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S1: Modeling Approaches 

The foundation of the modeling for this effort was species distribution models (SDMs), based largely 
on climatic-niche envelopes. SDMs allowed us to produce habitat suitability maps which we used to 
identify core habitat areas, assess landscape resistance for connectivity modeling, and assign patch values 
for metapopulation modeling. We developed ensemble SDMs for each focal species under historic 
conditions and then projected suitability, connectivity, and metapopulation persistence under four future 
climate scenarios to determine how and where connectivity may be able to help support persistence of 
biodiversity in the south coast ecoregion. 

1.1 Ensemble Species Distribution Modeling 

We used SDMs to predict the distribution of suitable habitat for our five focal species representing 
different habitat associations: mountain-conifer dependent spotted owl, shrub-dependent wrentit, 
chaparral-dependent big-eared woodrat, riparian-dependent western toad, and the long-distance 
dispersing, generalist bobcat.  

1.1.1 Occurrence Data  

For all focal species, we mined public databases (e.g., eBird, iNaturalist, BIOS) and all unpublished 
literature for presence points for each species to obtain adequate sample sizes and geographic coverage 
across the study area (Table S1). To avoid including older data points in areas that have since been 
developed (thus artificially suggesting urban areas may be suitable based on these locations), we 
implemented a temporal cutoff, only using data from 1980 to present. We also filtered data so only locations 
with an accuracy of 500 m or better were retained.  

In contrast to data collected as part of a thoughtful and thorough sampling regime, opportunistic data 
are subject to sampling bias. This sampling bias often results in inadequate representation of the 
environmental space, which leads to environmental bias in SDM model results and inaccurate model 
predictions [1]. To address sampling bias, we spatially restricted the sampling of background points when 
absence points were not available.  

The data for big-eared woodrat, bobcat, and western toad required the selection of pseudo-absence or 
background points. From a visual inspection of the presence points for big-eared woodrat and bobcat, it 
appeared they were heavily biased toward primary and secondary roads in the study area. We confirmed 
this bias by sampling the presence points on a distance from roads surface. We counted the number of 
presence points within each 500 m distance from roads bin and randomly sampled the same number of 
background points in each distance from roads bin, generating a 3:1 ratio with the presence points for each 
species. This ratio of absence and pseudoabsence to presence points was selected to help maximize the 
differentiation between suitable and unsuitable habitat [2] while using a consistent approach across the 
different models we employed for our ensemble SDMs [3]. Because western toad data were often gathered 
during stream surveys, they did not appear to be biased towards roads, and therefore, we did not bias the 
generation of background points for this species. For all three of these species, there was often a disparity 
in the distribution of occurrence points that was likely due to bias in sampling effort. With coordinated 
research and monitoring efforts focused in the coastal regions in San Diego, Orange, western Riverside, 
and Los Angeles Counties within our study region, these areas often had more data readily available on 
public databases. As such, we found model performance improved both quantitatively and qualitatively 
when we split the study area to address effort or reporting bias, generating a relative number of 
background points to occurrence points on a subregional basis. 



Table S1. List of focal species selected for modeling with data sources identified. The number of occurrence 
points available and the number and type points (background or true absence) used in species distribution 
modeling for each species.  

 
1[4]; 2California Natural Diversity Database [5]; 3Global Biodiversity Information Facility [6]; 4Biodiversity Information 
Serving our Nation [7]; 5United States Forest Service [8]; 6United States Geological Survey (R.N. Fisher, unpublished 
data); 7[9]; 8[10]; 9[11]; 10[12]; 11National Park Service-Santa Monica Mountains (S.P.D. Riley, unpublished data); 12San Diego 
Natural History Museum [13]; 13San Diego State University [14]; 14[15]; 15[16]. 

 
Because the eBIRD database contains actual absence points in the form of observation locations where 

species are not seen, we were able to use these absences for modeling of the wrentit and California spotted 
owl. We randomly selected absence points to use in our modeling of wrentit and California spotted owl at 
a ratio of 3:1. We assumed absence locations to have the same sampling bias as presence locations and 
therefore did not spatially restrict absence points like we did for the other species.  

1.1.2 Species Distribution Modeling 

There are many models considered appropriate for analyzing presence-background data — all with 
various advantages and disadvantages [17,18]. As such, using multiple models to produce a final 
‘ensemble’ model has been proposed as the optimal way to estimate presence-background models [19]. 
Ensemble models have been shown to produce more robust predictions and to perform better than any 
single model [19,20].  

