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Abstract: Recently, improving technical efficiency is an effective way to enhance the quality of
grass-based livestock husbandry production and promote an increase in the income of herdsmen,
especially in the background of a continuing intensification of climate change processes. This paper,
based on the survey data, constructs a stochastic frontier analysis (SFA) model, incorporates net
primary productivity (NPP) into the production function as an ecological variable, refines it to the
herdsman scale to investigate grassland quality and production capacity, and quantitatively evaluates
the technical efficiency of grass-based livestock husbandry and identifies the key influencing factors.
The results show that the maximum value of technical efficiency was up to 0.90, and the average value
was around 0.53; the herdsmen’s production gap was large and the overall level was relatively low.
Additionally, the lack of forage caused by drought was the key factor restricting the current grass-based
livestock husbandry production level, and the herdsmen’s adaptive measures, mainly represented
as “purchasing forage” and “selling livestock”, had a positive significance for improving technical
efficiency. Based on this, expanding the planting area of artificial grassland, improving the efficiency
of resource utilization, and enhancing the supply capacity of livestock products while ensuring the
ecological security of grassland are effective ways to increase the production level of grass-based
livestock husbandry in Hulun Buir.
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1. Introduction

Grassland is not only the largest terrestrial ecosystem but also an important green ecological barrier
in China. Ecological function is always on the top of China’s list, and the crucial role of the grassland
ecosystem in maintaining national ecological security has become increasingly prominent [1–3].
For instance, in terms of water conservation, grassland accounts for nearly 40% of China’s water
conservation functional area; the grassland’s ability to conserve water is 40–100 times that of cultivated
land and 0.5–3 times that of woodland, the ability to block runoff is 58.5% higher than that of woodland,
and the ability to reduce sand content is 88.5% higher than that of woodland [4,5]. In addition,
grassland also plays an extremely important role in wind protection and sand fixation, soil and water
conservation, biodiversity protection, and environmental beautification [6–8]. However, in recent
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years, under the dual impacts of human activities and climate change, the ecological environment of
grassland has faced great threats and challenges, such as the reduction of grassland area, an increase in
land desertification, and a decrease in vegetation coverage [9–11]. Therefore, it is of great significance
to carry out scientific and effective eco-management so as to achieve sustainable development of
grassland resources.

Moreover, with the rapid development of China’s economy, the diet structure of residents has
also obviously changed, mainly manifested as a continuous decrease in demand for rations (rice, corn,
wheat) and an increasing demand for livestock products (meat, milk, eggs) [12–14]. As grassland
resource is the most basic input element for the production of livestock products, high-quality and
sufficient forage supply has become a key factor for satisfying consumer demand, increasing herdsmen’s
income, and achieving sustainable development of pastoral areas [15–17]. However, as the main
supply base of livestock products, pastoral areas occupy a relatively low proportion in the total
output value of agriculture. The fragile supply capacity has difficulty meeting the market’s consumer
demand, resulting in a large number of livestock products being dependent on imports and seriously
threatening national food security [18–21]. Therefore, the contradiction between ecological protection
and increasing the supply capacity of livestock products has become more and more prominent [18].

From international experience, the existing patterns of developing animal husbandry in grassland
areas among relatively developed countries, where the artificial grassland area accounts for a large
proportion of the total grassland area, are essentially different from our country [5,18]. For example,
the area of artificial grassland in New Zealand accounts for 70% of the total grassland area, and,
in Europe, it also accounts for more than 50% [22]. However, the area of artificial grassland only accounts
for 5% of the total grassland area in China [5], so that the production of livestock products mainly
relies on forage supply from natural pastures, which is greatly affected by the natural environment,
where grass production is low and unstable. Based on this context, the Central Committee Document
No. 1 of 2015 proposed, for the first time, to accelerate the development of “grass-based livestock
husbandry” so as to achieve a win–win situation of ecological benefits and economic benefits and
finally meet major national strategic needs.

However, the existing research on grass-based livestock husbandry mainly focuses on the
analysis of the influencing factors and causes of grassland ecological services and production functions
degeneration [23–25] and the influence mechanism of grassland management policies such as “returning
grazing to grassland” and “enclosure and grazing prohibition” on grassland ecological restoration
and regional economic development [5,26]. The research perspectives are primarily based on the
protection of ecological functions, equating the current status of the ecological environment with
the level of sustainable development; however, few studies have analyzed the situation from the
perspective of optimizing the allocation of grassland resources and improving grassland production
efficiency [4,5]. In the background of resource constraints and increasing demand for livestock products,
improving the level of production efficiency is undoubtedly helpful to meet consumer demand while
maintaining the grassland’s ecological environment [27]. Moreover, many studies had pointed out that
the improvement of production efficiency comes mainly from technical efficiency and technical change.
Furthermore, in the case of limited short-term technical change, technical efficiency improvement has
become an effective way to enhance the level of production efficiency [28–30].

