areas that are highly vulnerable to soil loss is a critical factor for designing
and implementing appropriate SWC measures. Prioritization was done at watershed scales considering
areas with a higher soil loss and increases in erosion risk. Thus, we set a higher value for areas with
increasing mean annual soil loss. Accordingly, we classified the study area into eight conservation
priority levels (Figure 7). As a result, about 104.78 ha (0.04% of the total study area), 1164.27 ha (0.49%
of the total study area), 1963.74 ha (0.83% of the total study area) was identified and mapped as the
top three conservation priority areas (Table 6). Among the topmost three priority levels, the majority
of the first conservation levels have the slope gradient ranges from 30% to 50%, whereas, the second
and the third levels were found within slope gradient greater than 50%. Moreover, about 2565.27 ha
(79.35% of the total study area) was situated within the Kersa, Kurfa Chele and Girawa districts which
are located in the north, northwest, south, and south-west of the watershed.
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Table 6. Conservation Priority Levels and their corresponding area.

Priority Level Area (ha) Percentage of Total Area

1st priority level 104.78 0.04
2nd priority level 1164.27 0.49
3rd priority level 1963.74 0.83
4th priority level 306.59 0.13
5th priority level 5611.78 2.36
6th priority level 15,186.00 6.39
7th priority level 6616.90 2.78
8th priority level 206,832.37 86.98

The remaining conservation priority areas within these levels account for 667.52 ha (20.65% of
the total study area) and are confined within Haramaya and Fedis districts located in the eastern and
southeastern part of the watershed. The three priority areas are characterized by higher soil loss rates.
The areas require urgent intervention in SWC measures. The fourth, fifth and sixth conservation levels
cover about 21,104.37 ha (8.88% of the total study area) and currently need of minor SWC measures.
The last two conservation priority areas covered 213,449.27 ha (89.77% of the total study area) currently
may not need SWC measures. The last two conservation levels representing areas with lower soil loss
and erosion risk account for 213,449.27 ha (89.76% of the total area).

4. Discussion

In Ethiopia, land degradation is the most severe problem that affects agricultural productivity
and negatively affects food security[31,35,120,121]. According to the World Bank statistical estimate,
land degradation cost to annual agricultural GDP ranges from 2% to 6.75% [122]. To reduce the
problem, the Ethiopian government adopted intensive SWC at the national level [35,42,43]. However,
the effectiveness of the government’s efforts to deal with soil degradation needs up-to-date quantitative
information on the extent of soil erosion risk, and its geographical distribution [123]. This study
estimated the magnitude of soil loss rate, assessed the transformation of erosion risk, and identified
priority areas for conservation. The estimated total soil loss in the Gobele Watershed area was
1,390,130.48 tons in 2000 and 1,022,445.09 tons in 2016. The findings of this study are within the range
of the early findings that estimated the annual soil loss rate in the highland areas of Ethiopia from
1248 to 23,400 million tons [40]. Significant variations in annual soil loss rates were also reported in
various parts of Ethiopia. Based on an assessment of soil erosion in the Koga watershed, Northwestern
Ethiopia, Gelagay and Minale [124] reported that the total annual soil loss accounted for 255,283 tons.
Ayalew [33] estimated soil loss and sediment in the Zingin watershed of the Ethiopia highlands for
conservation planning and reported a total annual soil loss potential accounts for 57,750.15 tons.

The present study found that the mean annual soil loss accounts for 51.04 t ha−1 y−1, 34.26 t ha−1 y−1