We selected two regression methods (Generalized Linear Models [GLMs]; Generalized Additive 
Models [GAMs]) and three machine-learning methods (Random Forests [RF]; Boosted Regression Trees 
[BRT]; MaxEnt) for our suite of SDM models. We implemented all models in R [21], using the biomod2 
package [22] for random forest, boosted regression, and generalized linear models, MaxEnt in the dismo 
package version 1.1-4 [23], and generalized additive models using the mgcv package [24]. We elected to 
generate GAMs and MaxEnt in alternate packages to more readily specify the parameters in those modeling 
approaches that can affect modeling outputs. We performed a 10-fold cross validation procedure for all 

Focal species 
(Scientific name) 

Habitat 
association 

Data sources 
# presence 

points 

Absence or 
background 

points 

# absence/ 
background 

points 

California spotted owl 
(Strix occidentalis 
occidentalis) 

Coniferous 
and 
hardwood 
forest 

eBird1, CNDDB2 1865 Absence 5595 

Wrentit 
(Chamaea fasciata) 

Shrubland eBird1  5894 Absence 17,682 

Western toad 
(Anaxyrus boreas) 

Riparian, 
wetland, and 
upland scrub 

GBIF3, BISON4, USFS5, 
USGS6, NAHerp7, 
HerpMapper8 

1029 Background 3087 

Bobcat 
(Lynx rufus) 

Generalist 

GBIF9, BISON4, 
Arctos10, NPS-SAMO11, 
SDNHM12, USFS5, 
SDSU13 

507 Background 1521 

Big-eared woodrat 
(Neotoma macrotis) 

Chaparral 
GBIF14, BISON4, 
SDNHM12, VertNet15 

473 Background 1419 



models to assess model predictive ability. Across the 10 folds, we calculated the area under the receiver 
operating characteristic curve (AUC), and used this as our model performance metric. We also tested the 
true skill statistic (TSS) as an evaluation metric for our initial models as AUC has been criticized for, among 
other reasons, ignoring predicted probability and biases related to absence distribution [25]. However, we 
found that both metrics were closely correlated, consistent with findings of prior research [26], so 
proceeded with additional modeling steps using AUC.  

We computed AUC-weighted ensemble suitability predictions, discarding models with AUC < 0.7. 
We used the final ensemble model for each species to predict habitat suitability across the study area and 
to generate the predictions under the four future scenarios. The bootstrapped accuracy averaged across ten 
subsamples of data for each of the five models was 0.95 for owls, 0.80 for wrentit, 0.85 for woodrat, 0.83 for 
Western toad, and 0.80 for bobcat. To project the distribution of future suitable habitat, we substituted 
future climate variables into the ensemble models.  The data, models and final suitability estimates for each 
species were reviewed, discussed with, and corroborated by local species-specific experts, and all models 
were quantitatively evaluated using cross-validation based on prediction of presence versus absence for 
withheld testing data.  

Using the SDM suitability in the historic and future (2100) time periods as end points, we interpolated 
suitability at annual time steps in the intervening years. We then used these surfaces to generate resistance 
surfaces for the decadal connectivity modeling, define habitat patches for linkage and metapopulation 
modeling, and estimate carrying capacities of metapopulation patches.   

1.1.3 Patch Maps  

For both the least cost corridor linkage modeling and the metapopulation model construction, maps 
of habitat patches must be established. For each year that was modeled or interpolated, we generated 
habitat suitability maps that assign a continuous suitability value, ranging from 0 to 1, to each cell within 
the study area. To translate continuous suitability metrics to discrete habitat patches, we used the Core 
Mapper functionality in the Gnarly Landscape Utilities toolbox [27]. Core Mapper works by selecting 
patches that meet three criteria: a minimum per-pixel suitability threshold, an average minimum suitability 
threshold within a specified moving window, and a minimum core area size threshold, which can be 
thought of as the area needed to allow for enough territories to have a viable population.  With these 
parameters specified for each species (Table S2), Core Mapper identifies aggregations of suitable grid cells 
that serve as self-sustaining population cores. The network of these cores represents the meta-population 
within the study area. For each species, we ran Core Mapper for every time step, retaining suitability values 
within the core, and setting values outside the cores to zero.  

Table S2. Core Mapper input values used to designate patches of core habitat for each focal species. 