The concept of technical efficiency was firstly proposed by Farrell (1957) and considered as
the ratio of ideal cost to actual cost [31]. Technical efficiency focuses on investigating the issue of
how production and operation entities can maximize potential output through the existing inputs of
production elements under the established production environment and technological level [32,33].
Subsequently, scholars carried out a wealth of research on technical efficiency. In recent years, they have
gradually focused on investigating the coordination ability between the ecological and production
functions of the economic system [27,34,35]. However, in the process of calculating technical efficiency,
the existing research measures the environmental impact by taking the unexpected output of economic
systems (wastewater, waste gas, solid waste) into account [36–38]. However, the environmental impact
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in the production process of grass-based livestock husbandry mainly comes from the consumption of
grassland resources; the unexpected output has less impact on it [39]. Therefore, the most relevant
research focuses on industry or planting industry, while in the field of grass-based livestock husbandry,
it usually takes grassland area as an input variable for analysis based on the traditional research
paradigm [40,41]. However, it is difficult to accurately reflect the ecological level of grassland as the
research ignores the significance of grassland quality (soil organic matter, grassland type, grassland
net primary productivity) for grassland ecological and productive functions; most of the studies stay
at the macro level, lacking micro-level research [27,39,42].

Based on this, in this paper, we combine survey data and construct a stochastic frontier analysis
(SFA) model, which is the current mainstream model of measuring technical efficiency at the
micro-level [43], to investigate the production status of herdsman’s grass-based livestock husbandry
production in Hulun Buir. Moreover, in order to calculate the grassland’s ecological performance,
we incorporate net primary productivity (NPP) into the production function as an ecological variable
that characterizes grassland quality and productivity and refine it to the herdsmen scale, according to
the family pasture’s grid position of the longitude and latitude, then we identify the key influencing
factors of technical efficiency to clarify the main constraints in current grass-based livestock husbandry
production and operation so as to provide policy recommendations for sustainable development.

2. Material and Methods

2.1. Study Area

Hulun Buir is located in the north part of Inner Mongolia, possessing typical semiarid grassland
that is rich in resources and natural pastures (Figure 1). Grass-based livestock husbandry is the pillar
industry there, which mainly relies on natural grasslands [8]. However, in recent years, 66% of all
pastures have been degraded, which has resulted in a great impact on the market supply of livestock
products and the regional ecological environment [44]. As an important national livestock production
base, maintaining the national ecological environment and food security is an important task for
grass-based livestock husbandry development. Therefore, it is of great significance to clarify the current
efficiency level of grass-based livestock husbandry and explore the optimal path so as to achieve a
win–win situation of ecological benefits and economic benefits in this region. Based on this, counties
located in the pastoral area (including Xin Barag Right Banner, Xin Barag Left Banner, Prairie Chenbarhu
Banner, Ewenki Autonomous Banner) and semirural and semipastoral areas (including Zhalan Tun,
Daur Autonomous Banner of Morin Dawa, and Arun Banner) were chosen as the study areas.
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Figure 1. Location of the study area and the sampled points for questionnaire data collection.

2.2. Experimental Design

2.2.1. Data Source

This paper selected the method of stratified random sampling to investigate the herdsmen’s
grass-based livestock husbandry production and operation, covering 7 counties of Hulun Buir. A total
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of 138 questionnaires were obtained, among which 126 were valid; the effective rate was 92%.
The questionnaires included household population, labor force, grassland area, livestock quantity,
livestock production, household grass-based livestock husbandry income, livestock product sales, and
herdsmen’s adaptive measures to climate change.