in 2000 and 2016, respectively. The estimated mean rate of annual soil loss in the study area is much
greater than that of the maximum tolerable soil loss estimate at a national scale (18 t ha−1 y−1) [33,125],
and to the normal soil loss tolerances (from 5 t ha−1 y−1 to 11 t ha−1 y−1) [54,126]. It is also higher
than the findings of earlier researchers in other areas in Ethiopia [27,33,127], and elsewhere in the
world [128,129]. On the contrary, the present study results are lower than the findings across the
Northwestern Ethiopia highland [130], and other similar studies’ findings [131–133]. Several previous
studies suggested that vulnerability to a higher rate of water-induced soil erosion occurring in eastern
Ethiopia’s highland is associated with the adverse effects of LULC changes, an unsustainable land
management, and less emphasis is given to SWC practices [7,134,135]. These events resulted in an
accelerated on-site soil nutrient loss and off-site sediment accumulation in downstream areas [135].
A complete drying up of Lake Alemaya in the East Hararghe Ethiopian highland over the recent
years is one piece of compelling evidence that justifies the negative consequences of soil erosion,
in combination with an unsustainable land use management practice [136–138].
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Based on the estimated rates of mean annual soil loss, erosion risk was grouped into eight
classes ranging from the very low to extremely high. We derived thematic maps to show the spatial
distribution of erosion risk classes (Figure 6). The very low dominated major parts of the watershed
area in 2000 and 2016 (Table 4) account for 77.52%, 87.02% of the total study area, respectively. The high,
very high, and extremely high erosion risks have declined by 0.23%, 0.21%, and 0.05% of the total study
area, respectively. Overall, the magnitude of soil loss rates across the Gobele Watershed marginally
decreased over the period between 2000 and 2016. The decline in soil loss rates is probably due to some
conservation measures were taken by the local people over the recent years. This implies that the local
communities within the study area have well recognized the possible environmental threats posed by
the water-induced soil erosion and because of this, putting efforts into SWC practices in erosion-prone
areas. Supporting the current study’s findings, Tadesse et al. [139] noted considerable improvement in
the soil erosion and rehabilitation of degraded lands in the Yezat Watershed of North Western Ethiopia
following implementation of integrated watershed development programs. Validating these findings,
Akale et al. [140] also reported that implementation of upland conservation measures significantly
reduced the surface runoff and increased base flow in the Guale and Tikur-Wuha watersheds of the
Ethiopian highlands.

In the present study area, contour bounds, terracing, and check-dams are some of the promising
soil erosion control practices adopted by the local communities as observed during the field visit.
We have also seen that plantation of trees in up-slope areas, especially Khat (Catha edulis) as a
perennial cash crop and raw intercropping with maize and sorghum is largely practiced in various
parts in the study area, and substantially contributed to the diminishing of soil losses by water erosion
(Figure 8). This agrees with Lemessa [141], who highlighted the role of Khat as the most important
erosion control practices by minimizing rainfall-runoff velocity in most of the Eastern and Western
Hararghe highlands of Ethiopia. Confirming this, Li et al. [67] and Efe et al. [131] pointed out that the
existence of vegetation covers reduces the adverse effect of slope gradients on soil erosion intensity.
Moreover, the recent study by Cerdà et al. [50] revealed that application of the straw mulch as erosion
control practices has been shown to reduce the rainfall-runoff velocity and connectivity of the flows,
subsequently decreasing the soil loss rates and sediment fluxes. Keesstra et al. [51] emphasized the
nature-based solutions (NBSs), including the soil solutions and landscape solutions as a cost-effective
and sustainable conservation strategies for mitigating and restoration of degraded land and improve
ecosystem services. Though the SWC implemented over the recent years might have reduced the
magnitude of soil loss rate, the eroded areas are widely observed in the study area (Figure 8a–c).