 
Moving 

Window Radius 
(m) 

Min Average 
Habitat Value 

Minimum Habitat 
Value Per Pixel 

Min Core Area 
size (km2) 

Big-eared 
woodrat 422 0.45 0.25 4 

Bobcat 1260 0.35 0.15 25 
California 

spotted owl 1000 0.5 0.25 20 

Wrentit 800 0.6 0.314 1 
Western toad 232 0.55 0.343 4 

 



1.2 Linkage Modeling 

1.2.1 Least Cost Corridor Modeling 

Habitat patch layers (described above) and resistance were used as the primary inputs for the least 
cost corridor linkage modeling we performed for decadal time steps under each scenario. Recent studies 
on large mammals and birds have found habitat use was not linearly related to resistance and that 
individuals are more tolerant of sub-par environmental features when dispersing than when occupying 
territories or home ranges (e.g., [28-30). To account for this possibility we used a non-linear transformation 
to transform the habitat suitability values to resistance [28]. Resistance was calculated from the following 
formula:  𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 100 − 99 ∗ ((1 − 𝑒𝑥𝑝(−𝑐 ∗  ℎ𝑎𝑏𝑖𝑡𝑎𝑡 𝑠𝑢𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦))/(1 − 𝑒𝑥𝑝(−𝑐))) (1) 

where we set c = 2 for big-eared woodrat, c = 4 for bobcat, c = 4 for California spotted owl, c = 0.25 for wrentit, 
and c = 2 for western toad.  

We ran Linkage Mapper using both the cost-weighted and Euclidean adjacency methods, and 
removing linkages that run through core areas. After generating the least cost corridors and mosaicking 
them into a single map, we then reviewed the outputs for each species for the historic period to determine 
an appropriate cut off of the least cost corridor distance to apply for final delineation of the linkage network 
for each species. Once we selected the maximum normalized least cost corridor distance for each species 
(60 km for big-eared woodrat, 60 km for bobcat, 100 km for California spotted owl, 40 km for western toad, 
and 40 km for wrentit), we applied this cut off to all future scenarios as well. We did not apply species-
specific dispersal limitations at this stage so as to allow for corridors to be developed that would 
accommodate species with similar habitat associations but not necessarily the same dispersal limitations. 
Instead, species-specific dispersal was integrated into the population models to assess functional 
connectivity and biological importance of each linkage.  

1.2.2 Circuitscape Linkages 

We followed our least cost corridor modeling with Circuitscape modeling implemented in Julia 0.7 to 
determine if any linkage zones were underrepresented strictly based on modeling approach. Due to 
computational limitations, we only performed this process for the historic condition and within the 
ecoregion, not the extended study area (Figure 1). We rescaled our resistance surfaces by a factor of three, 
producing a 270-m resistance surface for modeling. We generated source points across the study area by 
probabilistically sampling 1000 points on the historic habitat suitability surface for each species. This 
sampling results in more points being placed in areas with higher habitat suitability than lower suitability. 
Circuitscape was run in pairwise mode and once cumulative current maps were produced for each species, 
we rescaled them from 1-100 and combined those surfaces across focal species. We generated a maximum 
current map by compiling the highest valued pixels for any given species, and an average current map by 
averaging the value for each pixel across all five species. We thresholded each of these surfaces, the 
maximum at > 70 and the average at > 80, and used each of these outputs to compare to the multispecies 
linkage map and fill gaps. 

1.2.3 Land Facet Linkages 

In addition to the focal species linkages, we also generated corridors using a species-agnostic 
landscape approach focused on geodiversity [31,32], or land facets [33,34], designed to identify linkages 
that retain a range of features defined by slope angle, solar insolation, topography, and elevation. This 
method was specifically developed as an approach to connectivity assessments under climate change that 
would be robust to the uncertainty in climate data and issues with scale. To execute the land facet modeling, 



we used ecologically-relevant landform data [32] as the source for the individual facets. Of the 15 landforms 
in the original dataset, we selected three representing cool landforms (cool lower slopes, cool upper slopes, 
and cool peaks and ridges) and two to represent grasslands (valley and narrow valley), which we were not 
able to incorporate with our focal species. To generate land facet linkages, we conducted our analysis as 
described in the Land Facet Corridor Designer User Guide [35] using the Land Facet Corridor Designer 
[36] and Linkage Mapper [37] toolboxes in ArcGIS.  

