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Abstract: The western part of Crete Island has undergone serious landslide events in the past.
The intense rainfalls that took place in the September 2018 to February 2019 period provoked
extensive landslide events at the northern part of Chania prefecture, along the motorway A90.
Geospatial analysis methods and earth observation data were utilized to investigate the impact of the
various physical and anthropogenic factors on landslides and to evaluate landslide susceptibility.
The landslide inventory map was created based on literature, aerial photo analysis, satellite images,
and field surveys. A very high-resolution Digital Elevation Model (DEM) and land cover map was
produced from a dense point cloud and Earth Observation data (Landsat 8), accordingly. Sentinel-2
data were used for the detection of the recent landslide events and offered suitable information for
two of them. Eight triggering factors were selected and manipulated in a GIS-based environment.
A semi-quantitative method of Analytical Hierarchy Process (AHP) and Weighted Linear Combination
(WLC) was applied to evaluate the landslide susceptibility index (LSI) both for Chania prefecture
and the motorway A90 in Chania. The validation of the two LSI maps provided accurate results
and, in addition, several susceptible points with high landslide hazards along the motorway A90
were detected.

Keywords: landslide susceptibility mapping; remote sensing and GIS-based analysis; rainfall and
anthropogenic-triggered events; hazard assessment

1. Introduction

Landslides are regarded among the most hazardous and recurrently appearing natural disasters
globally [1–5]. The triggering factors that cause landslide episodes are numerous and complexly
interdependent, comprising intensive rainfalls, earthquakes, rapid stream erosion, geomorphological
processes and human activities (deforestation of slopes, road construction, uncontrolled irrigation,
quarries and mines, etc.) [6–8]. Yet foreseeing the place and time that a landslide will take place
constitutes a complex issue, since the properties of geology and slope angle characteristics vary greatly
over short distances, and the timing, location, and intensity of triggering events are difficult to be
estimated [6].

Rainfall-triggered landslides are amongst the most frequent types, as well as the most devastating
hazards, which cause extensive devastation to lives, properties and infrastructures worldwide [9–13].
The intensity and duration of rainfall can influence slope balance by putting extra weight into the soil
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and creating considerable pore pressure [14]. In general, the crucial precipitation that affects slope
stability is determined by the meteorological conditions and geomorphological characteristics [14,15].
Moreover, the landslides that follow human activity, and are specifically the result of infrastructure
and road construction, have expanded over time, due to the deficiency of the sufficient rating of slopes,
an adequate configuration of drainage features and consideration of past occasions [5,15].

The critical necessity to better mitigate and prevent geohazards led to the development of
Landslide Susceptibility (LS) assessment methods [13,16–20]. An LS map represents assured places
with the propensity of future landslide phenomena by taking into account some of the most important
parameters that are related to landslides and utilizing the previous spatial distribution of landslide
occasions as inputs [17,21–24]. A precise susceptibility recording could be the decisive material for a
wide range of operators and managers from governmental departments and the scientific community
to achieve hazard reduction [24,25]. LS analysis principally includes four distinct stages: (i) the creation
of a landslide inventory map; (ii) the estimation of preparatory and triggering factors that affect the
landslide occurrence; (iii) the selection of suitable methodologies for designating the factors’ weights
and (iv) the calculation of the LS map [26].

There are three LS assessment approaches, the qualitative, the quantitative and the
semi-quantitative [7,17,27–34]. Qualitative approaches are, in fact, very subjective insofar as they
depend on knowledge of the experts. Moreover, they utilize the landslide index to classify regions with
similar geomorphological and lithological features, indicating high susceptibility to landslides [33,35,36].
Quantitative methods produce numerical evaluations among triggering parameters and landslides and
are classified into two types: deterministic and statistical [23]. As far as it concerns these procedures,
historical landslides can be correlated to quantifiable characteristics of the landscape and can be
used to estimate the potential forthcoming events [17,27,36–40]. Nevertheless, several qualitative
methods that make use of weighting processes are generally characterized as semi-quantitative
techniques [38,41–43], such as the analytic hierarchy process (AHP) [2,38,39,44–46] and the weighted
linear combination (WLC) [43,47]. Several LS mapping methodologies have been introduced over the
last few decades [17,38]. They aim to categorize several parts of the landscape following the grade
of landslide susceptibility [2]. In recent years, Earth Observation (EO) platforms and Geographical
Information System (GIS) tools have been efficiently utilized for hazard detection, monitoring and
susceptibility assessment [12,48]. EO datasets, such as Landsat-8 (NASA/USGS program) and Sentinel-2
(European Space Agency’s Copernicus program) [49,50], and GIS have proven their capability for
landslide research. More specifically, they provide information and tools to estimate destruction due
to landslides [51], to prepare an inventory of landslides [52,53], to assess the landslide volume by
decoding the activating parameter and mechanism of collapse [54,55] and to monitor landslide hazards
for prediction and mitigation objectives [26,38,56–58]. Digital Elevation Model (DEM) generation
technology from point clouds derived from very high resolution (VHR) aerial imagery allows us
to produce a wide range of detailed topographic data promptly, improving the efficiency of data
acquisition significantly [59,60].

Furthermore, landslide hazard (LH) estimation constitutes a significant action in the devastation
risk controlling approximation. Hazard evaluation necessitates the designation of the degree or
intensity of an episode over time [61–63]. The primary and most vital stage for LH assessment is
signified by the correlation of the landslide inventory geodatabase (GB). A well-defined GB gives
extensive information of the place and nature of previous landslide events, the failure mechanisms, the
triggering parameters, the event incidence, the dimensions, and the destruction that occurred [18,63,64].