Additionally, the data of temperature, precipitation, and other climatic variables were all derived
from China’s meteorological data network [45], and the data of NPP was extracted from the MOD17A2
product, which can be downloaded for free [46]. Accordingly, we obtained MOD17A2 product data,
covering two tiles (h25v05, h26v05) in Hulun Buir from 2001 to 2016; the image data band is 1 km.
Then, the MODIS data were extracted and batch-stitched based on the MODIS data processing software
MRT (MODIS Reprojection Tools) and the Cygwin platform to convert the source NPP data (in HDF
format) to the GEOTIFF format, and, finally, we performed projection conversion and cropping on
the spliced image by Python to obtain the NPP distribution of Hulun Buir. Moreover, learning from
Huang et al. (2016), according to the grid location at the latitude and longitude of the family pastures,
the NPP value at the grid location was extracted to characterize quality and productivity so that the
NPP value was refined to the herdsmen scale.

2.2.2. Indicator System

This paper constructed an indicator system to evaluate the technical efficiency of herdsmen’s
grass-based livestock husbandry based on the scientific connotation of technical efficiency and the
actual situations of local production and operation (Table 1). Most of the existing research take
grassland as the land input element, together with the capital element and labor element, in the
analysis of production function [27,47,48]. However, the influence of grassland quality on grassland
production capacity and grass-based livestock husbandry production levels has been ignored [39].
As Hulun Buir is a vast area, the different conditions will inevitably lead to a different grassland
quality in each region, as well as the corresponding production capacity, animal-carrying capacity,
forage yield, and forage quality. Therefore, this paper took net primary productivity (NPP) as an
ecological variable to investigate the quality of grassland on the technical efficiency evaluation system
so as to scientifically and comprehensively estimate the production level of grass-based livestock
husbandry. Thus, we specifically selected grassland area (x1), labor (x2), capital (x3), and NPP (x4) as
input indicators and the output of total meat (Y) as output indicator. As for the key influencing factors
of technical efficiency, the existing research mainly includes the aspects of herdsmen’s age, household
size, education level, income, and grazing capacity [49–51]. Additionally, related research has pointed
out that climate factors (like temperature and precipitation) can also have a significant impact on
technological efficiency. As the process of climate change intensifies, adaptive measures adopted
by herdsmen to cope with climate change have increasingly highlighted their impact on technical
efficiency [52]; purchasing forage and selling livestock are the most important adaptive measures at
present, according to the survey data. Therefore, this paper specifically selected household size (z1),
livestock density (z2), education level (z3), precipitation (z4), temperature (z5), whether purchased
forage (z6), and whether sold livestock (z7) as key influencing factors. Among them, household size(z1)
represents the population of each household; as for livestock density (z2), learning from Bai et al.
(2019), the equivalent unit was converted (1 pig = 5 sheep, 1 cow = 5 sheep) to the number of sheep
carried on each hectare of grassland.

2.3. Data Analysis

2.3.1. Stochastic Frontier Analysis

Stochastic frontier analysis (SFA) mainly considers that the production frontier itself is in a state
of random change in different production units [43]. This method can effectively distinguish various
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controllable and uncontrollable factors that lead to production inefficiency and has become the current
mainstream model of measuring technical efficiency [53], which can be shown as follows:

ln Yi = β0 +
∑

n
βn ln xn,1 + vi − ui (1)

where Yi represents the real output; xi represents the input elements; vi represents the random error
term, which is an independent, identically distributed normal random variable with a mean of zero and
a constant variance; ui represents the inefficiencies of production, which is generally assumed to be an
independent and identically distributed exponential random variable or a seminormal random quantity.

Table 1. Evaluation index and variable descriptions of the technical efficiency of grass-based livestock
husbandry in light of herdsmen.

Type Lable Variable Unit Observations Mean Standard
Deviation

Input

x1 grassland area hectare 126 201.40 202.49
x2 labor herd 126 3.03 1.58
x3 capital Yuan 126 80,641.43 123,313.90
x4 NPP gC 126 198.65 32.02

Output Y output of
total meat kg 126 18,529.52 16,821.17

Influencing
factors

z1 household size herd 126 3.32 0.99

z2 livestock density sheep
unit/hectare 126 6.75 11.1

z3 education level - 126 0.15
0.74 0.35

z4 precipitation mm - 286.5 79.9
z5 temperature ◦C - 6.38 7.51

z6
whether

purchased forage - 126 0.43 0.46

z7
whether sold

livestock - 126 0.37 0.48

However, traditional SFA models are mostly based on the Cobb–Douglas (CD) production
function, which contains the premise that the elasticity of substitution of all production inputs is 0
or 1. When constructing the production function of herdsmen’s grass-based livestock husbandry,
it is difficult to determine the elasticity of demand substitution among various production inputs
in advance [54,55]. Based on this, this paper selected the translog production function in a more
flexible form, which can be approximated to any production function, and built an SFA model from
the perspective of technical efficiency and combined it with the actual situations of local grass-based
livestock husbandry production and operation [27,56], which can be shown as follows:

ln Yi = β1 ln x1i + β2 ln x2i + β3 ln x3i + β4 ln x4i + β12 ln x1i ln x2i
+β13 ln x1i ln x3i + β14 ln x1i ln x4i + β23 ln x2i ln x3i + β24 ln x2i ln x4i