We identified the areas of greatest density of each of the new landforms using the Calculate Density 
Surface tool in the Land Facet Corridor Designer toolbox by inputting each of the individual variables used 
to create the landforms: slope position (ridges/peaks, upper slopes, lower slopes, and valley bottoms), 
topographic position index (TPI), slope, and continuous heat load index (CHILI). That output was then 
used to generate termini polygons of the areas of greatest density of each land facet within our conserved 
areas. We also used the land facet density surface to create a Mahalanobis distance raster for each class of 
the land facet raster to be used in our corridor modeling as the equivalent of resistance. To standardize the 
scale of the Mahalanobis distance raster, we used the Chi Square Raster Transform tool. This creates a 
resistance or distance surface (on a 0 to 1 scale) to use in our corridor modeling where cells with a greater 
distance (closer to 1) from an area of high density of the land facet of interest have a higher resistance value. 
Finally, because the surfaces created thus far only include topographic variables and have not incorporated 
any other landscape features that may affect wildlife movement, we clipped this resistance layer using an 
urban raster mask generated from land-use data from the Southern California Association of Governments 
to exclude urban areas from our corridor modeling.  

We used Linkage Mapper [37] to generate least cost corridors using the Mahalanobis distance surfaces 
as our resistance inputs and the termini polygons of high land facet density within large blocks of 
conserved lands as our target core areas to connect. This process generated raster corridor surfaces that can 
then be truncated to identify corridor extent. We selected cutoff values for each land facet raster that 
produced a contiguous corridor but was not too wide or expansive. We examined the final land facet 
corridors to identify unique corridors that had not been captured by our multispecies linkage and found 
that only valleys and narrow valleys were not already captured by our final multispecies linkage network.  

1.3 Metapopulation Modeling 

For the metapopulation component of our modeling approach, SDM predictions of habitat suitability 
defined the carrying capacities of metapopulation patches, and a demographic model determined the 
population dynamics within and across the patches.  Each model simulation lasted 100 years, meant to 
represent the time horizon 2000-2100.  We generated models for each species under a no-change scenario, 
as well as the warmer, wetter (CNRM-CM5) and hotter, drier (MIROC5) climate predictions under business 
as usual emissions (RCP 8.5). To implement metapopulation modeling, we first input our core maps into 
the software package RAMAS GIS® 5.0 [38] to link the time series of maps to the population model.  
RAMAS translates the suitability values within a pixel, summed across a core, to the carrying capacity of a 
population patch. We set initial abundances to some fraction (0.6-1) of the total carrying capacity.  Each 
annual core and suitability map was input into RAMAS to allow population patches to grow or sink in size, 
changing the overall carrying capacities along with dispersal distances between patches.  In addition to the 
carrying capacity changes due to climate-driven changes in suitability, we imposed random fluctuations 
(approximately 15% for bobcat and owls, 30% for Western toad, 40% for wrentit, and there were no 
fluctuations in the carrying capacity of woodrat) in the carrying capacity meant to reflect environmental 
stochasticity. 

Once corridors were identified for each species, they were also integrated into metapopulation models. 
These models assumed that individuals were well-mixed within a patch and that distances between 
patches evolved with climate change. We considered the importance of existing corridors only and the 



amount of dispersal through linkages was dependent on species’ ability, abundance of the giving patch, 
and carrying capacity of the final patch.  

1.3.1 Demographic model   

For spotted owl, wrentit, western toad, and bobcat we began with vital rates identified in COMADRE 
[39] and adjusted them to account for errors (spotted owl) and local conditions (wrentit, western toad, and 
bobcat) using local data sources provided by species experts we consulted. For woodrat we used a model 
developed by Stephen Rice (personal communication) that calculated survival and fecundity rates using 
survival and matrilineal data from [40-42]. In a given year, each individual of a species either lives or dies 
with or without replacement subject to the typical matrix model equation:        

⎣⎢⎢
⎢⎡𝑛 (𝑡 + 1)𝑛 (𝑡 + 1)𝑛 (𝑡 + 1)⋮𝑛 (𝑡 + 1)⎦⎥⎥

⎥⎤ = ⎣⎢⎢
⎢⎡𝑓 (𝑡) 𝑓 (𝑡) … 𝑓 (𝑡) 𝑓 (𝑡)𝑠 (𝑡) 𝑟 (𝑡) … 0 00 𝑠 (𝑡) … 0 0⋮ ⋮ ⋱ ⋮ ⋮0 0 … 𝑠 (𝑡) 𝑠 (𝑡)⎦⎥⎥

⎥⎤
⎣⎢⎢
⎢⎡𝑛 (𝑡)𝑛 (𝑡)𝑛 (𝑡)⋮𝑛 (𝑡)⎦⎥⎥

⎥⎤         (2) 