The area under research is Chania Prefecture, which lies in the western part of Crete Island [65,66].
Chania prefecture is characterized by tectonic deformation and high seismic activity (due to the
adjacent Hellenic fore-arc). It has undergone severe landslide phenomena both in the past and in recent
years. The establishment of an LS map in such a vulnerable area could make the risk administration
attainable for the researchers and civil protection authorities.
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The study aims to identify the impact of the various physical (mainly rainfall-triggered phenomena)
and anthropogenic factors (mainly road constructions and their characteristics) on LS at the Chania
prefecture, Crete, an area that has been highly vulnerable to landslide phenomena in the distant and
recent past. For this purpose, the Analytic Hierarchy Process (AHP) for Weighted Linear Combination
(WLC) approach was utilized. Through this research, we intend (i) to examine the suitability of the
EO and derived DEM data in landslide detection and LS assessment, (ii) to evaluate the relation of
Chania prefecture landslide susceptibility with the historical landslide occurrences and the recent
rainfall-triggered landslide events (during 2018-2019 period), and (iii) to assess the potential landslide
hazard assessment of analogous regions and (iv) to make suggestions for the prevention and mitigation
of new catastrophic landslides in the future.

2. Study Area

The prefecture of Chania situated at the western part of Crete Island, located between latitudes
35◦11′14.2′’ and 36◦11′10.6′’ N, and longitudes 23◦15′19.6 and 24◦30′20.1 E, in South Aegean Sea and
covers an area of almost 2,376 km2 and population of 156,585 residents (Figure 1) [67]. The study
area was limited to approximately 98% of the entire prefecture of Chania due to lack of data in the
southeastern part of the prefecture [68–70].

Figure 1. Location of the study area (red rectangle).

Crete island is characterized by active tectonics which generate abrupt geomorphology and
lithological compound formations. It consists of pre-alpine, alpine and post-alpine formations and is
characterized by the existence of complex tectonic and geological characteristics. In western Crete, the
geological stratigraphic sequence consists of the following tectonic units: (i) Pindos unit, (ii) Tripoli unit,
(iii) Phyllite–Quartzite nappe (iv) Trypali carbonate unit and (v) Plattenkalk limestone. The Neogene
and Quaternary sediments are placed on top of the complete sequence. The Quaternary sediments
contain loose clay sands, gravels, and sandstones of various compositions. This formation outcrops
along the coastline, in streams, and within small internal basins. The Neogene comprises interbedded
layers of marl and marly limestone of a mean thickness of some 1–2 m centimetres. Sandstone,
conglomerate, and sandy clays can be found within the formation. Flysch is present in the western
and southwestern parts of the island. The limestone of the Pindos tectonic unit appears to a small
extent in the west Chania region overlying on top of the Tripoli unit. The Tripoli tectonic unit in the
Chania area is over-thrusted on top of the Phylites’ unit, Trypali unit, or over the Plattenkalk limestone
(in SE region). It comprises mainly limestone, and the lower part of the sequence is fragmented as
a result of the tectonic environment. The limestone is karstified, which results in steep relief and
a weak drainage system, most of the time driven by the dominant tectonic structures. Under the
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Tripoli unit, Phyllites–Quartzites seem to be extensively deformed and are characterized by isoclinal
folds with axes trending NE-SW and NW-SE, dipping towards N or NE, and SE, implying a high
pressure/low-temperature metamorphic phase. It consists of quartz-rich formation with interbedded
layers of limestone, gypsum, and volcanic rocks [71], while the Trypali tectonic nappe comprises
carbonates in the central part of the study area. The tectonic environment represented by faults can be
grouped in two main classes: (i) faults trending NW-SE and (ii) faults trending W-E [72].

The geomorphology of Chania prefecture has the characteristics of the relief of the whole of Crete,
which is crossed from west to east by a continuous mountain range, which is interrupted by valleys
and canyons. The mountainous area (Mt Lefka Ori, 2,453m) covers almost the entire central and
southern part of the region, while the plain (18.3% of the total prefecture) occupies the north coastal
area. The main torrents of the area are located in the northern part, from which the most important are
the rivers Kiliaris, Kladissos, Tavronitis, Tiflos and Keritis. The climate of the prefecture is characterized
as temperate Mediterranean, with mild winters and hot and dry summers. Temperature fluctuations
are highest in the Lefka Ori region, and snowfall is highest in November. Rainfall is higher than
in the rest of Crete, due to the Lefka Ori and the orographic effect. The mean annual precipitation
for the region has been assessed to vary from 650 to 1000 mm in the plains and mountainous areas,
respectively (Figure 2) [73,74].

Figure 2. (a) Walter–Lieth diagram for Chania region illustrates the climatic variables of air temperature
and precipitation, (b) The average annual, average monthly (January-February) and monthly rainfall
amounts that recorded at Souda Weather Station [75].

2.1. Intense Rainfall Period

Western Crete, during the period from September 2018 until the end of February 2019, received
significant rainfall amounts. It is noteworthy that the number of rainy days was very high in January,
reaching up to 24 days in almost all areas of the island (typically ranges from 10 to 12 days), due to
the continuous movement of barometric systems from the north and west. Notably, the recordings of
rainfalls in the areas of Chania exceeded the rainfalls recorded in western and northern parts of Greece,
where the highest rainfall levels are usually observed. The highest amounts of rain occurred at the
mountainous areas (i.e., the area of Asi Gonia has the highest rainfall record with 1,963 mm of which
1,328 mm was recorded from September to December 2018 and 635 mm in January 2019).