+β34 ln x3i ln x4i +
1
2β11(ln x1i)

2 + 1
2β22(ln x2i)

2 + 1
2β33(ln x3i)

2

+ 1
2β44(ln x4i)

2 + (vi− ui)

(2)

where β represents the parameter vectors estimated by observation; Yi represents the total output
of the i-th herdsman family; x represents the input value of production elements; ui represents the
non-negative random variable of technical efficiency loss of the i-th herdsman family ui~iidN+ (mi, σu

2);
vi represents the random error term vi~iidN (0, σv

2); ui and vi are independent of each other. Technical
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efficiency is generally defined as the ratio of observed output at a given production frontier to the
corresponding potential output, which can be shown as follows:

TEi =
f (xi, β)· exp(vi − ui)

f (xi, β)· exp(vi)
= exp(−ui) (3)

2.3.2. Tobit Regression Model

Technical efficiency measured through the SFA model will not only be affected by the selected
input–output variables but also by other exogenous variables. As the efficiency value is usually
between 0 and 1, the Tobit regression model has advantages when it includes both continuous and
discrete variables [57]. Thus, this paper selected the Tobit regression model, namely, the maximum
likelihood method, to analyze the key factors influencing technical efficiency, which can be shown
as follows:

yi = β0 +
k∑

j=1

β jzi j + εi (4)

yi =


0, i f y∗i ∈ (−∞, 0]

0, i f y∗i ∈ (0, 1]
0, i f y∗i ∈ (1,+∞]

(5)

where yi represents the technical efficiency of the i-th herdsman family; zij represents the factors
influencing technical efficiency.

3. Results

3.1. Changes of NPP in Hulun Buir

We extracted the NPP data of Hulun Buir from the MOD17A2 product. Figure 2 shows the changes
in NPP in the major years, indicating that the trend of “partial improvement, overall deterioration” has
been quite obvious since 2001. In addition, although the NPP level in 2015 was lower than that in 2001,
it had still improved compared with 2005 and 2010. On the whole, the ecological security of Hulun
Buir grassland is still facing a severe threat.Land 2020, 9, 28 7 of 13 
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3.2. Evaluation of Technical Efficiency of Grass-Based Livestock Husbandry

We constructed an SFA model to evaluate the technical efficiency of grass-based livestock
husbandry based on survey data and Formulas (2) and (3). Table 2 shows the results of parameter
estimation, where the model was significant at the 1% level, indicating that the overall fit was good
and the independent variable had a high level of interpretation for the dependent variable. Among
them, the coefficient of grassland area, labor, capital, and NPP were all positive, indicating that an
increase of input elements would have a significant positive impact on total livestock output.

Table 2. Estimation results of the parameter-based test on the stochastic frontier analysis (SFA) model.

lnY1 Coefficient Standard Error Z Value P > |z| 95%

lnx1 0.266 *** 0.012 22.400 0.000 [0.242, 0.289]
lnx2 0.489 *** 0.063 7.760 0.000 [0.366, 0.623]
lnx3 0.165 *** 0.027 6.210 0.000 [0.113, 0.217]
lnx4 1.169 *** 0.180 6.480 0.000 [0.815, 1.522]

lnx1 × 2 0.155 ** 0.078 1.980 0.047 [0.002, 0.309]
lnx1x3 −0.220 *** 0.196 −11.220 0.000 [−0.259, −0.182]
lnx1x4 1.397 *** 0.133 10.490 0.000 [1.135, 1.658]
lnx2x3 0.043 0.046 0.940 0.349 [−0.047, 0.133]
lnx2x4 2.003 *** 0.206 9.730 0.000 [1.599, 2.406]
lnx3x4 −0.775 *** 0.150 −5.140 0.000 [−1.071, −0.479]
lnx12 0.316 *** 0.324 9.750 0.000 [0.253, 0.380]
lnx22 0.517 ** 0.215 2.410 0.016 [0.096, 0.937]
lnx32 −0.033 0.025 −1.320 0.187 [−0.082, 0.015]
lnx42 8.185 ** 3.156 2.590 0.011 [1.998, 13.37]
cons 0.526 *** 0.025 21.420 0.000 [0.477, 0.573]

Prob > chi2 0
Number of obs = 126 Log likelihood = 37.66

Note: **, *** represents 5%, 1% significance, respectively.