Here fi (t), si (t), ri (t),and ni (t) are the fecundities, survivals, survival-at-same-stage, and numbers of 
individuals, respectively, for each of the w stages (wrentit and woodrat models had w = 2 stages, bobcat 
had three gender-specified stages, western toad also had three stages, and spotted owl had four stages). 
Only the western toad had non-zero ri (t), which means that an individual could remain a juvenile between 
years. Fecundity and survival are drawn each year from a distribution with specified mean and standard 
deviation. Thus, vital rates were meant to represent an additional source environmental stochasticity. To 
incorporate demographic stochasticity, vital rates for each individual were drawn from a Poisson 
distribution (for fecundities) or a multinomial distribution (for transition rates). Final mean vital rates used 
in the demographic models for each species are listed in Table S3. 

1.3.2 Catastrophes   

For wrentit and owl, we added local (within population, not across population) catastrophic drought 
that decreased vital rates in a given time step. Droughts were assumed to occur every 4-5 years, which is 
less than California’s historic drought frequency, but consistent with species response frequency. We 
imposed periodic drought because the impact of drought on vital rates has been documented in the 
literature [43,44]. We did not include a drought catastrophe in the metapopulation modeling for bobcat or 
woodrat as we did not have empirical data to determine if or how drought might negatively impact the 
vital rates of these species. For the western toad, although we would expect this species to be negatively 
impacted by drought, incorporating this catastrophe into the metapopulation modeling led to high 
instability in abundance, making the identification of priority corridors impossible. We therefore omitted 
drought catastrophes in the population modeling for this species as well. 

We tested the importance of each linkage by comparing the final abundance of the metapopulation 
with each corridor activated individually and compared that to models where no corridors were active. We 
used the change in final abundance to calculate the percent increase in the metapopulation when the 
corridor was added, which we called ‘improvement by addition’. To focus on biologically important 
changes in landscape connectivity, we determined a minimum threshold above which we did not expect 
changes in final population size were due to chance alone. Finally, we rescaled the percent increase in 
abundance calculated for each corridor into a relative importance metric ranging from 0 to 1 based on the 
minimum threshold and the maximum percent increase observed across all scenarios. This threshold was 
especially important given all the sources of variability in the model. 

  



Table S3. Mean vital rates for each species used in metapopulation models. 

Big-eared woodrat 
 Juvenile Adult  
Juvenile 0.3145 1.2113  
Adult 0.3631 0.7125  
    
Bobcat        

 
Female 
Kitten 

Female 
Yearling 

Female 
Adult 

Male 
Kitten 

Male 
Yearling 

Male 
Adult 

Female Kit 0 0.532 1.125 0 0 0  
Female Year 0.6 0 0 0 0 0  
Female Adult 0 0.681 0.769 0 0 0  
Male Kit 0 0.532 1.125 0 0 0  
Male Year 0 0 0 0.6 0 0  
Male Adult 0 0 0 0 0.681 0.769  
      
California spotted owl 

 Juvenile 
Subadult  

1 
Subadult 

2 
Adult 

 
Juvenile 0 0.2 0.2 0.4  
Subadult1 0.7 0 0 0  
Subadult2 0 0.7 0 0  
Adult 0 0 0.9 0.8  
      
Western Toad    
 Pre-juvenile Juvenile Adult  
Pre-juvenile 0 50.5 1404  
Juvenile 0.086 0.21 0  
Adult 0 0.11 0.78  
     
Wrentit  
 Juvenile Adult  
Juvenile 0.615 1.14  
Adult 0.424 0.742  

 

1.3.3 Corridors and Dispersal 

Once least cost corridors had been identified, they had to be integrated into the population model. 
Combining the spatial corridor identification offered by Linkage Mapper and the evolution of edge-to-edge 
distances provided by RAMAS was non-trivial. This required updating the permissible corridors every 
decade so that RAMAS would not allow flow of individuals between areas where the Euclidean distance 
was short but the cost distance was prohibitive.  Regardless, the RAMAS population modeling framework 
is agnostic with respect to how an individual disperses between patches, and only cares about the amount 
that flows through patches. We made dispersal proportional to the time-evolving edge-to-edge distances 



between patches. We set the mean dispersal distance to 0.5 km for wrentits [45], 25 km for owls [46], 1.5 km 
for woodrats [47] 1.5 km for western toad [48], and 18 km for bobcats [14]; maximum dispersal distance 
was designated as 2 km for wrentits, was 150 km for owls, was 3 km for woodrats, 3 km for western toad, 
and 50 km for bobcats.  