During February 2019 two severe weather systems, “Hioni” and “Okeanis” took place, causing
flooding and landslides, which brought about five fatalities and extensive floods that caused extensive
damages to infrastructures and agricultural land. Between the 1 and 26 February, 269 mm of rain
was recorded at the weather station of Kastelli (Figure 1), which constitutes the 270% of the regular
average monthly rainfall of February, while the overall rainfall quantity for the two months (January
and February 2019) was 497 mm, that is the 72% of the average yearly precipitation amounts. At Souda
weather station (Figure 1), 116 mm of rainfall was recorded on 25 February, which exceeds the average
monthly rainfall for the whole month, whilst in the period from 1 to 26 February 406mm was measured,
which is four times the average monthly rate (Figure 2). In general, during February, some regions of
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western Crete received amounts of water three or four times more than the average monthly rainfall.
Particularly in the region of Askiftos, the total monthly rain and snow was above the European highest
monthly rainfall height [75,76].

2.2. Landslides

In Greece, several landslide events have been recorded over the years (mainly situated at the
western part) due to the existence of several preparatory parameters such as the complex geological
formations (with intense folding and jointing) and the steep slopes. The triggering factors which are
related to these phenomena are principally the intense rainfalls and earthquakes [14]. The national
pattern of the landslide events (70% of the recorded numbers) in accordance with the form of landslides
reveals that are primarily translational and rotational earth slides [14,22,24,77]. The rest of the failures
comprise various types of debris flows and rockfalls. The Chania prefecture suffered from severe
landslide phenomena in the past, primarily related to rotational and translational types (70–80%) and less
so to the rockfall type, principally due to abrupt and mountainous geomorphology (Figure 3a) [14,24].
Intensive rainfall is commonly the most considerable triggering factor for their origination.

Figure 3. (a) The Landslide Frequency Index (LFI-landslides/100 km2) map of Greece [22], (b) The past
and recent (2018–2019) landslide events in Chania prefecture [23].

The intense and prolonged precipitations from the September 2018 to February 2019 period
expanded the landslide phenomenon to areas in the north and north-east and particularly in areas of
intense human activity that rarely have faced it in the past. All of the cases took place along the main
highway (A90), which crosses the entire northern part of the island, from one end to the other, with an
E-W direction of the prefecture, which constitutes high risk areas with intense human exposure and
high vulnerability level (Figure 2b). More specifically, five (5) landslide events occurred in the west,
close to Agia Marina (two sites), and in Stalos, Galatas and Katos Stalos (Malindreto) villages, and
four at the east, close to Platani (three sites) and the Kalami area of the City of Chania [72] (Figure 3b).
Most of these recent landslide events that took place along the main highway A90 are caused, along
with the intense rainfalls, from slope instability problems. Hasty road constructions (because of time
and financial constraints) without proper geological and geotechnical examination may lead, under
extreme rainfall conditions, to slope failures [78].
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3. Materials and Methods

3.1. Data

In Table 1 presented the study’s different types of datasets. The geological maps were used to
depict the prefecture’s lithological and structural units, the topographic maps to develop the drainage
and road network, the satellite and orthophoto images to extract the land cover types and supplement a
detailed road network where needed (highway and main provincial roads) and in addition to create an
extremely accurate DEM (2 m spatial resolution), and the precipitation records to estimate the historical
mean annual precipitation for the period of 1971–2000 [79]. Several DEM-derived spatial maps were
created, such as slope angle and slope aspect. The analysis of the geospatial data was accomplished
utilizing ArcGIS (10.7.1, Environmental Systems Research Institute, Redlands, CA, USA) software.

Table 1. Datasets.

Data Data Characteristic Acquisition Date/ Date
of Creation Usage

Geological maps

Institute of Geology and Mineral
Exploration (IGME) at 1:50,000

scale/map sheets: Chania,
Kastellion, Perivolia (Platanias),
Paleochora, Rethymno, Sellia,

Vrisses, Alikianos

1971, 1970, 1956, 2000,
1988, 1982, 1993, 1969

Geological formations
and faults

Topographic maps

Hellenic Military Geographical
Service at 1:50.000 scale/map sheets:

Chania, Kastellion (Kissamos),
Perivolia, Paleochora, Rethymno,

Sellia, Vrisses, Vatolakos

1993–1994 Drainage network

Meteorological data Hellenic National Meteorological
Service. 1971–2000 Rainfall distribution

Landsat 8

Operational Land Imager (OLI)—11
spectral bands—geometrically and

atmospherically corrected—15m
spatial resolution, (path/row:

182/035 and 182/036)

14/08/2019
Land Cover/ Normalized

Difference Vegetation
Index

Sentinel-2

MSI–13 spectral
bands—geometrically and
atmospherically corrected

(2A)—10m spatial resolution

06/01/2018
Landslide detection11/01/2019

17/03/2019

Orthophoto maps
Aerial photographs

orthorectified—1m spatial
resolution

2014
Drainage and road

network integration /
Point Cloud for DEM

3.2. Methodology

The applied methodology was divided into a six-stage process: (a) construction of the inventory
map, (b) process of earth observation data, (c) formation of the DEM from point cloud manipulation,
(d) selecting the appropriate factors and building a geodatabase, (e) weighting the factors and calculating
the landslide susceptibility map for (i) Chania prefecture and (ii) along the main highway A90 and
(f) evaluate the areas with potential future hazard to a landslide event along the A90 motorway.

3.2.1. Landslide Inventory Map

A detailed landslide inventory map first and foremost demonstrates the location, time, type and
number of landslides and therefore is crucial for understanding the correlation concerning landslide
occurrence and causative parameters and to create an integrated hazard map [17,39,63,80–82].

The landslide inventory map assortment of Chania prefecture was developed using the following
steps: (a) collection of landslides historical information from previous studies and literature (Figure 3b);



Land 2020, 9, 133 7 of 26

(b) fieldwork for the mapping of landslides of the recent events (Figure 4) and (c) detection of landslides
on satellite images (Sentinel-2 and VHR Google Earth (Figure 4). A number of landslide sites (80 in
total, 71 old and 9 recent) were collected throughout the study area. The created landslide inventory
map according to random sampling was separated into two datasets: 80% (64 landslide spots) for the
triggering factors selection and 20% (16 landslide spots) of the landslides for the validation process,
respectively [8,81,83,84].