Subsequently, we evaluated the technical efficiency of grass-based livestock husbandry based
on the SFA model. The results revealed that the level of grass-based livestock husbandry production
was still quite low; the maximum value was 0.90, and the average value was 0.53. There was a large
space for the development of grass-based livestock husbandry in the future. Moreover, it can be seen
from the distribution that the overall distribution of technical efficiency is to the right, which meets the
hypothesis of the SFA model (Figure 3).Land 2020, 9, 28 8 of 13 
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3.3. Analysis of the Key Influencing Factors of Technical Efficiency

3.3.1. Data Validation

Before regression analysis, we also need to test the data of variables. In this paper, in order to
avoid the distortion of model estimation results due to multicollinearity, we firstly selected the method
of variance expansion factor (VIF) to test the multicollinearity of independent variables (Table 3).
The results show that the variance expansion factors of each variable were less than 8, which indicated
there was no strong correlation between the independent variables and no multicollinearity problem
in the model.

Table 3. Results of the variance expansion factor (VIF) test.

Variables VIF 1/VIF

household size 1.17 0.85
livestock density 1.26 0.79
education level 1.37 0.72

precipitation 3.94 0.25
temperature 4.06 0.24

whether purchased forage 2.07 0.48
whether sold livestock 2.35 0.42

Subsequently, in order to eliminate the error of the estimation results caused by the
heteroscedasticity of the random interference term, we further selected the method of White to
test the heteroscedasticity of the data (Table 4). The results showed that at the level of 5% significance,
the adjoint probability of the R2 statistic was around 0.323, which was greater than 0.05. Therefore,
the original hypothesis of “the same variance of random error term” cannot be rejected as there was no
heteroscedasticity in the regression equation, and the regression analysis can be further carried out.

Table 4. Results of White’s heteroscedasticity test.

R2 Adjoint Probability F Value

79.614 0.323 3.647

3.3.2. Analysis of the Key Influencing Factors

We identified the key influencing factors of technical efficiency based on the Tobit regression model
(Table 5). The results showed that education level was significant at the 1% level, indicating that it had
a positive impact on technical efficiency. In addition, skill training was an effective way to improve
the production technology level of herdsmen as well. Among the climate variables, temperature
and precipitation passed the significance test of 1% and 5%, respectively, indicating that climate
change will also have an important impact on the production and operation levels of herdsmen’s
grass-based livestock husbandry. Livestock density had not passed the significance test, but whether
purchased forage and whether sold livestock both passed the significance test, indicating that the
adaptive measures also played a positive role in improving technical efficiency and will be helpful in
promoting grass-based livestock husbandry production by optimizing the management of adaptations
to climate change.
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Table 5. Regression results of the Tobit model.

Factors Coefficient Standard Error Z-Value P > |z|

household size 0.063 0.070 0.91 [−0.074, 0.200]
livestock density 0.223 *** 0.062 3.59 [0.100, 0.347]
education level 0.001 0.013 0.01 [−0.026, 0.026]

precipitation 0.329 ** 0.120 2.73 [0.090, 0.567]
temperature −0.093 *** 0.027 −3.40 [−0.147, 0.039]

whether purchased forage 0.146 ** 0.058 2.53 [0.032, 0.260]
whether sold livestock 0.255 *** 0.063 4.05 [0.130, 0.379]

constant 0.592 *** 0.153 3.87 [0.289, 0.896]
LRchi2(7) 88.96

Prob > chi2 0.00

Note: **, *** represents 10%, 5%, 1% significance, respectively.

4. Discussion

As for NPP changes in Hulun Buir, the trend of “partial improvement, overall deterioration” was
quite obvious. Areas with declining NPP were mainly concentrated in the east and west foothills of
the Greater Khingan Range bordering the plain, specifically shown in the degradation from forest
grassland to meadow and desert grassland. Many studies have pointed that NPP is an important
indicator of the quality and productivity of grassland [39,44]; moreover, some scholars also believed
that NPP can also represent ecological situations [13]. Based on this, in view of the overall deterioration
of NPP, the security of grassland areas is still facing a severe threat. In addition, a series of grassland
ecological protection policies, such as “Return Grazing to Grass” and “Forage–Livestock Balance”,
implemented by national governments, may be the main reason causing the NPP increase in 2016.