The change analysis results of the present study showed that about 70.80% of erosion risk areas
occupied in 2000 continued under the same classes in 2016. The results show that the erosion risk area
increased by 19.67% of the total study area, and decreased by 9.53%, which shows that overall soil
loss situation is worsening in the study area. These findings agree with those of the recent study by
Uddin et al. [90] who reported that the state of soil erosion risk in the Koshi Basin has been worsening
following increase in the proportion of the eroded areas over 9.0% of the total basin area between
1990 and 2010. On the contrary, Wang et al. [92] found improvement in the state of erosion risk in the
Danjiangkou reservoir area, China, where the eroded areas have declined from 32.1% in 2004 to 25.43%
in the 2010 study period. Moreover, Jiang et al. [16] reported that the eroded area has decreased by
61% between 2000 and 2012, despite increases in the intensity of soil erosion by 39% in some areas of
the Mount Elgon region, Uganda.
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Therefore, since there is geospatial variation in soil erosion risk distribution across the watershed
area, identification of priority area is the key factor for planning and implementing appropriate
SWC [10–19,51,90,142]. Accordingly, we prioritized areas with a higher and increasing soil loss rate as
SWC priority areas (Table 6). This can play a vital role in supporting decision makers and conservation
planners to design proper SWC measures based on the severity levels of soil loss in the Gobele
Watershed. The first-, second- and third-priority levels account for about 3232.79 ha (1.36% of the
watershed area) that need urgent SWC measures. Most of the top three priority areas are spatially
situated in Kersa and Kurfa Chele in the northwest, Girawa in the southwest, Haramaya in north,
and Fedis in the south and southeast. Moreover, these districts are situated in the steep slope area with
slope gradients greater than 30 meters. In line with the findings of our study, Abate [5] reported that the
steep slopes are attributed to high soil loss rate and aggravated soil erosion risk in the Borena Woreda
of South Wollo Highlands of Ethiopia. A recent report by Karamage et al. [133] for the Nyabarongo
River Catchment, Rwanda, also agrees with the present study’s findings, showing a higher soil erosion
in the very steep slope areas contributing about 73.5% of the total soil loss. They strongly suggested
construction of erosion control structures and rehabilitation of vegetation covers as a solution to reduce
the soil loss in the catchment area [133]. The fourth, fifth and sixth conservation levels accounting for
21,104.37 ha (8.88% of the total study area) need of minor SWC measures. The last two conservation
levels represent areas with lower soil loss and erosion risk accounting for 213,449.27 ha (89.76% of the
total area), which currently may not need the emergency SWC measures.

5. Conclusions

This study estimated annual soil loss rate, assessed the spatial change of erosion risk and mapped
priority areas for SWC measures by taking into consideration the severity levels of soil loss across the
Gobele Watershed, East Hararghe Zone, Ethiopia. We used the RUSEL model developed in an ArcGIS
software environment. The model results offered a reliable quantitative estimate of water-induced soil
loss rates and spatial distribution of erosion risk in the study area. The estimated total soil loss at the
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watershed level was 1,390,130.48 tons in 2000 and 1,022,445.09 tons in 2016 with a mean erosion rate
of 51.04 t ha−1 y−1 and 34.26 t ha−1 y−1, respectively. Thus, the status of soil loss across the Gobele
Watershed has slightly improved over the study period partly due to some conservation practices.
Eight erosion risk classes were mapped based on the mean soil loss rates showing that a larger portion
of the study area are found under the very low, low and low medium classes and only a small part
found within the high, very high and extremely high. Despite a reduction in the magnitude of soil
loss rates, the spatial dimension of erosion risk is getting worse in the study area. The change analysis
results showed that overall, about 70.80% of the erosion risk areas covered in 2000 continued under
the same erosion risk classes in 2016 but 19.67% increased and 9.53% decreased in the total study
area. This reveals that the soil erosion risk situation is worsening in the study area. We identified
and mapped areas with a high and increasing soil erosion risk as conservation priority areas based
on the MCDR method. Thus, conservation priorities identified in the present study can serve as a
spatial decision support tool, and as input for decision makers and conservation planners for future
intervention measures in highly affected areas. It also supports efforts to minimize environmental and
economic impacts of soil erosion and offer insights on policy implications on what should be done
to establish sustainable watershed management practices in the study area. The emperical RUSEL
model and MCDR method outlined in ArcGIS environment for estimating the soil loss rates, assess the
spatial change of erosion risk, and prioritization of SWC in the Gobele Watershed can be applied to
other similar watersheds following proper validation.

Supplementary Materials: The following are available online at http://www.mdpi.com/xxx/s1. Table S1: Mean
annual Rainfall (mm) obtained from National Meteorological Agency (NMA) from 1999 to 2015 and Rainfall
erosivity (R) factor. Table S2: Attributes of Soil units and calculated soil erodibility (K) factor in the Gobele
Watershed, East Hararghe Zone, Ethiopia.
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