Figure 4. Cont.
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Figure 4. (a) The spatial distribution of three landslide events occurred recently along the motorway
A90 due mainly to intense rainfalls, (b1–b2) Google Earth images showing the pre and post landslide
event of Stalos area, (b3–b4) field survey photos of Stalos landslide event, (c1–c2) Google Earth images
showing the pre and post landslide event of Galatas area, (c3–c4) field survey photos of Galatas
landslide event, (d1–d2) Google Earth images showing the pre and post landslide event of Kalami area,
(d3) field survey photos of Kalami landslide event.

3.2.2. Satellite Images Processing

Several EO data sets, free of charge, were acquired for this study. Sentinel-2 constellation of
two satellites (A and B) constitutes the flagship of the European Space Agency (ESA) Copernicus
program, which provides advanced and continuous data through the free access hub. Three S2
atmospherically corrected (2A) images, from the same season of the year (pre- and post-landslide,
January 2018 and January-March 2019) were acquired. Even though the spatial analysis of Sentinel-2
images is considerably coarser than sub-meter detailed optical data, such as the VHR satellite images
of WorldView, QuickBird, and so on, it is characterized by a much shorter revisit time and cost-free
access [85,86]. The images were resampled to 10m (preprocessing procedure using as reference product
band 2) and several false color composites (e.g., using Bands 3, 4, 8, 8A, 11 and 12) were tested to
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distinguish the recent landslide scars. The Normalized Difference Vegetation Index (NDVI) was
produced to assist the creation of the land cover map. NDVI denotes the variation among the visible
red and the near infrared [87], relating to vegetation characteristics. The index shows values in the
range−1 to +1. In the absence of vegetation (e.g., bare soil, rock, and urban areas), NDVI represents low
positive (0 to 0.2) or negative values (all the other land covers except vegetation). On the other hand,
in the existence of vegetation (e.g., grassland, forests), the index obtains values from 0.2 to 1 [88,89].
An image difference technique used to detect shallow landslide displacements between the pre- and
post-landslide images. For this reason, two images from the same season were selected (January 2018
and January 2019) to avoid differences of vegetation phenology [90,91].

Moreover, two adjacent (path 182, row 35 and 36) Landsat 8 Level 2 images covering the study
area, geometrically corrected, were obtained via the USGS Earth Explorer (EE) platform, for the detailed
land cover map creation [92]. From these images, several products were created (NDVI, Normalized
Difference Water Index, Tasseled Cap Transformation) to assist the creation of the land cover map.
The processing of the data was made utilizing ENVI (5.5, Harris Geospatial Solutions, USA) and SNAP
(7.0, ESA) software.

3.2.3. Digital Elevation Model

Terrain morphology is one of the critical parameters in the landslide phenomenon, and DEM
constitutes a crucial information layer for various geomorphological products related directly to hazard
evaluation [13,18,63,91]. With the base as the VHR aerial stereo imagery (1m), a sparse point cloud
was generated initially for DEM extraction. This sparse point cloud was then used to create a dense
point cloud. Point clouds generated from aerial scanners are better suited for detailed terrain analysis
and feature extraction. Finally, an extremely accurate digital elevation model was built from this point
cloud, with a pixel size of 2 m (Figure 5). The point cloud was generated using IMAGINE Auto DTM
module of Hexagon Imagine Photogrammetry Suite, while the DEM was formed utilizing Global
Mapper (20.0, Blue Marble Geographics).

Figure 5. Very high-resolution Digital Elevation Model (DEM) (2 m) created from a dense point cloud
derived from aerial stereo imagery.
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3.2.4. Causal Factors—Geospatial Database

For the precise estimation of landslide-prone areas, the related causal factors need to be identified
and validated, and a geospatial geodatabase should be built [27,93]. The choice of the critical factors
in LS assessment usually is a fairly challenging issue, especially when detailed data are hard to be
found. Hence, in the present research, eight evaluation factors comprising slope angle, geology, land
cover, slope aspect, rainfall, distance to roads, distance to faults, and distance to streams were initially
selected as evaluation factors [7,8,22]. Each factor was divided into sub-classes, and both factors and
sub-classes were chosen according to a thorough literature review [8,22], extended field observations
and scientific experience from previous studies. All layers were initially available in vector or raster
formats and subsequently converted to a raster layout, having a spatial resolution of 2 m.

Topographic Factors

Topographic factors constitute the most significant geomorphological parameters that control
slope stability [40]. From the VHR DEM, geomorphological thematic layers such as slope angle and
aspect were calculated [40,94,95].

Slope angle
Slope angle and slope geometry are crucial issues for slope instability [17,40,43]. The moisture

content, the pore pressure and the hydraulic behavior of a slope could be dominated by slope angle
patterns [33,34]. Therefore, slope angle estimation is an essential part of hazard assessment. Slope
angle was obtained from DEM and reclassified into five classes (based on our expert knowledge of the
study area and related literature) according to their response to LS (a) very gentle slopes (0–10%) as 1,
(b) gentle slopes (10–20%) as 2, (c) moderate steep slopes (20–30%) as 3, (d) steep slopes (30–60%) as 4,
and (e) very steep slopes (>60%) as 5 (Figure 6a).

Slope aspect
Slope aspect defines the direction of slopes and reveals potential effects of prevailing winds,

various weather conditions and incident solar radiation [25]. The orientations that according the local
conditions receive more quantity or intense rainfall, the soil gets saturated more quickly, depending
moreover on infiltration capacity, controlled by slope angle, soil type (permeability and porosity) and
vegetation cover [80,94]. Slope aspect was grouped and reclassified into four classes, as (a) Flat areas
and S-SE as 1 (b) NE-E as 2, (c) SW as 3 and (d) W-NW-N as 4 (Figure 6b).