Owls had exponentially declining dispersal with distance based on the shape of the dispersal curve at 
distances above 10 km in [46] (10 km is roughly the radius of a larger non-breeding territories in Oregon, 
where the study was conducted). Bobcats also had exponentially declining dispersal with distance. For the 
remainder of the species, dispersal declined exponentially with the square of the distance between patches.  
This created more dispersal between closely spaced patches, and more overall dispersal given the 
imposition of the maximum dispersal distance. In addition, we fixed dispersal between any two patches 
such that less than 10% of individuals in the giving patch went to any one adjacent patch, the fraction of 
individuals dispersing was a linear function of the number of individuals in the giving patch, and the 
fraction of individuals dispersing was a linear function of the carrying capacity of the receiving patch up 
to a threshold (typically around 100 individuals), where the threshold was defined by sensitivity tests to 
maximize the benefit of dispersal in the no change scenario. 

1.3.4 Connectivity Scenarios   

For each of the identified corridors, we ran a population model in the presence of the corridor and no 
other corridors, and in the absence of the corridor with all other corridors active.  We then compared the 
final abundance from each perspective to the final abundances of models with no dispersal and with full 
dispersal, respectively, to calculate the percent increase in the metapopulation when the corridor was 
added and % decrease when it was taken away.  The results from these two perspectives largely mirrored 
each other, with some situations where a corridor was important in isolation, but redundant when removed 
from an otherwise fully connected landscape.   

Finally, we ran trials to determine a threshold above which we thought that observed changes in 
corridor scenarios were due to the influence of a corridor and not due to random fluctuations in the 
stochastic models.  This threshold was especially important given all the sources of stochasticity in the 
model: sampling births and deaths in a small population (i.e., demographic stochasticity), year-to-year 
variability in vital rates, year-to-year variability in carrying capacity, and local catastrophes. By creating a 
system where reorganization of individuals between patches minimizes the impacts of environmental 
fluctuations, we created a model that maximizes the benefits of connectivity.  

S2: Prioritization for Multispecies Linkage Assembly 

2.1 Within-species Prioritization  

Given the scale and scope of the project, prioritization was critical to achieve a realistic and 
implementable multispecies linkage network. Our prioritization was based on inputs from four main 
categories (Figure S1; described in more detail below):  
• conservation feasibility,  
• connectivity/landscape value,  
• climatic consensus value,  
• metapopulation persistence (which incorporates species-specific dispersal limitations) 

 
The climatic consensus metrics allowed us to assign greater value to areas where there was agreement 

about important linkages over time and across scenarios, providing greater support for decision-making 
under uncertainty. In contrast, by combining currently known landscape conditions such as impervious 
surface cover and percent land conserved with those that are less certain from our climatic modeling, our 



prioritization approach was grounded in empirical data while providing a robust framework for 
considering the value of linkages in the future for resilience in the face of climate change.  

 
Specifically, we developed the priority linkage value for a patch using the Environmental Evaluation 

Management System (EEMS 2.02; [49]), a hierarchical decision-making toolbox in ArcGIS (ESRI, Redlands, 
CA) based on fuzzy logic described in the main text. We implemented this prioritization according to the 
following procedure:   

Step 1: After fuzzifying initial input variables as described in Table S4 and S5, we calculated 
intermediate values for several metrics to combine or select among them, as appropriate.    
• Habitat Quality was calculated by taking the EEMS Union (the mean of all inputs) of the fuzzified 

values of impervious cover, patch shape, and the habitat resistance values.   
• Network Connectivity was calculated by taking the EEMS union of the fuzzified centrality and 

betweenness values.  
• Prior Designation was calculated by taking the EEMS OR (the larger fuzzified value of the two 

inputs) of the proportion overlap with either the South Coast Missing Linkages (SCML) corridors 
or the California Essential Habitats Connectivity (CEHC) linkages. 

• Conservation Feasibility was calculated by taking the EEMS selected union (the mean of the 2 largest 
of the inputs) of the parcels per patch, proportion already conserved and the average parcel size.   

