SUPPLEMENTARY MATERIAL

Deep tillage improves degraded soils in the (sub) humid Ethiopian highlands

Misbah Abidela Hussein, Habtamu Muche, Petra Schmitter, Prossie Nakawuka, Seifu A. Tilahun, Simon Langan, Jennie Barron, Tammo S. Steenhuis

TEXT S1: Calculation of discharge and soil loss for the plots

Runoff depth was calculated as follows:

$$d = \frac{V}{A}$$
 S1 where *d* is the runoff depth form the plot. Vi s the volume of runoff collected in the barrel and A

is the area of the plot (120 m²)

The volume of runoff is collected in two barrels. The second barrel collects runoff when the first barrel with a volume of 127 l is full. The second barrel receives only one tenth of the overflow.

When the first barrel only contains water, the volume of runoff equals

$$V = \frac{\pi D_1^2 h_1}{4}$$
 S2

where h_1 is the height of the water in the first barrel and D_1 is the diameter of the first barrel.

When the second barrel contains water, the volume of runoff equals

$$V = V_1 + 10 \; \frac{\pi D_2^2 h_2}{4}$$
 S3

where V_1 is the total volume if the first barrel h_2 is the height of the water in the second barrel and D_2 is the diameter of the first barrel,

To determine the amount of sediment lost, 1 l samples were taken from each barrel. Water samples were filtered using 100um filter paper. The filter paper and the sediment were oven dried for 24 hours at 105°C. After oven drying, the weight of the sediment was measured and the weight of the and filter paper subtracted. The total sediment load L per plot can the found as follows

When the first barrel only contains water only contains water, the sediment load per plot is

$$L = VC_1$$
 S4

where C_1 is the sediment concentration in the first barrel.

When the second barrel contains water the total sediment load is

$$L = V_1 C_1 + (V - V_1) C_2$$
 S5

where C_2 is the sediment concentration in the second barrel.

The sediment load per ha can be simply found by dividing the sediment load of the plot by the plot area in ha

Table S1. Soil chemical properties of the top 60 cm before and after the application of the tillage treatments. "Values with different letters at the same depth show a significant difference at p<0.05 between the tillage treatments and the pre-treatment value.

				After 2 years 2016		
Parameter	Depth (Cm)	Prior to treatment 2015	CV%	DT	CT	NT
рН	0-20	4.97±0.28a	5.7	5.63±0.49b	5.55±0.60 ^b	5.52±0.48ab
	20-40	5.30±0.27a	5.0	5.66±0.46a	5.61±0.54a	5.59±0.34a
	40-60	5.39±0.27a	5.1	5.73±0.47a	5.70±0.45a	5.76±0.33a
OM (%)	0-20	1.21±0.6a	50.5	1.72±1.04ª	2.03±0.9b	1.80±0.56a
	20-40	1.07±0.37a	60.1	1.79±0.76 ^{bc}	2.76±1.15°	1.33 ± 0.75^{ab}
	40-60	0.75±0.29a	38.7	2.29±1.49 ^b	1.84 ± 0.92^{b}	$1.78\pm0.47^{\rm b}$
Sand (%)	0-20	18.00±14.8a	82.4	20.4±12.09a	22±8.59 ^a	24.4±11.89a
	20-40	17.20±22.0a	127.8	21.60±9.50a	20.00±11.73a	22.00±11.31a
	40-60	16.00±19.6a	122.8	22.4±12.24a	17.20±13.65a	22.00±13.38a
Clay (%)	0-20	60.40±18.1ª	29.9	56.2±16.59a	54.0±14.96a	56.2±13.92a
	20-40	65.20±20.9a	32.1	59.40±8.57a	58.60±4.9a	60.00±14.03a
	40-60	67.20±20.9a	31.1	62.2±10.99a	63.80±13.04ª	62.60±11.12a
Silt (%)	0-20	21.6±7.9a	36.7	23.40±10.34a	22.6±8.93a	20.2±7.96 ^a
	20-40	17.60±4.1a	23.3	19.00±5.37a	21.00±4.73a	18.00±3.58a
	40-60	16.8±0.4a	13.6	15.40±3.44a	16.20±4.30a	15.40±4.17a
TN (%)	0-20	0.06±0.04a	50	0.09±0.05a	0.10±0.04ª	0.09±0.03a
	20-40	0.06 ± 0.03^{a}	58.7	$0.09\pm0.04^{\rm ab}$	0.14 ± 0.06^{b}	0.07 ± 0.04^{a}
	40-60	0.04 ± 0.01^{a}	34.3	0.12±0.07 ^b	0.09 ± 0.05^{ab}	0.08 ± 0.02^{ab}
CEC cmol (+)/kg	0-20	25.64±12.6a	49.0	25.44±11.76a	20.96±9.79a	25.28±5.09a
	20-40	26.24±12.8a	48.8	25.68±7.04 ^a	24.12±10.65a	24.08±4.48a
	40-60	20.60±5.7a	27.8	27.24±15.48a	23.44±6.07a	25.5±11.62a
Av.P (ppm)	0-20	7.76±10.2a	131.2	12.88±9.90a	7.39±5.18a	14.33±12.89a
	20-40	6.88 ± 4.2^{a}	61.2	5.63±4.37a	5.76±4.38a	6.93±6.80a
	40-60	6.24±5.56a	89.2	4.23±3.00a	2.62±1.71a	4.66±4.63a