Geological Units and Land Cover Factors

Geology
Geological characteristics are one of the most crucial controlling factors of landslides, since each

geological unit have different susceptibility rates. Numerous researchers [2,56,96,97] emphasized
the role of geology on slope stability. Geological formations and their relation to landslide
phenomena directly based on their geomechanical characteristics, structural joints and discontinuities,
hydrogeological behaviour, and indirectly the control of soil depth, vegetation cover erosion processes.

The geological layer extracted by digitizing the geological maps. The bedrock formations were
reclassified into five general categories concerning LS (a) limestones and marbles as 1, (b) Neogene
sediments as 2, (c) Loose Quaternary deposits as 3, (d) Phyllites–Quartzites as 4 and (e) flysch formations
as 5 (Figure 6c).
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Figure 6. The thematic raster maps of the eight (8) factors, used for the estimation of Landslide
Susceptibility of Chania Prefecture: (a) Slope angle, (b) Slope aspect, (c) Geology, (d) Land cover,
(e) Mean annual precipitation distribution, (f) Distance to roads, (g) Distance to faults, (h) Distance
to streams.
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Land Cover
Land cover type is a potential driver of LS, as is vegetation, e.g., forest trees with a strong and

extensive rooting system, and enhanced slope stability through their effect on the soil’s hydrological and
mechanical attributes [7,98]. The land cover map derived from the digitization of aerial orthophotos
with the support of 15-m decorrelated images of Landsat 8 and the NDVI [NDVI = (NIR-R)/NIR+R)],
where NIR-Near Infrared band 5 and R=Red band 4)] to improve the classification of vegetation
cover. Finally, the cover was reclassified into five classes based on their response to LS (a) coniferous,
broadleaved forest and shrubs as 1, (b) olive groves and orchards as 2, (c) arable land as 3, (d) urban
areas as 4, (e) vineyards and bare soils as 5 (Figure 6d).

Mean Annual Precipitation

Rainfall distribution affects overland flow volume and soil moisture. In the present study the
recommended World Meteorological Organization’s (WMO) reference climatic period was used.
The current climate reference period in use by WMO consists of 30 years from 1 January 1961 to
31 December 1990. However, it is also suggested that it is possible to adapt the reference period to
following a “rolling” set of 30 years, updated every 10 years depending on best available datasets.
Based on the above and considering the best available meteorological data series in the meteorological
stations of the study area, in this application, the climatic reference period consists of 30 years from
1 January 1971 to 31 December 2000 [99,100]. Precipitation was spatially distributed based on its
mean annual values, utilizing the co-kriging interpolation method and using a covariate as the basin
elevation, as described in detail by Soulis et al. [79]. Mean annual precipitation was reclassified based
on the rainfall amount into five classes (a) 0–600 mm as 1, (b) 600–800 mm as 2, (c) 800–1000 mm as 3,
(d) 1000–1200 mm as 4, and (e) >1200 mm as 5 (Figure 6e).

Proximity Parameters

Distance to roads
Road constructions are related to extensive excavations, vegetation removal and, sometimes, the

formation of steep slopes [24]. The main road network, consisting of primary (motorway and main
urban streets), secondary (main provincial) and local (rest provincial) roads, was included as a potential
triggering component and cause of landslide susceptibility. A buffer zone of 50 and 100 m over the
main road network of the study area was delimited, and the distances to roads reclassified into three
classes (a) >100 m as 1, (b) 50–100 m as 2 and (c) <50 m as 3 (Figure 6f).

Distance to faults
Proximity to tectonic structures generates the possibility of a landslide phenomenon since erosion

processes and water flow along a crack might occur. For the faults derived from geological maps, a
buffer zone of 250 m width was developed, and the area was divided into two sections, i.e., inside
(as 2) and outside the zone (as 1) (Figure 6g).

Distance to streams
Vicinity to streams is an essential controlling factor of landslides since it can cause significant

erosion processes (gully erosion) [2,101]. Second or higher order streams according to Strahler’s
(1964) [102] classification were selected and processed by creating a 50 m buffer zone. Thus, the basin
area was divided into two sections, i.e., within (as 1) and outside (as 2) the zone (Figure 6h).

3.2.5. Weights Factor Analysis based on AHP

A semiquantitative multi-criteria method, AHP, in which weights are used to make decisions
via pair-wise relative evaluations with no inconsistencies, was used in this procedure. The technique
has been effectively utilized in LS mapping by several researchers [39,40,43,44]. AHP includes a
hierarchical process of decision factors and creates comparisons between possible pairs in a matrix to
provide a weight for each factor and correspondingly a consistency ratio [103].
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Thus, the significance of each factor comparative to every single other factor is described ideally.
In AHP all factors are rated utilizing a continuous scale from 1 to 9, when there is a direct correlation
between the factors (1: Equal importance; 3: Moderate prevalence of one over another; 5: Strong or
essential prevalence; 7: Very strong or demonstrated prevalence; 9: Extremely high prevalence; 2, 4, 6,
8: Intermediate values; Reciprocals: opposites, for inverse comparison, used to represent compromises
between the preferences in weights 1, 3, 5, 7 and 9) if the factors have direct relation (when the factor
on the vertical axis is more important than the factor on the horizontal one) and a scale from 1/2 to 1/9,
when there is an inverse correlation between the factors (Table 2) [45,104].

Table 2. The landslide causative factors’ pair-wise comparison matrix and weights (normalized
principal eigenvector) for based on Analytical Hierarchy Process (AHP) method implementation.