• Climate Consensus was calculated by first taking the larger of CNRM-CM5 RCP 8.5 linkage 
accounting between 2010 and 2100 or the connection to analogous conditions under the same 
scenario using climatic water deficit. We applied the same selection to the MIROC5 RCP 8.5 
linkage accounting and connectivity to analogous conditions. Finally, we combined the selected 
value from each of these scenarios and combined them with the linkage accounting for the CNRM-
CM5 RCP 4.5 and MIROC5 RCP 4.5 scenarios using an EEMS union.  

• Metapopulation Persistence was an EEMS union of the metapopulation priority values under three 
different climate scenarios, No Change, CNRM-CM5 RCP 8.5 and MIROC5 RCP 8.5.  For one of 
our species, the spotted owl, we also added a Vegetation Vulnerability scenario. 

 
Step 2:  We combined some of the intermediate values further.   
The Connected Landscape value was then obtained by taking the EEMS SELECTED UNION (the mean 
of the 2 largest of the inputs) of Habitat Quality, Network Connectivity, and Prior Designation.  
 
Step 3: Connected Landscape, Conservation Feasibility, Climate Consensus and Metapopulation Persistence 
values were combined in an EEMS UNION.    
 
Step 4:   The result of step 3 was combined with impervious cover in an EEMS AND which returns 
the smaller of the two inputs to ensure linkage segments that had a high degree of impervious surface 
(i.e., urbanization) would be downgraded given the difficulty in restoring connectivity in these areas. 
This final value was the Within-species Linkage Priority value for each core and linkage segment. 
 



Table S4. Range and mean of input values for EEMS prioritization metrics by category. The range and mean 
of the fuzzy values of each metric are also listed. Fuzzy conversion functions either convert linearly between 
the false and true threshold or along a curve following set points between the false and true thresholds. 

Metric Original 
scale 

Original 
mean 

Fuzzy 
conversion 

function 

Conversion 
thresholds  

(false – true) 

Fuzzy 
scale 

(false –
true) 

Fuzzy 
mean 

Conservation feasibility 

# Parcels/Area 0 – 0.61 0.39 linear 0.576 – 0.0006 -1 – 1 -0.35 

Average parcel size 
(ha) 

0 – 5.59 1.4 linear 0 – 5.59 -1 – 1 -0.106 

Proportion conserved 0 – 1.0 0.38 linear  0 – 0.99 -1 – 1 -0.22 

  Connectivity/landscape value 
% Imperviousness 0 – 57.59 16.29 linear 33.92 – 2.1 -1 – 1 0.22 

Patch shape 0 – 1.1 0.03 linear 1.1 – 0.0018 -1 – 1 0.822 

Resistance 47.98 – 77.69 56.95 linear 72.06 – 52.27 -1 – 1 0.54 

Centrality 1 – 13 3.72 linear 1 – 8 -1 – 1 -0.32 

Betweenness (log) -4.61 – 8.25 1.77 linear -4.61 – 8.25 -1 – 1 0.36 

Prop overlap - SCML 0 – 0.93 0.13 curve 0,-1; 0.3,0.5; 0.8,1 -1 – 1 -0.5 

Prop overlap - CEHC 0 – 1 0.33 curve 0,-1; 0.3,0.5; 0.8,1 -1 – 1 -0.04 

Climate consensus 

Linkage value  
CNRM-CM5, RCP 4.5 

0 – 1 0.65 curve 0.1,-1; 0.3,0.5; 0.5,0.8 -1 – 0.8 0.67 

Linkage value   
CNRM-CM5, RCP 8.5 

0.09 – 1 0.63 curve 0.1,-1; 0.3,0.5; 0.5,0.8 -1 – 0.8 0.63 

CNRM-CM5 RCP 8.5 
analog 

0.37 – 1 0.76 linear 0 – 0.8 -0.07 – 1 0.83 

Linkage value  
MIROC5, RCP 4.5 

0.05 – 1 0.59 curve 0.1,-1; 0.3,0.5; 0.5,0.8 -1 – 0.8 0.56 

MIROC5 RCP 8.5 
analog 

0.34 – 1 0.75 linear 0 – 0.8 -0.15 – 1 0.81 

Linkage value  
MIROC5, RCP 8.5 

0 – 1 0.59 curve 0.1,-1; 0.3,0.5; 0.5,0.8 -1 – 0.8 0.51 

Metapopulation persistence 

Pop persistence  
No change 

0.13 – 1 0.58 linear 0.1 – 0.8 -0.916 – 1 0.31 

Pop persistence 
CNRM-CM5, RCP 8.5 

0.15 – 1 0.68 linear 0.1 – 0.8 -0.87 – 1 0.62 

Pop persistence 
MIROC5, RCP 8.5 

0.11 – 1 0.7 linear 0.1 – 0.8 -0.98 – 1 0.67 

 



 
Figure S1. EEMS logic model for within-species linkage priority assessment. 