As for the evaluation of technical efficiency, the increase in input elements had a significant
positive impact on total livestock output. Furthermore, the coefficient of NPP (1.169) was obviously
greater than grassland (0.266), labor (0.489), and capital (0.165), which means the quality of grassland
had a more significant impact on grass-based livestock husbandry production. The results further
illustrate that NPP plays a significant positive role in improving the supply capacity of livestock
products. Moreover, one-third of the technical efficiency was between 0.4–0.7, one-third was more
than 0.7, and one-third was less than 0.4, which indicated that the production and management levels
of herdsmen were quite different.

As for key influencing factors, education level, climatic factors, and adaptive measures all had
significant impacts on technical efficiency. Among them, education level had a positive impact on
technical efficiency; this is mainly because the higher the cultural quality of herdsmen, the stronger the
ability to understand and accept new things, new technologies, and new policies and the easier it is to
have higher technical advantages. It also showed that skills training was an effective way to improve
the production technology level of herdsmen as well. Mwalupaso et al. (2019) also pointed out that
education level was helpful in improving the technical efficiency of households [58]. Moreover, climatic
factors like temperature and precipitation also have important impacts on the production and operation
levels of herdsmen’s grass-based livestock husbandry. In terms of the coefficient, the precipitation
coefficient was positive, which indicated that in a certain range, the increase in precipitation promoted
the growth of grassland vegetation, thus improving the forage yield. When the temperature was
negative, which is indicated at a certain range, the temperature rise aggravated the evaporation of
water in the soil and caused drought, which is not conducive to the growth of forage and, further,
means that the lack of forage supply caused by drought will have a significant inhibitory effect on
grass-based livestock husbandry production. Bai et al. (2019) also obtained a similar conclusion.
Therefore, the lack of forage supply due to the mismatch between precipitation and evaporation is
the main factor restricting the improvement of technical efficiency, as the natural pastures are the
main supply sources of grass-based livestock husbandry production, which are significantly affected
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by climate change. Hu et al. (2019) pointed out that artificial grassland can realize high yield and
high-efficiency forage supply [5] and the construction of artificial grassland in a small area, with better
water and heat conditions, can fully meet the needs of forage, so as to relieve the grazing pressure of a
large area of natural grassland and restore ecological function [8,18]. Zhao et al. (2020) also found that
through the construction of artificial grassland in areas with good water and heat conditions (at 10%),
100% of forage grass demand can be met if the planting scale is increased to 30%. The corresponding
production scale can be increased by 1.7 times [44], which indicates that the construction of artificial
grassland may be a key breakthrough to expand the supply of livestock products while protecting the
ecological environment. Moreover, climate change adaptation measures, including whether purchased
forage and whether sold livestock, also play a positive role in improving technical efficiency.

5. Conclusions

In this paper, we constructed an SFA model based on survey data while incorporating NPP into
the production function as an ecological variable to investigate grassland quality and production
capacity and refine it to the herdsmen scale. Moreover, we further quantitatively evaluated the technical
efficiency of grass-based livestock husbandry and identified the key influencing factors. We found that
the maximum value of technical efficiency was up to 0.90, and the average value was around 0.53;
the herdsmen’s production gap was large and the overall level was relatively low. Additionally, the lack
of forage caused by drought was the key factor restricting the current grass-based livestock husbandry
production level, and the herdsmen’s adaptive measures, mainly represented as “purchasing forage”
and “selling livestock”, had a positive significance for improving technical efficiency.

Therefore, the political implications of this study should include the following aspects: increasing
the input of scientific research of grass-based livestock husbandry and improving the market
competitiveness of livestock products; converting the production pattern of grass-based livestock
husbandry and the dependence on grassland herding; optimizing the management pattern of
grass-based livestock husbandry and realizing grassland ecosystem replacement; delimiting the
red line between grassland resources and ecological protection and restoring the ecological function of
grassland; increasing the compensatory input of the grassland ecosystem and advancing its ecological
compensatory mechanism; intensifying supply-side reform in agriculture to achieve the optimization
and upgrade of the industrial structure; establishing the industrial system of grass-based livestock
husbandry and boosting the sustainable development of grassland areas.
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