(1) (2) (3) (4) (5) (6) (7) (8) Weights (*100)
Slope angle (1) 1 3 3 5 5 7 7 7 17.7

Geology (2) 1/3 1 1 2 5 7 7 9 6.0
Mean annual

precipitation (3) 1/3 1 1 3 3 5 8 7 7.3

Land Cover (4) 1/5 1/2 1/3 1 3 5 9 7 5.4
Distance to Roads (5) 1/5 1/5 1/3 1/3 1 2 5 5 2.6

Slope Aspect (6) 1/7 1/7 1/5 1/5 1/2 1 2 2 0.8
Distance to faults (7) 1/7 1/7 1/8 1/9 1/5 1/2 1 2 1.2

Distance to streams (8) 1/7 1/9 1/7 1/7 1/5 1/2 1/2 1 1.1
CR = 0,064

An essential feature of the AHP is that it allows us to define rating inconsistencies by the
consistency index (CI), which is used as specified by Equation (1) [44,105]:

CI =
λmax −N

N − 1
(1)

where λmax is the biggest eigenvalue and Nis the order of comparison matrix.
Saaty (1980) [44] established the consistency ratio (CR) which is determined as the ratio among

the consistency index (CI) and the average random consistency index (RI) for different matrix orders
[CR = CI/RI]. The CR depends on the number of factors. In the case that CR is higher than 0.1, the
comparison matrix is inconsistent and should be revised. In the present study, the CR value is 0.064
(< 0.1), which makes definite the great consistency between the preferences that are applied to create
the comparison matrices (Table 2) [39,40,45].

3.2.6. Landslide Susceptibility Index (LSI)

The different rating values were assigned to the classes of the thematic layers as attribute records
in a GIS environment, and a raster map was developed for each final weighted layer. The maps
were reclassified to be compared utilizing the equal interval method, in grades from very low to very
high susceptibility. Subsequently, the reclassified raster layers were applied as input data for the LSI
estimation. The weights were multiplied by 100 to achieve integer numbers and obtain values between
0 and 100. Subsequently, LSI was calculated by multiplying the assigned level values of the raster
layers (of the 8 factors) with the corresponding weights derived from the AHP method.

Two different calculations were made, one for the estimation of LSI for all the study area (Chania
Prefecture), by multiplying the thematic layer grids with the corresponding weights (wt1 in Table 3,
Equation (2)), and another for the estimation of LSI(m) along the A90 motorway giving higher
importance to slope angle and multiplying by the corresponding slope angle-based weights (wt2 in
Table 3, Equation (2)).

LSI and LSIm =
n∑

i=1

weighti x class rate (2)
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where n is the total number of data layers (factors) and i is the different weight (wt1 and wt2 for the
entire area and A90 correspondingly) in Table 3.

Table 3. Classification of the landslide controlling factors and categorization into rating classes
according to their significance on Landslide Susceptibility.

Factor Class Class Value
Rating Weight wt1 Weight wt2

0–10 1

17.7 17,7*SA*(MAP*2,0) layer
10–20 2
20–30 3
30–60 4

i. Slope Angle (SA)
(%)

>60 5
Flat, S-SE 1

0.8 0.8*SA*(MAP*2,0) layerE-NE 2
SW 3

ii. Aspect

W-NW-N 4
Limestone–marble 1

6.0 6.0*SA*(MAP*2,0) layer

Neogene 2
Loose quaternary

deposits 3

Phyllites–Quartzites 4

iii. Geology

Flysch 5
Forest and shrubs 1

5.4 5.4*SA *(MAP*2,0) layer

Olive
groves–Orchards 2

Arable crops 3
Urban areas 4

iv. Land Cover

Nude soils and
vineyards 5

0–600 1

7.3 7.3*SA *(MAP*2,0) layer
600–800 2
800–1000 3

1000–1200 4

v. Mean annual
precipitation (MAP) (mm)

>1200 5
>100 1

2.6 2.6*SA *(MAP*2,0) layer50–100 2vi. Distance to Roads (m)
<50 3
>250 1

1.2 1.2*SA*(MAP*2,0) layervii. Distance to faults (m)
<250 2
>50 1

1.1 1.1*SA *(MAP*2,0) layerviii. Distance to streams
<50 2

4. Results

4.1. Landslide Susceptibility Index—Study Area (Chania Prefecture)

For the eight selected factors related to landslide events in the area under study, a statistical
assessment was made to investigate the distribution and relation of past landslides to the sub-classes
of each factor. From the analysis of the past landslide distribution, it was obtained that: (a) in the
slope angle map, the 38% and 47.5% of previous LS are situated in very high and high slope angles,
respectively; (b) in the geological map, 63.3% of past LS parts are located in Phyllites–Quartzites and
21.1% in limestones; (c) in the land cover map, 65.2% of previous LS are placed in bare soils, while 30.2%
and 10.1% in olive groves and forest–shrub areas, respectively; (d) in the mean annual precipitation
distribution map, 77.7% of past LS parts are situated in 600–800 m, and 800–100 mm classes; (e) in the
aspect map 31% and 30% of past LS is located in N-NW-W, and NE-E directions; (f) in the distance to
roads, streams and faults maps, 57.8%, 61% and 70% of the past landside events are placed in areas
>100 m, >50 m and >250 m classes, respectively.
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The LSI map is classified into five susceptibility classes, defined as (a) Very Low, (b) Low,
(c) Moderate, (d) High and (e) Very High. Higher values of LSI demonstrate more susceptible areas to
landslides. The generated map was processed (dissolved and smoothed out using a 5x5 low pass filter)
to decrease the significance of possible misclassified cells. Approximately 15.30% of the prefecture
shows very high LSI values, 30.25% show high values, 36.94% show moderate values, while 15.50%
and 2.02% appear to have low and very low values, respectively (Figures 7 and 8a).