Table S5. Input variables and processing approach to fuzzify variables for the within-species prioritization model depicted in Figure S1. 

Attribute Description Fuzzy 
Relationship  Combination 1 Combination 2 Combination 3 Final 

Combination 

# Parcels/Area Number of parcels by patch area Smaller = true 
Mean of 2 most true = Conservation 

Feasibility 

Mean of  
 

Conservation 
Feasibility 

 
Connectivity/ 

Landscape Value 
 

Climate 
Consensus 

  
&  
 

Metapopulation 
Persistence 

The smaller of 
Imperviousness and 

the mean of  
 

Connectivity/ 
Landscape Value 

 
Climate Consensus 

  
&  
 

Metapopulation 
Persistence  

 
=  
 

Within-species 
Linkage Priority 

Avg Parcel Size Average parcel size within a segment Larger = true 

Proportion Conserved Proportion of segment conserved  Larger = true 

Imperviousness Percent of impervious cover  Smaller = true 

Mean = Habitat 
Quality 

Mean of the2 
largest of the 3 

values = 
Connectivity/ 

Landscape Value 

Patch Shape Edge to interior ratio Smaller = true 

Resistance 
Resistance as converted from habitat 
suitability for each species 

Smaller = true 

Centrality Number of bordering patches Larger = true 
Mean = Network 

Connectivity Betweenness (log) 
Number of neighboring patches that use 
node as a hub  

Larger = true 

SCML Overlap Prop overlap with SC Missing Linkages Larger = true 
Mean =  

Prior Designation CEHC Overlap 
Prop overlap with CA Essential Habitats 
Connectivity linkages 

Larger = true 

Linkage value,  
CNRM-CM5 RCP 4.5 

Prop of decades where linkage appears  Larger = true  

Mean of the 2 
largest of 4 

values = Climate 
Consensus 

Linkage value,  
CNRM-CM5 RCP 8.5 

Prop of decades where  linkage appears  Larger = true 
Largest value 

carried forward CNRM-CM5, RCP 8.5 
analog 

Priority value based on climate analog Larger = true 

Linkage value,  
MIROC5 RCP 8.5 

Prop of decades where linkage appears  Larger = true Largest value 
carried forward 

MIROC5, RCP 8.5 analog Priority value based on climate analog Larger = true 
Linkage value,  
MIROC5 RCP 4.5 

Prop of decades where linkage appears  Larger = true  

Pop persistence  
No Change 

Linkage benefit - metapop model Larger = true 

Mean of values = Metapopulation 
Persistence 

Pop persistence 
CNRM-CM5 RCP 8.5 

Linkage benefit - metapop model Larger = true 

Pop persistence 
MIROC5 RCP 8.5 

Linkage benefit - metapop model Larger = true 



S3: Metapopulation Modeling Maps 

 
Figure S2. Maps of the relative importance values calculated for big-eared woodrat least cost paths with 
metapopulation models run from 2000 to 2100 under no change (top) as well as the CNRM-CM5 RCP 8.5 
(bottom left) and MIROC5 RCP 8.5 future climate scenarios. 



 
Figure S3. Maps of the relative importance values calculated for bobcat least cost paths with metapopulation 
models run from 2000 to 2100 under no change (top) as well as the CNRM-CM5 RCP 8.5 (bottom left) and 
MIROC5 RCP 8.5 future climate scenarios. 

 



 
Figure S4. Maps of the relative importance values calculated for California spotted owl least cost paths with 
metapopulation models run from 2000 to 2100 under no change (top) as well as the CNRM-CM5 RCP 8.5 
(bottom left) and MIROC5 RCP 8.5 future climate scenarios. 

 



 
Figure S5. Maps of the relative importance values calculated for western toad least cost paths with 
metapopulation models run from 2000 to 2100 under no change (top) as well as the CNRM-CM5 RCP 8.5 
(bottom left) and MIROC5 RCP 8.5 future climate scenarios. 

 



 
Figure S6. Maps of the relative importance values calculated for wrentit least cost paths with 
metapopulation models run from 2000 to 2100 under no change (top) as well as the CNRM-CM5 RCP 8.5 
(bottom left) and MIROC5 RCP 8.5 future climate scenarios. 
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