Figure 7. The Landslide Susceptibility (LS) map, after reclassifying the calculated values into five
classes of potential susceptibility.

Figure 8. (a) The percentage of the five LSI classes in the area under study, (b) the percentage of the
past landslides in correlation with the LSI map.

Additionally, from the GIS-based statistical analysis, it was found that the most susceptible
areas to landside (high and very high values) are placed to (a) slope angles with very high and high
values (42.17%), (b) Geological formations of Phyllites–Quartzites (38%) and limestone–marble (49%),
(c) land covers of bare soils (87%), (d) Slope aspects of W-NW-N (34%) and SW (28%), (e) Mean annual
precipitation >800 mm (60%), (f) Distance from roads >100 m (79%), (g) Distance to faults >250 m
(55%), (h) Distance to streams >50 m.
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The LS calculations are geospatial analytical types and should be assessed compared to the info
utilized to formulate the estimation. The final stage comprises the validation procedure. To make the
comparison, the separation of the past landslide data in the area under examination is needed. Once
the data are partitioned, one subset of data is used to obtain the prediction image while the other subset
is compared with the prediction results for validation. Thus, the validation was achieved by comparing
the generated LSI maps with the selected landslide data that were initially set aside for validation
(20%) from the total geodatabase and landslide-free chosen areas in the region (another 16 points—in
total, 32). The GIS-based comparison and statistical analysis showed adequate results since the overall
matching of the five classes reach a percentage of 83.7% (Table 4). The past reference landslides are
distributed with a percentage of 25% in moderate and 69% in high and very high susceptible areas
(Figure 8b).

Table 4. Confusion matrix of LS map validation.

Validation Sample
Target Class (Observed)

Susceptible Areas
(High and Very High Classes)

No Susceptible Areas
(Moderate, Low, Very Low Classes)

Landslide areas 11 5
Landslide-free areas 2 14

4.2. Landslide Susceptibility Index(LSIm)—A90 Motorway

As previously mentioned, the LSIm map was created only for the northern part of the prefecture,
along the motorway A90, by giving higher importance to slope angle (due to the steep slopes across
the main road network) and mean annual precipitation (multiplied by 2.0 in the calculation, due to the
recent intense and high amounts of rainfalls) factors which, according to the thorough knowledge of
the area and the extended field visits, appear as the two primary triggering parameters of the recent
landslide events. In consequence, the final extracted map was also classified into five susceptibility
categories, (a) Very Low, (b) Low, (c) Moderate, (d) High and (e) Very High. The GIS-based comparison
and statistical analysis showed an overall matching of the five classes that reaches a percentage of
89.2% The statistical analysis of the recent events occurred alongside the A90, reveals that 56.6% of the
events took place in the high and very high and 44.4% in the moderate susceptible areas of LSI map.

With the goal to explore the potential landslide hazard associated with other susceptible points
of motorway A90, a thorough analysis of LSIm and Slope angle map was accomplished. From this
analysis, several other regions were chosen, and four of them delineated in Figure 9. Two of these (1–2)
are related to the recent landslides that occurred in 2018–2019 period, while the other two (3–4) reveal
some spots (yellow arrows in Figure 9) with high and very high landslide susceptibility and potential
hazard. More specifically, these spots appear to have slope angle values higher than 60% and very
high susceptibility values are due principally to their geological and geomorphological characteristics
and additionally to the high amount of rainfall during the previous mentioned period (2018–2019).

4.3. EO Data in Landslide Detection

In the present research, a comprehensive analysis of EO data was made to detect the recent
landslide scars along the A90 motorway at the north part of Chania prefecture. Since the two images
were acquired from the same season of the wear (January 2018 and 2019), the vegetation phenology
remains the same.

To display slope movements, several RGB composites were made, but the most sufficient was the
combination of near infrared Band 8 in red and the shortwave infrared Bands 12 and 11 in Green and
Blue colors, respectively (Figure 10). This RGB composite image revealed small landslide scars in the
Stalos and Galatas regions (Figure 10–cyan polygon). Landslide scars were distinctly different from
the surrounding ground features and appear in dark colors, since the surrounding area appears in
red (vegetation cover). The detected landslide areas in the Stalos and Galatas regions cover an area of
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approximately 1474 m2 and 1020 m2, respectively. On the other hand, from the analysis of the NDVI
difference image (NDVI post—NDVI pre-event, created by Sentinel-2 images), the landslide scars were
difficult to distinguish, probably because the change in vegetation cover was not so intense.

Figure 9. Cont.
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Figure 9. (a) Perspective view of the four selected regions distribution, (b–c) the selected regions 1-2
where the recent landslide events occurred, (d–e) the selected regions 3-4 with very high landslide
susceptibility and potential hazard (critical spots indicated with yellow arrows).
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Figure 10. False color composites of Sentinel-2 pre (a1,b1) and post-landslide (a2,b2) events in Stalos
and Galatas areas of motorway A90. Cyan polygons represent the landslide scars.

5. Discussion

Landslides are recognized as one of the most disastrous natural hazards, and are affected by
several triggering parameters which differ significantly from place to place. Several factors, such as
geological formations, geomorphology, rainfall and human activities, are capable of changing landscape
features [2,5] decisively. This goal of this study is to deal with the analysis of the various physical
parameters, such as geological formations, geomorphology and rainfall, as well as anthropogenic
factors (primarily road constructions and their characteristics, e.g., steep slopes) on LS at the Chania
prefecture. LS assessment is an essential task in the landslide management process, and their estimation
should be performed formerly of all kind of manufacturing projects and constructions.

Two different kinds of LS maps regarding Chania prefecture and the entire length of the motorway
(A90) inside the area under investigation were created. To that end, eight influencing factors were
chosen (slope angle, slope aspect, geology, land cover, mean annual precipitation distribution, distance
from roads, distance from faults and distance from streams). From the available methods, the
semi-quantitative approach (AHP-WLC) was selected, which is easy to apply and accurate for LS
mapping. The pair-wise comparisons of the relative factors are calculated without discrepancies in
the decision process. Moreover, the rating values in this study may be used in other study areas with
similar geological, geomorphological and hydro-climatic conditions. The AHP method was applied
to obtain a factor’s weight values, and then by using the WLC process, the LSI was estimated for
every pixel.

The results reveal the distribution and characteristics of the phenomena in the study area accurately.
The LSI map (Figure 7) shows that 45% of the prefecture belongs to high and very high susceptibility
conditions and are situated mainly at the south and southwestern part. The landslides are related
mostly to the landslide-controlling parameters of geology (Phyllites–Quartzites and limestone–marbles),
natural geomorphological characteristics and less with the mean annual precipitation distribution,
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aspect, land cover, etc. The types of the landslides, in this case, are translational, rotational and
rockfalls [22,23]. On the contrary, the LSIm map results depict that almost 70% of the prefecture’s
northern part, adjacent to the main road network (motorway A90), belongs to high and very high
susceptibility areas. The triggering parameters of the recent landslides in this region, which was
almost a landslide-free area in the past, are associated with the continuous and intense rainfalls
(from the September 2018 to February 2019 period) [75], and the anthropogenic activity and, more
specifically, the steep slopes along the constructed road network (this slope angle and distance to
road parameters). For this reason, most of the landslide movement types are related to the debris
avalanche type. To verify the accuracy and suitability of LSI maps, the landslide inventory map was
created based on accessible landslide historical data, remote sensing images (aerial orthophotos and
satellite images), and fieldwork records. The statistical analysis and validation process proved that the
produced LSI map was satisfactorily accurate and adequate to detect landslide-prone areas in other
regions along the motorway A90, and therefore is characterized as a significant basis for the estimation
of landslide hazard.

EO data were utilized for land cover mapping and landslide scar detection. The Sentinel-2 image
processing results in landslide detection are determined by a few other issues, which regard the
landslide size (scar), and the ground conditions. Considering that the spatial resolution of Sentinel-2
is limited to 10 m, i.e., landslide slip surface smaller than the pixel size (10mx10m), it is not easily
detectable. On the other hand, indeed, this technique and resolution are adequate to distinguish sizable
landslides. Moreover, as far as it concerns the vegetation cover of the area that changed by slope
movement, if the alteration is not so drastic or vegetation recovery is quicker than the observation
cycle (which also depends on cloud cover), it would be problematic for the vegetation difference
technique to detect it. Hence, only two of the recent landslides were mapped. Nevertheless, it is certain,
that Sentinel-2 high resolution, five-day revisit and cost-free dataset should be indisputably utilized
from the scientific community in future landslide detection research, especially in more extensive
events [85,86,91].

Regarding the effort to provide knowledge for the prevention and mitigation of new catastrophic
landslides in the future, and according to results of this study, we suggest that in areas adjacent to
already constructed and future infrastructure projects, where the potential landslide vulnerability is
very high, appropriate protection measures should be taken to avoid fatalities of human life and serious
economic and social impacts. These actions may be active or passive, depending on the purpose they
serve and the scale of the phenomenon to be remedied. Therefore, in areas where landslides have
occurred or could potentially occur, the following remedial measures are suggested and indicative by
event factor: (a) Slopes (i) proper slope shaping, (ii) active and passive protection measures such as
anchorages (passive or active) grids and restraint fences, respectively, (iii) protection against corrosive
phenomena and conservation measures for drainage of surface and groundwater, (iv) construction
of small-scale construction projects (retaining walls, rock traps) but also larger-scale construction
(mounting brackets, defense arcades, etc.); (b) Geological parameters dealing with the implementation
of the appropriate geological and geotechnical research to identify and delimit potentially unstable
areas; (c) Unforeseen Factors related to (i) weather conditions (e.g., increased rainfall amounts and
intensity), (ii) human activities and (iii) natural disasters (e.g., fires have an impact on the occurrence
of landslides).

6. Conclusions

The objective of the present study was the implementation of the semi-quantitative method of
AHP-WLC, to create a detailed LS map for (i) Chania prefecture and (ii) the northern part of the county
along the main road network motorway A90, so as to reveal the predominant landslide-triggering
factors, the susceptibility and the potential future hazard of the area to similar phenomena. A GIS-based
statistical analysis, along with the synergistic use of EO data and detailed DEM created from a dense
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point cloud, was applied to determine the relation of physical and anthropogenic parameters with
landslide activity in the region.

Very high-resolution aerial photos, satellite imagery (Google Earth in our case) and DEM provide
significantly powerful tools for landslide detection and extraction of necessary detailed layers such as
slope angle and land cover. Despite the coarse spatial analysis of Sentinel-2 images in comparison with
other very high-resolution satellites, it provides a powerful tool for landslide detection and monitoring
because of its high temporal resolution (five days revisit time) and free availability.

The LSI map results reveal the vast extent of susceptible areas in Chania prefecture as well as
along the highway A90, where several potential hazard points were assessed. Moreover, it depicts the
different characteristics of past and recent landslide events, with different preparatory and triggering
mechanisms, where the former depends on geological and geomorphological factors and the latter on
extreme rainfall conditions and anthropogenic activities.

The LSI map findings could be useful for managers and decision-makers in landscape
administration and land use design in the area under investigation. Particularly in the case of
the motorway A90, further studies should be performed at the local level to clarify the accurate extent
site of the slope vulnerability and landslide hazard. In general, it is confirmed that the synergistic use
of earth observation and geospatial analysis systems can ideally assist research regarding landslide
susceptible areas.
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